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Abstract—In the advent of ultra-dense networks with unprece-
dented complex and heterogeneous infrastructure, the role of
automation in network optimization becomes vital for sustaining
the target performance. In this work, we address the challenge
of identifying and classifying sub-par performing nodes in near-
real time through a machine-learning inspection of streaming
performance indicators from multiple probe points. We present
a novel K-means-based solution for classifying node performance
over a sliding time segment and further categorizing the type of
failure. The K-means solution first identifies the performance
instances of interest. These are then inspected in a second
clustering round for automated performance labeling. Next,
the labeled data-set is employed to train a Support Vector
Machine based classifier that is continuously classifying incoming
performance instances from the network. The method is tested
using a real network data set comprising call detail records. The
results advocate the potential of our method for effectively and
accurately identifying and classifying performance degradation
in any node in the network.

Index Terms—Clustering, Classification, Self-organizing Net-
works, K-Means, CDR data analysis, SVM.

I. INTRODUCTION

The fifth generation of mobile networks (5G) is now a
reality as Verizon turns on the world’s first 5G network1 and
EE launches the first 5G trial in Canary Wharf, London2. The
launch of 5G networks promises great gains in capacity, speed,
resilience, and latency, but at the cost of unseen complexity.
In order to unlock the 5G potential, a network requires ultra
dense small cell deployments, multi-RAT coexistence (radio
access technology), catering for an unprecedented spectrum of
services, and advanced features (e.g., network slicing), just to
name a few. Such complexity requires permanent monitoring,
diagnosis, rectification, and actuation for three main reasons.
First, it would require an inhibitive capital expenditure to be
able to offer the promised 5G infinite capacity perception
to all users by following the traditional over-engineering
approach. To this end, network agility and flexibility are key
to reshuffling the exactly dimensioned resources in “near”
real-time in a user-centric method. Authors in [1] refer to
this feature as “Resource Elasticity” and propose mechanisms
for the exploitation of this elasticity by softwarising network

1https://www.techradar.com/uk/news/verizon-turns-on-the-worlds-first-5g-
network

2https://www.mirror.co.uk/tech/ee-launches-first-5g-network-13368492

functions pertinently and via cross-slice resource provisioning.
Second, the increased number of network nodes coupled with
the key role of each node in creating the infinite capacity
perception renders the failure (or sub-par performance) of any
node a significant impediment on the overall network perfor-
mance. Thus, in order to offer the best sustainable quality
of experience, an augmented smart root cause analysis with
“near” real-time classification of network nodes is paramount.
With that in mind, the authors in [2] propose a modified local
outlier factor approach to identify cells in outage and apply
rectification immediately in the context of heterogeneous cloud
radio access networks. Third, the amount of data generated by
the network to report on its performance and experience of
its users is massive and very diverse in nature, content, and
frequency. As such, it is essential to synthesize the knowledge
from multiple sources in “near” real-time with permanent
inspection and analysis to match the pace of changes in
the network such as capacity demand, users expectations,
interference conditions, mobility patterns, etc. Authors in [3]
analyze the role of machine learning in the implementation
of self-organized network management, with an end-to-end
perspective of the network, taking into account the entirety of
data generated by the network.

The methodology employed in current networks for perfor-
mance management and optimization is by far insufficient to
avail real-time optimization and requires a disruptive approach
to scale it to 5G timing stipulations. Today’s networks are
firstly dissected to subsystems (e.g., radio access, transport,
core, etc.), then to regions, and features (e.g, 3G, LTE,
4G, etc.) and sometimes to vendors (e.g., Nokia equipment,
ZTE node B, Ericsson core, etc.) and more. Such a silo-
like approach to examining the network performance is no
longer valid in the world of 5G where the distinction between
radio access and transport is blurred (e.g. C-RAN: centralized
radio access networks with pooled base band units) and
the inter-RAT operation is no longer optional (e.g., ATSSS:
Access Traffic Steering, Switch and Splitting). Moreover, the
abundance of data sources and data types has further increased
with features such as minimization drive tests (MDT) [4] and
advanced self organization mechanisms. There is an equal rise
in specialized solutions to examine these new data sources,
alas, these are often vendor specific and result in narrower



silos.
In this article, we propose a novel machine-learning ap-

proach for automating the detection of under-par network
performance and a smart classification of the behaviour of
network nodes which allows for a “near” real time detection
of the nodes causing performance degradation. The described
method is particularly designed to operate on various and
multiple types of data streams that are continuously generated
by the network. For instance, the performance indicators
continuously generated by the radio access network may be
jointly analyzed with minimization drive test data streams for
the performance degradation detection. We posit that such a
feature is crucial for overcoming the traditional silo-approach
of network performance management.

The proposed solution offers a user-centric perception of the
network’s performance as opposed to the traditional network-
centric perception. This aspect is critical in the prioritization of
identified problems and in the distribution of resources/efforts
for optimization and maintenance of network nodes. We have
tested our solution on CDR data from an African GSM oper-
ator and it was successful in identifying under par performing
nodes and categorize the “type” of degradation recorded within
an hour of the incident. We thus summarize the contributions
of our work in the following points:
• A new method for “near” real-time identification of

under-par performing cells that may be applied to any
network generated stream of data. Moreover, the iden-
tification is further categorized to highlight the “type”
of degradation recorded in preparation for the automated
smart root cause analysis that would follow.

• A new method for unsupervised learning based on K-
means clustering that auto-tunes the pertinent number of
clusters based on the streaming data.

• A supervised learning technique based on Support Vector
Machines (SVM) that builds on the knowledge extracted
from the previous step to classify similar new data
streams.

The rest of the paper is organized as follows. Section II offers a
survey on state of the art work that employs machine learning
for solving network problems. Section III details the proposed
method comprising two phases of clustering and classification.
Sections IV and V describe the data set used for the validation
of this method and the corresponding results and analysis. The
paper is concluded in Section VI.

II. MACHINE LEARNING FOR MOBILE NETWORKS

Machine learning is a proven technique for solving complex
problems and has been successfully applied in many fields
such as computer vision, medical diagnosis, recommendation
systems, speech recognition, and more. Driven by the success
of machine learning in various verticals, both industry and the
research communities are exploring its potentials in solving
mobile network problems, as in [5].

There are three key features in machine learning that advo-
cate for its application on mobile networks. First, machine
learning learns from the data and the acquired knowledge

improves when the data volume increases. In the advent of
fast and massively parallel graphical processing units and the
abundance of network-generated data, this key feature of ma-
chine learning is well exploited. Second, machine learning and
reinforcement learning in particular, circumvents the require-
ment of highly complex closed form mathematical formulation
since it is model-free and relies mostly on the reward system.
Closed-form formulations have been a impediment in classical
programming for mobile problems as they create a catch-22;
many aspects of the system need to be omitted to secure
a closed form, hence, compromising the model’s fidelity,
alternatively, no closed form can be reached which limits the
solution to numerical analysis. The third features of machine
learning is the knowledge transfer which, in the field of mobile
networks, can exploit the temporal and spatial differences
and relevance of different regions. As such, the knowledge
acquired in one node can be transferred to another (or new)
node to accelerate the learning curve. This is particularly
important in the 5G era which is characterized by dynamic
changes and diversity. In this case, the knowledge acquired in
classifying macro-cell performance can readily be transferred
to small cells or indoor cells. Similarly, knowledge acquired
in diagnosing quality deterioration for VoIP services can be
used to accelerate the diagnose of IoT service (e.g., e-health,
smart meters, driver-less vehicles etc.).

Applying machine learning to solving network problems
has resulted in a prolific research output in the last few
years. Many efforts have been invested in identifying potential
applications of machine learning such as [6]–[8] in the domain
of wireless networks and in particular in the implementation
of self-optimization mechanisms. Two recent works apply
machine learning techniques into the analysis of Call Data
Records (CDRs): [9] and [10]. Authors in [9] employ big data
analysis for over ten million CDR records to extract the spatial-
temporal predictability of network traffic. These CDR-driven
predictions are then applied to a novel mechanism for joint
optimization of energy consumption and inter-cell-interference
in ultra-dense 5G networks. Motivated by the crippling cost
of churn faced by telecom operators, authors in [10] apply
deep learning to CDR and customer relationship management
(CRM) records to predict which customer is likely to churn to
allow for user-centric retention efforts. On the other hand, au-
thors in [11] propose a novel method to automatically diagnose
the radio condition in a mobile network cell based on the user’s
performance as captured by MDT records. To this end, the
proposed method applies an unsupervised machine learning
technique (Self optimizing maps) to cluster and classify the
performance of each cell in the network. Moreover, in the
domain of fixed networks, authors in [12] propose a machine
learning method for performance monitoring employing SVM
and double exponential smoothing (DES) for the prediction
of equipment failure. Authors in [13] offer a solution that
uses deep learning to predict customer churn. By exploiting
the intrinsic property of deep neural networks, the proposed
solution can be applied to any type of network and any
subscription based events.



III. METHODOLOGY

In this section, we discuss the proposed solution, first
detailing each step of the clustering stage then describing the
SVM classifier. Steps taken to devise the solution are outlined
in the flowchart presented in Fig. 1. The solution is devised
with an aim to classify cells according to their performance
in certain intervals of time over the day. By performance here
we mean the volume of dropped calls (i.e duration, quantity)
against that of normally terminated calls.

To this end, we start by analyzing the data to find relevant
features that are descriptive of the desired performance aspect.
Moreover, we apply the concept of sliding window to capture
both, the instantaneous streaming values as well as the trend of
variation of these values; the length of segments can be user
defined, e.g., three hours. As there exists no gold standard
for cluster validation in our case, therefore, in the clustering
phase, the goodness of clusters is preliminarily determined by
the internal measure of clusters compactness and separation.
More importantly, we mostly rely on domain expertise via
visual validation to determine the quality of the clusters and
to ensure that domain specific characteristics are represented
correctly. Tier-wise implementation scheme of K-means is
designed with the approach mentioned in section III-C. A
certain combination of features is selected for each tier after
evaluating possible combinations from the available feature
space.

Once the clustering is yielding satisfactory results data is
labeled with the help of that clustering scheme. Then the
labeled data is used to devise a classifier with supervised
learning approach as it can be more simple and generic
in terms of implementation on real data while being more
deterministic in terms of performance evaluation at the same
time. In the development of a classifier, the labeled data is
split into training and testing data set. The first is employed to
train the SVM classifier which is later evaluated on the testing
data set. The entire process of clustering and classification
is reiterated until a satisfactory level of accuracy is achieved
resulting in a final clustering and classification scheme.

A. Clustering Model

The goal here is to identify categories of issues present
in network and group together segments with similar per-
formance behavior. As, here, different possible categories of
performance behavior are not known, so, the use of a clustering
algorithm is an obvious choice. But the fact is that there is no
best clustering algorithm [14]. Some of the major methods
of clustering are based on density estimation, probabilistic
estimation, partition, and graph-theoretic.
There are numerous clustering algorithms which basically
differ in their objective function computation. Each algorithm
has its own pros, cons and implementation methods. Density-
based clustering algorithms [15] e.g., DBSCAN that looks for
regions of high density is not very efficient particularly for
high dimensional sparse data cases because it compares the
distance of all pairs of points.
Whereas, though the spectral clustering [16], an example of
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Fig. 1. Classification Process Flow Chart

graph theory, does not require complicated parameters like
BDSCAN, but it is not a good algorithm for big data and a
higher number of clusters. A Gaussian mixture model [17]
from the family of probabilistic methods consider data as a
mixture of Gaussian distribution with unknown factors. This
model has limitations like it cannot be scaled and it requires
too many parameters for implementation.
K-means clustering is the most popular and simplest partition
model [18]. It does not require any parameters except the
number of clusters. There also exist the methods to compute
an optimal number of clusters. It works well even for high-
dimensional sparse data [14]. Multiple variants and implemen-
tation schemes of K-means exist due to the rich history of
research [14]. In addition, it is scale-able for huge data and
very efficient for real-time implementation. Considering all
these factors K-means clustering is selected here.

B. Clustering Validation Metrics

Another critical task in clustering is the validation of results,
particularly in absence of a ground truth, as it is the case here.
We have no predefined labels for any classes in our data. There
exist multiple metrics for clustering validation, for data, where
exists ground truth or golden standard, also known as external



metrics [19]. But the metrics for evaluating the goodness of
clustering without ground truth are rare. Such metrics are
called internal metrics and they evaluate clusters generally
on the basis of two attributes of clustering: compactness
within clusters and separation between clusters [20]. Some
of the internal metrics take compactness into consideration
or separations only, other evaluate clustering taking both
parameters into consideration at the same time. We have
taken four commonly used and well-acknowledged internal
metrics [20]: Root-mean-square standard deviation (RMSSTD)
for compactness, R-squared (RS) for separation, Calinski-
Harabasz index (CH) and Silhouette index (S) for compactness
and separation.
Internal metrics basically help to determine the optimal num-
ber of clusters and their numeric values just indicate how
compact or separate the clusters are on average. For example,
Silhouette index varies between [-1,1] where negative values
indicate that clusters are mixed with data points assigned to
one cluster from other clusters. When it is zero or close to zero,
it reflects clusters are not far from each other and similarity
among data points within clusters is low. Moving away from
zero on the positive side of the index indicates that the clusters
are well separated and well compact. Besides that, visual
validation with the help of domain knowledge is a requirement
in the absence of a gold standard. These metrics can be a good
statistical indicator of compactness or separation of the cluster
but they are no guarantee that the obtained clusters are suitable
for the desired application [20].

C. Clustering Implementation Scheme

K-means clustering results in groups of data such that a
distance metric between the empirical mean of a sub-cluster
and the points in that cluster is minimized and it happens for
all the clusters [14]. In this work, we have used the Euclidean
distance as the distance metric. The input parameter required
by K-means is the number of clusters beside decision function
also known as kernel.

In this research, an heuristic approach is applied for the se-
lection of features. For this different combinations of features
are used in K-means and the features with optimal results
are shortlisted. Clusters here not only need to be statistically
sound but require to group together segments with similar
performance in terms of telecommunications characteristics,
that is variations of cell load alongside variations in the
number of interrupted calls. Therefore cluster validation is
done by applying domain knowledge on the visual presentation
of segments in clusters alongside the use of internal valida-
tion metrics. Moreover, the selection of clustering scheme
is another key factor that affects the results. The data has
multiple features and co-relations among those features and
variation within the values of individual features determine
the network behavior. We have applied a two-tier clustering
scheme, wherein the first tier separates the segments with poor
performance from those with good performance while the
second tier further segregates the poor performing segments
into the final clusters reflecting different type of network
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Fig. 2. Elbow method considering the first tier for the selection of K.

behaviors. Another advantage of using this two-tier approach
is that visual validation is easier as there are fewer segments
to analyze in the second tier.

In both tiers, we majorly rely on the elbow method beside
the metrics of compactness and separation for selecting the
optimal K. Bend on the elbow plot as shown in Fig. 2 is the
optimal number as after that increase in number of clusters
does not changes the clustering at that rate as it change it
before that, similar behavior is observed when RMSS and RS
values in Table I are plotted against the number of clusters.
Calinski-Harabasz index (CH) and Silhouette index (S) are
used to evaluate the overall quality of the clusters.

The inputs of each tier are the hourly aggregated CDRs,
split into l long vectors for each segment i and cell j.
~Di,j and ~D′i,j are the duration of normally terminated and
dropped calls, while ~Ci,j and ~C ′i,j express the quantity of
normally terminated and dropped calls, respectively. Moreover,
the vectors ~Dj , ~D′j , ~Cj and ~C ′j , with length 24, contain data
relative to cell j for the entire day.

1) First Tier: Tier I is used to separate segments with
poor performance from the segments with good performance
in terms of number and duration of interrupted calls. It also
segregates segments with good performance according to the
cell load. For that we have used two features F 1 and F 2

computed as follows:

F 1
i,j = mean

 ~Di,j

max
(
~Dj

)
 (1)

and

F 2
i,j = 10 · log

(
max

(
~C

′

i,j ÷
(
~Ci,j + ~C

′

i,j

)))
, (2)

where ÷ indicates an element wise division and log denotes
the natural logarithm.

To emphasize differences in the number of dropped calls,
we have considered a logarithmic scale for F 2. The idea is
to make the variation of the bad data more pronounced, such
that clustering can find the bad quality segments easily based
on Euclidean distance. The output of the first tier is depicted
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in Fig. 3. Note that the bad quality segments are grouped into
Cluster IV while the other three clusters contain good quality
segments segregated according to their volume of traffic.

2) Second Tier: In the second tier, we consider only the
segments from Cluster IV, the one with poor performing
segments from the first tier. It is further sub-clustered into
three groups of segments with K-means clustering. There are
two sets of features used in the second tier. The first set F 3

i,j

is obtained via

F 3
i,j = ∇

 ~Ci,j

max
(
~Cj

)
 , (3)

where ∇ indicates the gradient operation and thus F 3
i,j is a

vector of l − 1 features.
The second set F 4

i,j is obtained using

F 4
i,j = ∇

(
~D

′

i,j ÷
(
~Di,j + ~D

′

i,j

))
, (4)

and thus also results in a vector of l − 1 features. Therefore
the second tier contains 2l − 2 features in total. F 3

i,j captures
the variation in the number of bad calls as a gradient whereas
F 4
i,j encompass variations in bad call duration.

D. Classification

The labeled data from K-Means clustering is used further
to train and test a classifier. Here an SVM based classifier
(SVC) is used to classify the labeled data. SVM is very
effective for high dimensional sparse data even for the cases
where the number of dimensions are greater than the number
of samples. It is memory efficient for training as it uses a
subset of points for the training of the decision function. SVM
based models already have proved to perform exceptionally
on cellular network data like the call traffic prediction at
high granularity [9]. Another huge advantage of SVC is the
availability of a diverse range of Kernels to compute the
decision function [21], such as linear, polynomial of higher
degrees, Gaussian, sigmoid etc. In this research, we have
evaluated the three most popular kernels, linear, polynomial
(cubic) and radial basis function (RBF) for developing the

classifier. SVC decision function constructs hyper-plane(s) in
high dimensional space which separates the data points into
different classes. Theoretically, good separation is when the
hyperplane has maximum distance from the nearest training
data points of any class. But there is a trade-off between
the separation level also known as functional margin and
model generalization. The higher the margin, the lower the
generalization error of the classifier leading to over-fitting.
Model generalization and over-fitting can be regulated with
the help of kernel parameters like C also known as penalty
parameter for the error. A larger C yields a more accurate
classification at the cost of a lower generalization. A smaller
C means a more smooth decision plane. We have used a set of
exponentially increasing values for C for all three kernels. For
training the classifier, the data is randomly split into training
and testing data sets, such that 75% is allocated for training
and validation while the remainder 25% of the data is reserved
for testing. A classifier is trained and validated using 75% of
the training data with different combinations of kernels and
C. Three-fold cross-validation is applied on the training data
with all parametric schemes. The best estimated model is then
applied on the test data in the end for the final evaluation of
classifier.

IV. DATA-SET DESCRIPTION

The data used in this research is extracted from CDRs
gathered from a real GSM network in Africa over a period of
three weeks for 759 geographical cells. It contains information
regarding the duration and quantity of dropped calls and calls
terminated as normal. Normal termination means the calls
were properly cut off by either user, conversely, a dropped
call is a call that has ended due to some network error. We
have used hourly aggregated data of 759 cells for one day to
train and evaluate our clustering and classification scheme.

From our preliminary analysis, we found that total call
traffic in terms of duration and quantity is very low from
midnight until morning as shown in the Fig. 4, which contains
the average3 total traffic across all the cells for one day.
Thus, we have taken the data from 6 a.m. to midnight into
consideration for this research. Selecting the data this way also
helps to overcome the model biases towards greater number
of segments with low traffic. Moreover, network operators are
more concerned in dealing with issues which affect larger
volumes of calls, which occur during the day.

V. RESULTS

A. Clustering

1) Tier I: From the results of elbow method as shown in
Fig.2 and those of RMSS and RS shown in table I it is found
that K = 4 is the optimal number of cluster at Tier I. Using
K = 4 for the feature sets F 1, F 2 produces optimal clusters
presented in Figs. 3. The use of a logarithmic scale for the
dropped calls in F 2 helps to capture smaller variations in

3The traffic is first scaled between 0 and 100 for the whole day and each
cell, then averaged. This provides a realistic information of the cell load at
each hour of the day.
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Fig. 4. Average normalized traffic

dropped calls volume, and therefore segregates the segments
more meaningfully. As a result of clustering at Tier I four
clusters obtained comprise segments with good quality and
low traffic in Cluster I, medium traffic in Cluster II, high traffic
in Cluster III. Cluster IV contains segments with bad quality
traffic.

2) Tier II: At this tier Cluster IV with bad quality traffic
segments obtained as the result of Tier I clustering is further
segregated into sub-clusters on the basis of variation in perfor-
mance. Based on the statistical and visual validation features
set F 3, F 4are found to produce the best results for K = 3 on
Tier II. Statistical results for tier two with the optimal feature
combination are presented in Table I. These numbers indicate
how compact or separated the clusters are at Tier II. Where
RS and RMSSD scores respectively give an idea about how
separate or compact the clusters are there they also help to
choose an optimal number of clusters which is III for Tier II.

The results are found to be very promising as shown in
Figs. 5a-5c presenting samples from each cluster at Tier II.
Red color represents the duration percentage of dropped calls
while the yellow color represents the percentage of dropped
calls (quantity), both presented on the right y-axis, whereas
normalized good calls duration is presented by blue bars on the
left y-axis. Figure 5a represents Cluster IV, it can be seen that
segments with decreasing dropped calls and increasing good
call duration are grouped in that cluster. Whereas segments

TABLE I
CLUSTERING VALIDATION RESULTS

K
RMSS RS Silhoutte CH

T-1 T-2 T-1 T-2 T-1 T-2 T-1 T-2

2 0.14 0.18 0.44 0.33 0.48 0.36 9546 312
3 0.11 0.15 0.69 0.54 0.54 0.39 13479 368
4 0.09 0.14 0.78 0.58 0.45 0.37 13963 296
5 0.08 0.14 0.81 0.62 0.46 0.38 13206 262
6 0.07 0.13 0.85 0.66 0.41 0.36 13383 246
7 0.07 0.13 0.87 0.69 0.41 0.31 13126 232
8 0.06 0.12 0.88 0.71 0.42 0.31 13278 223
9 0.06 0.12 0.90 0.73 0.41 0.32 13910 217

10 0.06 0.11 0.91 0.76 0.39 0.29 14052 220
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(a) Cluster IV: Recovering from performance degradation.
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(b) Cluster V: Beginning of performance degradation.
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(c) Cluster VI: Unstable performance.

Fig. 5. Sample segments in their respective clusters.

with an opposite behavior, to that observed for Cluster IV,
are grouped in Cluster V as shown in Fig.5b. Fig. 5c shows
segments in Cluster VI which are different from IV and V in
the traffic patterns, here we can see a spike in bad calls on the
middle hour when the good traffic is low compared to other
hours.

TABLE II
CLASSIFICATION CROSS VALIDATION RESULTS

Rank C Kernel Mean Validation
Score

Mean Train
Score

1 103 Linear 0.989 0.99
2 104 Linear 0.986 1.00
3 102 Linear 0.986 0.99
4 102 RBF 0.985 0.99
5 103 RBF 0.984 0.99
6 104 RBF 0.984 1.00
7 101 Linear 0.983 0.99
8 104 Cubic 0.975 0.98
9 101 RBF 0.974 0.98

10 100 Linear 0.970 0.97
11 103 Cubic 0.961 0.97
12 102 Cubic 0.931 0.93
13 100 RBF 0.923 0.92
14 10−1 Linear 0.914 0.91
15 101 Cubic 0.877 0.88
16 10−1 RBF 0.862 0.86
17 100 Cubic 0.797 0.80
18 10−1 Cubic 0.581 0.58
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B. Classification

Labeled data of six clusters produced from the both tiers of
clustering is used to train, validate and test the SVC. Results
of three-fold cross-validation are shown in Table II which are
very promising not only in term of accuracy but also for the
persistence of the model. It can be seen from the mean training
and validation score for different sets of parameters shown in
Table II that the model performance is consistent, reducing the
chances of over-fitting. Best mean accuracy score for cross-
validation is 99.39% for C = 1000 and Linear Kernel i.e.
more than 99% of the segments are assigned accurately to
their classes. The classifier trained for these parameters yields
98.91 % accuracy for unseen test data. It is also evident from
the confusion matrix in Fig. 6 that the classifier is not only able
to correctly identify the segments from the large clusters but
also from the smaller clusters, in Cluster IV 92%, in Cluster
V 98 %, and in Cluster VI 88% of the segments are identified
correctly. It also reflects that the model is not biased towards
clusters with more segments.

VI. CONCLUSION

As we approach the roll-out of 5G and embark on the
design of 6G, the challenge of identifying and classifying node
with performance degradation is increasing rapidly while the
key role of each node in delivering the quality of experience
to the users is becoming more evident. In this work, we
present the first machine-learning-based automated solution
for filtering out performance degradation and classifying the
type of deterioration in near-real time from streaming network-
generated metrics. We validate the method using CDR data
from a real network and demonstrate its benefits as it yields
98.91 % accuracy in classification and spares precious time
of domain experts to fix the problem as opposed to identify
and diagnose it. This work can be extended to multiple
performance indicator streams and hence can unlock the
limitations created by the traditional silo-approaches. Besides
that, it can be extended towards a more proactive approach
that predicts the possible network behavior on the basis of
previous patterns.
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