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ABSTRACT

Reactive oxygen species (ROS) have an equivocal role in myocardial ischaemia reperfusion injury. Within the cardiomyocyte, mitochondria are both a major source
and target of ROS. We evaluate the effects of a selective, dose-dependent increase in mitochondrial ROS levels on cardiac physiology using the mitochondria-targeted
redox cycler MitoParaquat (MitoPQ). Low levels of ROS decrease the susceptibility of neonatal rat ventricular myocytes (NRVMs) to anoxia/reoxygenation injury and
also cause profound protection in an in vivo mouse model of ischaemia/reperfusion. However higher doses of MitoPQ resulted in a progressive alteration of
intracellular [Ca®"] homeostasis and mitochondrial function in vitro, leading to dysfunction and death at high doses. Our data show that a primary increase in
mitochondrial ROS can alter cellular function, and support a hormetic model in which low levels of ROS are cardioprotective while higher levels of ROS are

cardiotoxic.

1. Introduction

Ischaemia/reperfusion (I/R) injury occurs when the blood supply to
a region of tissue is disrupted and later restored. Key to the develop-
ment of the pathology is a lack of oxygen for oxidative phosphorylation
within mitochondria. This results in the arrest of forward electron flow
in the respiratory chain [1] due to the lack of oxygen to act as the
terminal electron acceptor. Consequently, succinate is accumulated
during ischaemia by the reduction of fumarate at mitochondrial com-
plex II [2], or from anaplerotic supply of glutamate to the tricarboxylic
acid cycle leading to succinate that cannot be oxidized due to the re-
duced Coenzyme Q pool [3]. At reperfusion, the re-introduction of
oxygen leads to sudden changes in myocardial viability, mediated by a
burst of ROS production within the mitochondria. While a number of
sources of ROS have been proposed to be responsible, recently it has
been shown that the succinate pool accumulated during ischaemia is
rapidly oxidized upon reperfusion, driving ROS production from com-
plex I through reverse electron transport [2]. The sustained opening of
the mitochondrial permeability transition pore (mPTP), a key arbiter of
cell fate, also results in significant ROS production. As ROS are among
the factors contributing to prolonged mPTP opening there is a positive

feedback loop of ROS-induced ROS release [4] through which ROS
generation results in sustained mitochondrial dysfunction and even-
tually cell death [5].

However, aside from their role in driving mPTP-mediated cell da-
mage, mitochondrial ROS production also impacts positively on several
aspects of myocardial I/R injury. Mitochondrial ROS play crucial roles
in signalling processes both within mitochondria and in their interplay
with other cellular sites [6]. Indeed, the protective mechanism under-
lying ischaemic preconditioning (IPC) appears to involve generation of
low levels of ROS [7-9]. This has been demonstrated by showing that
the protective effects of an IPC protocol may be abrogated by anti-
oxidants [10-16], or replicated by the addition of exogenous oxidants
in a pre- or post-conditioning like manner [17-19]. Indeed, it has been
demonstrated that the acute treatment with H>O, in a model of Lan-
gerdorff perfused hearts elicits cardioprotection in a preconditioning-
like manner depending of its concentration [20,21]. These findings that
ROS can be either cardiotoxic or cardioprotective, depending on the
context, may help explain why the use of general ROS scavengers has
yielded mixed results. For example there are also studies in experi-
mental models that report no effect of antioxidants upon I/R injury
[22-25]. In the clinic, large scale trials with antioxidants have
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produced equivocal effects upon cardiovascular health outcomes
[26,27]. These findings are also consistent with the growing apprecia-
tion for the differential effects of “good” and “bad” ROS [28-30], by
which ROS can either contribute to cell death, or at low levels activate
cardioprotective mechanisms: a concept referred to as ‘hormesis’.

The context in which ROS might lead to these opposing con-
sequences will arise due to differential effects of ROS production in
three primary dimensions: in magnitude, in timing, and in spatial dis-
tribution. A better understanding of, and control of these dimensions
over ROS production may provide mechanistic insights as to how ROS
can have different effects. Here, we address this point by exploring the
role of ROS generated within mitochondria at different concentrations,
and characterize the processes linking changes in mitochondrial ROS
levels to cardiac pathophysiology with focus on cardiac I/R injury. To
investigate the consequences of a primary increase in ROS specifically
within the mitochondrial compartment, we used the mitochondria-
targeted compound MitoParaquat (MitoPQ) [31]. MitoPQ was designed
based upon the conjugation of a paraquat moiety (1,1’-dimethyl-4,4’-
bipyridinium dichloride) [32] with the mitochondria targeting triphe-
nylphosphonium group. At the flavin site of complex I in the electron
transport chain, MitoPQ accepts an electron to generate a radical
monocation that reacts rapidly with oxygen to specifically generate
superoxide, which is the proximal ROS species produced endogenously
[331].

In this work we demonstrate that a selective primary increase in
mitochondrial ROS is a causal factor in changes of mitochondrial and
cell function, and show that low levels of mitochondrial ROS are pro-
tective against ischaemic injury both in vitro and in vivo, while higher
levels are damaging.

2. Results

2.1. MitoPQ induces a primary increase in mitochondrial ROS levels in a
dose-dependent manner

To investigate the effects of mitochondrial ROS production by
MitoPQ in cardiomyocytes, neonatal rat ventricular myocytes (NRVMs)
were treated for 2 h with different doses of MitoPQ. High levels of ROS
were assessed with a reduced form of MitoTracker Red (MTR) that
fluoresces only following oxidation. However, MTR presents some
limitations due to its relative lack of sensitivity and specificity, that its
accumulation depends on cell and mitochondrial membrane potential
(AWm), and these can be affected by different treatments independently
of ROS formation. Therefore, to detect low levels of ROS we used
MitoHyPer, a genetically encoded sensor that is highly specific and
sensitive for sub-micromolar concentrations of mitochondrial H,O,
[34].

MitoPQ caused a significant increase in mitochondrial ROS levels in
a dose-dependent manner that was not observed when cells were pre-
treated with the antioxidant N-(2-Mercaptopropionyl)glycine (MPG)
(Fig. 1A-C). Cells treated with a MitoPQ control compound
(Supplementary Fig. 1) that is structurally similar to MitoPQ but which
does not undergo redox cycling did not show an increase in mi-
tochondrial ROS levels (Fig. 1B-D, Supplementary Fig. 2A and B).
Moreover, cells treated with non-mitochondrial paraquat (PQ) did not
show an increase in mitochondrial ROS levels (Supplementary Fig 2C),
in line with previous reports [31].

Taken together, these data confirm that MitoPQ produces ROS
within mitochondria in a dose-dependent manner.

2.2. A primary increase in mitochondrial ROS levels affects mitochondrial
function in a dose-dependent manner

An increase in mitochondrial ROS production has been reported to
induce a decrease in AWm that is associated with mPTP opening
[35,36]. To investigate whether MitoPQ-induced ROS affect
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mitochondrial function, we monitored AWm using tetra-
methylrhodamine fluorescence. NRVMs treated with different doses of
MitoPQ displayed a dose-dependent decrease in AWm (Fig. 2A). No-
tably, although promoting H,O, formation (Fig. 1C), 0.01 uM MitoPQ
did not affect AWm. However, a defective electron transport chain may
not lead to a detectable decrease in AWm, since in isolated cells the
proton gradient can be maintained by the reverse activity of FoF; ATP
synthase [37]. This compensatory process was abolished by the pre-
sence of the FoF; ATPase inhibitor oligomycin in all the experiments.
The lack of AWm variations at low MitoPQ doses suggests that mild ROS
formation is unlikely to alter electron transport chain function. Taken
together, these results show that a primary increase in mitochondrial
ROS formation decreases AWm in a dose-dependent manner, but that
this does not occur at low ROS levels.

Analysing the causal relationship between mPTP, ROS formation
and AWm is complicated by the fact that mPTP opening is both a cause
and a consequence of AWm loss and mitochondrial ROS generation
[38-40]. Hence, we used MitoPQ to investigate the effects of a primary
increase in mitochondrial ROS levels on mPTP induction assessed by
monitoring calcein fluorescence [41,42]. NRVMs were pre-treated with
or without cyclosporine A (CsA), a desensitizer of the mPTP. Since CsA
is also an inhibitor of the multidrug resistance P-glycoproteins (MDR),
which may alter MitoPQ distribution, cells were pre-treated also with
cyclosporine H which inhibits the MDRs but does not affect mPTP
opening [43]. Treatment with 0.5 uM MitoPQ induced a rapid decrease
in calcein fluorescence (~30%) that was prevented by CsA. MitoPQ-
induced mPTP opening was dependent on ROS formation since it was
abrogated by MPG. Notably, MPG did not display any effect when
mPTP opening was induced by calcimycin (Fig. 2B). Taken together,
these results indicate that ROS induced by 0.5 uM MitoPQ lead to mPTP
opening in NRVMs.

2.3. A primary increase in mitochondrial ROS levels affects cell function
and viability

We hypothesized that mitochondrial ROS would affect cellular sites
and functions outside the mitochondria. In particular, our attention was
focused on [Ca®™]; homeostasis due to its central role in cardiac phy-
siology [44,45]. Treatment with 0.01 uM MitoPQ caused a significant
increase in both amplitude (Fig. 3B) and response of the sarcoplasmic
reticulum to caffeine (Fig. 3E), without affecting the oscillatory pattern
or the frequency of the Ca®* transients (Fig. 3A-D). In contrast, doses
of MitoPQ > 0.01 uM induced dose-dependent alterations in all the
oscillatory parameters. Notably, increasing MitoPQ concentration to
0.1uM disrupted [Ca®*]; homeostasis, causing the cells to become
unexcitable (Fig. 3). Overall, these findings demonstrate that ROS
produced within mitochondria alter [Ca%2™]; homeostasis within the
cytosol and endoplasmic reticulum with different amounts of ROS
causing different effects.

Since oxidative stress associated with mitochondrial dysfunction is
known to decrease cell viability [46,47], we investigated whether Mi-
toPQ-induced oxidative stress could lead to cell death in NRVMs. The
loss of cell viability was measured as lactate dehydrogenase (LDH) re-
lease in NRVMs treated for 24 h with increasing doses of MitoPQ. Mi-
toPQ doses =0.5uM significantly increased cell death (~30%) which
could be abrogated by the addition of the free radical scavenger MPG
(Fig. 3F). Notably, 0.1 uM MitoPQ did not significantly alter cell via-
bility despite promoting ROS formation, mitochondrial dysfunction and
[Ca®*]; dyshomeostasis without mPTP opening. Therefore, we hy-
pothesized that the decreased cell viability at high concentrations of
MitoPQ was related to mPTP opening [48,49]. This was confirmed by
CsA treatment which prevented cell death induced by MitoPQ at doses
=0.5uM (Fig. 3G).



S. Antonucci, et al.

MitoPQ MitoPQ MitoPQ

Free Radical Biology and Medicine 134 (2019) 678-687

450 k%
& W Vehide 140
el [ g
§ _ 3s0 { OMPS s 120 1
@ g 300 - *x% g 100
=]
£ S 250 | 25 80
- 2 oA
@ .= 200 4 ** 5 g
= £ o 60
§ > 150 i -
£% a4 Hith ° |
E > 100 2 40
’s -4
= 50 g 20
2
0+ . . ; 0 . . .
DMSO  MitoPQ MitoPQ MitoPQ 1 DMSO MitoPQ MitoPQ MitoPQ
0.1 uM 0.5 uM um Ctrl0.1 Ctrl 0.5 Ctrl 1 uM
UM M
MitoPQ MitoPQ MitoPQ @
DMSO 0.01 uM 0.05 M 0.1uM ,
o 2 @ Vehicle xx ° 35 s
- ok =
2 16 OMPG " 3 3
g e g 25
H #h g _~
291,24 Hith 235
g 29 2
R ERy
T8 o0s8 TES
& &
z z 1
T 04 ;
2 g os
2 2
0 -+ T T 0 -
DMSO  MitoPQ MitoPQ  MitoPQ DMSO  MitoPQ0.5 MitoPQ Ctrl
001pyM 0.05uM  0.1pM um 0.5 um

Fig. 1. Effect of MitoPQ on ROS formation. Mitochondrial ROS formation monitored by: A) MTR in isolated NRVMs treated for 2 h with different concentrations of
MitoPQ or B) MitoPQ Control Compound, with or without 30 min of pretreatment with 500 uM MPG. Scale Bar: 30 um. C) Mitochondrial H,O, formation measured
by MitoHyPer in isolated NRVMs treated for 2 h with different concentrations of MitoPQ, with or without 30 min of pretreatment with 500 uM MPG. Scale Bar: 20 um
D) Mitochondrial H,0, formation measured by MitoHyPer in isolated NRVMs treated for 2 h with 0.5 pM MitoPQ or 0.5 pM MitoPQ Control Compound.
Approximately 70 cells were analysed per condition in each experiment and all the experiments were performed at least three times. Data are expressed as

+

mean

2.4. Low levels of MitoPQ-induced ROS reduce cell death following anoxia/
reoxygenation

We demonstrated that low doses of MitoPQ (0.01 uM) elevated ROS
but did not alter mitochondrial function, [Ca?™]; homeostasis and cell
viability. Since an increase in mitochondrial ROS levels have been
proposed to be involved in IPC [5,50-52], we hypothesized that a
primary increase in non-toxic mitochondrial ROS levels by MitoPQ
might enhance tolerance to post-anoxic injury. To assess this, we
evaluated whether the low dose of MitoPQ could mimic the protection
elicited by IPC against anoxia/reoxygenation injury. Cells pre-treated
with 0.01 uM MitoPQ, with or without the antioxidant MPG, were ex-
posed to 12h of anoxia followed by 1h of reoxygenation. MitoPQ
treatment significantly decreased cell death both at the end of anoxia
and following reoxygenation. The cardioprotective effect of MitoPQ
was lost in cells treated with MPG (Fig. 4A). In addition, an identical
concentration of the MitoPQ control compound did not induce any
protection. Notably, the reliability of the protocol has been assessed by
the protective effect elicited by CsA in NRVMs exposed to anoxia/re-
oxygenation (Supplementary Fig. 2D). These data indicate that the in-
crease in cell viability was due to MitoPQ-induced ROS.

2.5. MitoPQ reduces infarct size in an in vivo model of ischaemia/
reperfusion injury

Finally, we utilised an in vivo surgical model of acute myocardial I/R
injury in the mouse to determine the effect of a primary increase of ROS
produced by MitoPQ upon infarct size. A bolus of MitoPQ was given by
i.v. injection 15 min prior to the onset of cardiac ischaemia produced by
occlusion of the left anterior descending coronary artery. This was
followed by 2h reperfusion. Elevating mitochondrial ROS by inter-
mediate doses of MitoPQ (i.e. 0.01-0.1 nmol) significantly reduced
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SEM. *p < 0.05, **p < 0.01, ***p < 0.001 vs DMSO vehicle; #p < 0.05, ##p < 0.01, ###p < 0.001 vs MitoPQ.

infarct size compared to both DMSO-only control or MitoPQ control
compound (Fig. 4B-C-D). However, at both lower or higher doses of
MitoPQ no protection was observed, and a dose of 5 nmol MitoPQ was
fatal. This shows that low levels of mitochondrial ROS can be cardio-
protective during I/R injury in vivo, while higher levels of ROS cause
damage.

Considering the changes caused in cellular calcium dynamics ob-
served following treatment of NRVMs with MitoPQ, we evaluated its
effects on haemodynamics in vivo using dynamic measurements of left
ventricular pressure and volume. However no significant difference was
observed between animals injected with the most cardioprotective dose
of MitoPQ compared with hearts treated with vehicle only
(Supplementary Table 1).

3. Discussion

This study demonstrates that the primary formation of mitochon-
drial ROS exerts differential effects upon the heart during acute myo-
cardial I/R injury, with cardioprotection conferred by a narrow inter-
mediate dose range whilst no reduction in infarct size was observed at
either higher or lower doses. This primary increase in mitochondrial
ROS is also shown to have effects on mitochondrial function, [Ca%™];
homeostasis and cell viability in a dose-dependent manner.

Until this point, studies assessing the effects of the alteration of
intracellular ROS levels have necessarily used crude approaches to
modulate ROS, which poorly mimic the (patho)physiological genera-
tion of ROS. For example, the application of exogenous hydrogen per-
oxide or exposure to a purine/xanthine oxygen radical generating
system both require the ROS to diffuse into the cell, rather than being
generated selectively within cell compartments such as the mitochon-
dria. These limitations have been addressed by using MitoPQ [31].
MitoPQ's mitochondrial accumulation allows it to be used at
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Fig. 2. Effects of MitoPQ on mitochondrial membrane potential and mPTP opening. A) Mitochondrial membrane potential (AWm) monitored by TMRM
fluorescence in isolated NRVMs following incubation for 2 h with MitoPQ at different concentrations a: 4 uM oligomycin, b: 4 pM FCCP. B) mPTP opening monitored
by decrease of calcein fluorescence in isolated NRVMs pretreated for 30 min with or without 1 uM CsA or 500 uM MPG. a: treatment with DMSO as control or 0.5 pM
MitoPQ; b: 5 uM Calcimycin. Data were quantified 12 min after treatment with MitoPQ/DMSO. Approximately 30 cells were analysed per condition in each
experiment and all the experiments were performed at least three times. Data are expressed as mean *+ SEM. *p < 0.05, **p < 0.01, ***p < 0.001 vs DMSO

vehicle; #p < 0.05, ##p < 0.01, ###p < 0.001 vs MitoPQ.

concentrations several hundred-fold lower than untargeted paraquat
and importantly this selective accumulation means that ROS are only
produced within mitochondria. The direct generation of superoxide
rather than downstream ROS also mirrors its production in (patho)
physiology as the proximal species [53]. This has been validated to
occur without detectable ROS production in the cytosol [54]. The dose-
dependent effect of MitoPQ on mitochondrial ROS production therefore
allows the generation of exogenous ROS in a highly specific manner.
Based on these features, MitoPQ represents a unique tool to investigate
and characterize the effects of a precise increase in mitochondrial ROS
formation on cell physiology, both in vitro and in vivo.

There is a growing body of evidence indicating that mitochondrial
ROS exert differential effects depending on their dose, which has been
called a “hormetic” dose-response curve [55]. In our experiments, high
levels of ROS induced by MitoPQ (i.e. 0.5-1 pM) lead to mitochondrial
dysfunction, mPTP opening and eventually cell death. Such detrimental
effects of ROS in I/R injury through the opening of the mPTP have been
well described [5]. Intermediate doses of ROS (i.e. 0.1 uM MitoPQ) did
not affect cell viability but did cause an alteration in the amplitude of
calcium transients and their response to caffeine. At low doses (i.e.
0.01 uM), ROS generation induced by MitoPQ slightly modulates
[Ca%™]; homeostasis without affecting either mitochondrial function or
cell viability. Importantly, isolated cardiomyocytes pre-treated with
low doses of MitoPQ and then exposed to anoxic injury displayed in-
creased cell viability. This in vitro result was paralleled by the reduction
of infarct size obtained in vivo in mice pre-treated with doses of MitoPQ
ranging from 0.01 nmol to 1 nmol per mouse. Therefore, mitochondrial-

derived ROS elicit a wide range of responses which are dependent on
their dose, ranging from the disruption of AWm and mPTP opening at
high doses of MitoPQ to the reduction of cell death and infarct size at
low doses of MitoPQ in a preconditioning-like manner. The absence of
protective effects observed with both low and high doses of MitoPQ in
vivo (i.e. 0.001-1 nmol) highlights the hormetic effect elicited by in-
termediate levels of ROS. Moreover, higher doses of MitoPQ (i.e. 2.5 —
10 nmol) displayed to be lethal in vivo. The concept of hormesis helps to
rationalize the paradoxical effect of both injury and protection elicited
by ROS described in literature, as well as the failure of clinical trials
using general administration of antioxidants.

The data presented also show that a number of ROS-related events
spread from mitochondria to the cytosolic compartment. As the source
of ROS generation in our experiments is within mitochondria, we pro-
vide the first direct evidence that a primary increase in mitochondrial
ROS formation can induce cardioprotection both in vitro and in vivo via
changes in mitochondrial and cellular function. The known interplay
between ROS and [Ca®*]; homeostasis is of central relevance to the
cardiomyocyte and has specifically been implicated in several disease
states [56], but it has been difficult to determine the primacy of one
factor upon the other. Taken together, our findings show that a primary
increase in mitochondrial ROS can impact on the cytosol, altering
[Ca®*]; homeostasis and thereby whole cell function.

It is worth noting that while we have determined the doses of
MitoPQ associated with the various effects in mitochondria and in in-
tact cells, the actual concentrations of ROS required for cardiomyocytes
injury and protection remain to be established due to the technically
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Fig. 3. Effects of MitoPQ on cytosolic [Ca2*] homeostasis and cell viability. A-E) cytosolic [Ca?*] homeostasis monitored by Fluo-4 AM in isolated NRVMs
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challenging nature of their measurement, especially in vivo [57]. lost in aged or diabetic hearts [51].

Moreover, since we have utilised healthy young male animals for our in In conclusion, we have demonstrated that a primary increase in
vivo model it remains to be seen how comorbidities such as obesity, mitochondrial ROS exerts effects on both mitochondrial and cell func-
diabetes, aging and sex modulate the response to a given quantity of tion, which presents mitochondrial ROS as a cause rather than con-
mitochondrial ROS, since for example the protective efficacy of IPC is sequence of the functional change in cardiac (patho)physiology.

682
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Notably, the generation of exogenous ROS by MitoPQ within mi- non-essential amino acids (Thermo Fisher Scientific), 1 mM 5-Bromo-2-

tochondria is found to exert differential effects, with a hormetic dose Deoxyuridine (Sigma). Cells were maintained at 37 °C in presence of 5%

response curve in which protection is observed only at an intermediate CO,. The medium was changed to MEM supplemented with 1% FBS, 1%

level of mitochondrial ROS, but not at either lower or higher levels. penicillin/streptomycin and 1% non-essential amino acids after 24 h of
plating.

To evoke a primary increase in mitochondrial ROS, NRVMs were
treated in culture medium with different concentrations of MitoPQ
[31], from 0.01 to 1 uM for 2h, unless specified in results. A MitoPQ
control compound was also used that has a very similar structure to
MitoPQ and similar levels of uptake into mitochondria, but which
cannot generate ROS by redox cycling. MitoPQ redox cycles because it
can receive an electron from the FMNH, of complex I reducing the
viologen dication to a radical cation, which then reduces oxygen to
superoxide to regenerate MitoPQ (Supplemental Fig. 1). MitoPQ control
employs the twisted viologen unit described by Ref. [59], in which two
extra methyl groups disfavour the coplanarity of the two pyridine units
required to stabilize a radical cation. We have previously reported its
use [60], but here give full details of its synthesis in two steps by double
alkylation of 3’-dimethyl-4,4’-dipyridyl, prepared by the procedure of
(Rebek et al., 1985) (Supplementary Fig. 3). To scavenge ROS, cells
were pre-treated with 500 uM MPG (Sigma) [61] for 30 min. To prevent
mPTP opening, cells were pre-treated with 1 uM CsA (Sigma) [62] for
30 min.

4. Methods
4.1. Cell culture

4.1.1. NRVMs

Neonatal rat ventricular myocytes (NRVMs) were isolated from 1 to
3 day old Wistar rats as described previously [58]. Briefly, hearts were
excised, cut into smaller pieces and left overnight at 4 °C for digestion
by 2.5% trypsin 10 X (Thermo Fisher Scientific) in HBSS (Sigma). The
next day, tissues were incubated with 0.75mg/ml collagenase type II
(Thermo Fisher Scientific) in HBSS for 10 min (at 2 min intervals) at
37°C and cells dissociated by pipetting. Following centrifugation at
300g for 7 min, cells were resuspended in MEM (Invitrogen) and pre-
plated for 2h to let cardiac fibroblasts attach to the plastic surface.
Plates and coverslips were coated with a solution of 0.1% porcine ge-
latin (Sigma) and incubated at 37 °C for 1h. The non-adherent myo-
cytes were plated in gelatin coated plates at variable density (at least
1 x 10° cells/ml) in MEM supplemented with 10% FBS (Thermo Fisher
Scientific), 1% penicillin/streptomycin (Thermo Fisher Scientific), 1%
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4.1.2. Transfection

NRVMs were plated on six-well plates at a density of 3 x 10° cells/
well and transfected with Lipofectamine 3000 reagent (Sigma). For
each transfection, 2.5 pg of MitoHyPer (Evrogen) was diluted in 125 pl
of Opti-MEM medium (Thermo Fisher Scientific) in presence of 5l of
P3000™ reagent (Life Technologies) and later combined with 4l of
Lipofectamine™ 3000 (Life Technologies). The DNA-lipid complexes
were added to the cells and incubated overnight. The day after, cells
were rinsed with PBS and new MEM was added. Transfected cells were
used for experiments after 48 h.

4.1.3. Imaging

Experiments using NRVMs were carried out in HBSS at pH 7.4
(adjusted with NaOH) and at 37 °C.

Images were acquired using an inverted fluorescence microscope
(Leica DMI6000B equipped with DFC365FX camera) with PL APO
40 x /1.25 oil objective. Fluorescence intensity was quantified using the
Fiji distribution of the Java-based image processing program ImageJ
[63], and background signal was subtracted from all analysed regions
of interest. For Ca®" imaging, traces were analysed using the “Peak
Analyzer” tool of Origin Pro 9.1.

To monitor mitochondrial ROS formation, cells were incubated with
25nM MitoTracker Red CM-H,XRos (MTR, Thermo Fisher Scientific)
for 30 min at 37 °C in a humidified incubator. Since the accumulation of
MTR in NRVMs can vary from different preparation, data were nor-
malized to DMSO control.

To monitor mitochondrial membrane potential (AWm), cells were
incubated with 25nM tetramethylrhodamine (TMRM, Thermo Fisher
Scientific) in presence of 1.6 uM cyclosporin H (CsH) for 30 min at 37 °C
in a humidified incubator. TMRM fluorescence intensity was monitored
following addition of 4 uM oligomycin (Sigma) and images were ac-
quired before and after the addition of 4 uM carbonyl cyanide-p-tri-
fluoromethoxyphenylhydrazone (FCCP, Sigma) [58]. In order to have a
reliable value of TMRM, fluorescence values were expressed as AF (Fo/
Frccp) and results were normalized to DMSO control basal value.

To monitor mPTP opening, cells were incubated with 1 uM calcein
acetoxymethyl (AM) ester (Thermo Fisher Scientific) in presence of
1 mM Cobalt Chloride (CoCl,) for 15minat 37 °C in a humidified in-
cubator as previously described [42]. To evaluate the extent of pore
opening, data were normalized to the basal value.

To monitor [Ca®™]; homeostasis, cells were incubated with 5uM
Fluo-4 AM ester (Thermo Fisher Scientific), 0.01% w/v pluronic F-127
(Sigma) and 250 pM sulfinpyrazone (Sigma), for 20 minat 37 °C in
MEM followed by 20 min of de-esterification. Since the accumulation of
Fluo-4 in NRVMs can vary from different preparation, data were nor-
malized to DMSO control.

4.1.4. Assessment of cell death

For normoxic experiments, NRVMs were seeded in 24w plates at
density of 10° cells/well and cultured in MEM supplemented with 1%
FBS, 1% penicillin/streptomycin and 1% non-essential amino acids.
Cells were incubated with different concentrations of MitoPQ with or
without MPG or CsA for 24 h at 37 °C in a humidified incubator.

For anoxia/reperfusion experiments, NRVMs were seeded in 24w
plates at density of 10° cells/well and incubated in 118 mM NaCl, 5 mM
KCl, 1.2 mM KH,POy4, 1.2 mM MgS0,4, 2 mM CaCl,, 25 mM MOPS at pH
6.4 during anoxia or pH 7.4 during reoxygenation [64]. Anoxia was
induced adding 10 mM 2-deoxy-p-glucose (2-DG) and incubating in a
BD GasPak™ EZ Anaerobe Gas-generating Pouch System with an in-
dicator (BD Biosciences) at 37 °C for 12h [65]. To induce reoxygena-
tion, plates were removed from the GasPak™ pouch, 2-DG was replaced
with 10 mM p-glucose, the pH was restored at 7.4. The plates were then
incubated for 1h in a humidified incubator at 37 °C.

The release of LDH from NRVMs was measured to evaluate cell
death occurring in normoxia, anoxia and reoxygenation as described
before [62,66]. Supernatant aliquots were collected after 24h of
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normoxia, 12 h of anoxia and 1 h of reoxygenation. At the end of every
experiment, intact cells were lysed by incubating with 1% Triton X-100
(Sigma) for 30 min and supernatants were collected to evaluate the
total amount of LDH. LDH enzymatic activity was measured spectro-
photometrically by the absorbance of nicotinamide adenine dinucleo-
tide (Roche) at 340 nm, indicative of the reduction of pyruvate to lac-
tate.

4.2. Experimental animals

Male C57BL/6 J mice aged 8-10 weeks (22-32 g) were obtained from
Charles River, UK. They were housed under standard laboratory condi-
tions, with food and water available ad libitum. All procedures were carried
out in accordance with the UK Home Office Guide on the Operation of
Animal (Scientific Procedures) Act 1986 and University of Cambridge
Animal Welfare Policy under project licenses 70/8238 and 70,/7963.

4.3. Open-chest mouse model of acute myocardial I/R injury

An open chest model of acute myocardial ischaemia/reperfusion
injury was used as described elsewhere [67]. Mice were anesthetized
with sodium pentobarbital (70 mg/kg intraperitoneal), with depth of
anaesthesia monitored via the pedal reflex and additional anaesthesia
administered as required. Following left side lateral thoracotomy, the
left anterior descending coronary artery was occluded for 30 min fol-
lowed by 2h of reperfusion. Compounds were administered 15 min
prior to the start of ischaemia by an intravenous bolus injection in the
lateral tail vein.

At the end of the protocol, the area at risk was delineated by ret-
rograde injection of 10 mg/ml Evans Blue after re-occlusion of the left
anterior descending coronary artery. Heart sections were incubated for
25 min at 37 °C in 1% triphenyltetrazolium chloride (Sigma, UK) before
fixing for 24 h in 10% formalin. Planimetry was performed in a blinded
fashion using ImageJ [68]. Hearts in which the area at risk was outside
of the range 30%-60% of total area were excluded from any further
analysis.

4.4. Pressure-volume analysis of cardiac function

Anaesthesia was induced with 3% isoflurane in O, in a plexiglass
chamber. Mice were transferred to a heated surgical platform, and
sufficient isoflurane administered to maintain anaesthesia as assessed
by the pedal reflex. Body temperature was maintained at 37 °C using a
rectal thermometer and temperature controller (TCAT-2LV, Physitemp,
USA). The left ventricle was catheterized via the right carotid artery
with a 1.2 French tetrapolar catheter (Transonic Scisense Inc, Canada)
as described elsewhere [69]. In brief, a small midline incision was made
in the neck in order to expose the carotid artery and isolate it from the
vagus nerve. A 4-0 silk suture was tied tightly around the distal end of
the artery, and two more sutures were placed loosely at the proximal
end. Using a vascular clamp (0.4-1 mm) to minimise blood loss, a small
incision was made in the carotid artery with microscissors and the ca-
theter inserted and secured using the additional sutures. The catheter
was the inserted along the carotid until it was located centrally within
the left ventricle, as indicated by the phase signal and by the shape of
the resultant pressure-magnitude loops. At least 15 min were allowed
for the haemodynamics to stabilize. A 100 uL bolus containing either
0.1 nmol MitoPQ or vehicle only was then injected via the lateral tail
vein. Data were recorded at 1000 Hz using the ADV500 PV system
(Transonic Scisense Inc, Canada) and a multi-channel acquisition
system (Powerlab, ADInstruments, UK) and were analysed in LabChart
(ADInstruments, UK). Volumes were calculated on dynamic basis using
Wei's equation [70]. Three short sections of loops (within one breathing
cycle) were examined at both baseline conditions and > 5min fol-
lowing injection. Upon completion of the protocol all animals were
killed via cervical dislocation.
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4.5. Chemical synthesis

MitoPQ was synthesized from iododecyl-TPP salt 1, which was
prepared as described previously [31] (Supplementary Fig. 3). This was
reacted with an excess of 3,3'-dimethyl-4,4’-dipyridyl 2, prepared by
the procedure of (Rebek et al. [71]), to minimise dialkylation. The
monoalkylated product 3 was isolated in excellent yield and was then
methylated to give complete conversion to MitoPQ control. Original
NMR spectra for MitoPQ control and compound 3 can be found at 10.
5525/gla.researchdata.735.

4.5.1. 3-Methyl-4-(3“-methylpyrid-4“-yD-1-(10"-triphenylphosphoniodec-
1”-yDpyridinium diiodide 3

(10-Iododec-1-yDtriphenylphosphonium  iodide 1 (107 mg,
0.163 mmol, 1.0 eq.) was added to a solution of 3,3’-Dimethyl-4,4’-di-
pyridyl 2 (120 mg, 0.65 mmol, 4.0 eq) in MeCN (2 ml) and the resulting
solution was heated to 60 °C overnight under an atmosphere of argon.
The solution was cooled to RT and concentrated under vacuum. Column
chromatography eluting with CH,Cl,-MeOH (100:0 to 85:15) then gave
the pyridinium salt 3 as an off-white solid (116 mg, 85%). vpax (ATR):
2926 (CH), 2854 (CH), 1635 (Ar), 1437 (CH) ecm™'. &y (400 MHz,
CDCl,): 9.98 (1H, s, H-1), 9.71 (1H, d, J = 6.3 Hz, H-2), 8.62 (1H, s, H-
4), 8.58 (1H, d, J = 5.0 Hz, H-5), 7.86-7.68 (16H, m, PPh; + H-3),
7.06 (1H, d, J = 4.9 Hz, H-6), 4.97 (2H, t, J = 7.8 Hz, NCH,), 3.61-3.51
(2H, m, PCH,), 2.37 (3H, s, CHs), 2.32-2.16 (2H, m, NCH,CH.), 2.10
(3H, s, CHs), 1.70-1.60 (8H, m, 4 X CH,), 1.59-1.50 (2H, m, CH,),
1.49-1.25 (4H, m, 2 X CH,). ¢ (101 MHz, CDCl3): 154.85 (C), 151.42
(CH), 147.46 (CH), 145.16 (CH), 142.50 (CH), 137.03 (C), 134.94 (d,
J = 3.0Hz, CH), 133.25 (d, J = 10.0 Hz, CH), 130.32 (d, J = 12.6 Hz,
CH), 129.32 (C), 127.45 (CH), 121.39 (CH), 117.60 (d, J = 86.0 Hz, C),
60.75 (CHy), 31.17 (CHy), 29.81 (d, J = 15.8 Hz, CH,), 28.26 (CH,),
28.17 (CHy), 27.99 (CH,), 27.96 (CH,), 25.41 (CH,), 22.70 (d,
J =50.4Hz, CH,), 22.11 (d, J = 4.4Hz, CH,), 16.81 (CH), 16.48
(CH3). 8p (162 MHz: CDCl3): 23.94 (s). m/z (ESI): Found: 293.1734.
CaoH47N,P requires (M2 ™), 293.1733.

4.5.2. 1,3,3’-trimethyl-1’-(10"-triphenylphosphoniodec-1""-yl)-4,4’-
bipyridinium (MitoPQ control) triiodide

Iodomethane (19 pl, 0.29 mmol, 5.0 eq.) was added to a solution of
pyridine 3 (49 mg, 0.058 mmol, 1.0 eq) in MeCN (1 ml) and the re-
sulting solution was heated to 40 °C overnight under an atmosphere of
argon. The solution was cooled to RT and concentrated under vacuum
to give the MitoPQ triiodide as an off-white solid (57 mg, 100%). Vmax
(ATR): 3016 (CH), 2926 (CH), 2854 (CH), 1635 (Ar), 1437 (CH) cm ™.
Sy (400 MHz, d3-MeCN): 9.14 (1H, s, H-1), 8.94 (1H, s, H-4), 8.91 (1H,
d,J = 6.3Hz, H-2),8.77 (1H, d, J = 6.3 Hz, H-5), 7.99-7.86 (5H, m, H-
3, H6 + 3 x ArH), 7.81-7.71 (12H, m, 12 x ArH), 4.67 (2H, t,
J = 7.6 Hz, NCH,), 4.42 (3H, s, NCH3), 3.35-3.23 (2H, m, PCH,), 2.30
(3H, s, CH3), 2.29 (3H, s, CH3), 2.07 (2H, q, J = 7.3 Hz, NCH,CH>),
1.70-1.60 (2H, m, PCH,CH>), 1.58-1.49 (2H, m, CH,), 1.47-1.25 (10H,
m, 5 X CH,). §c (101 MHz, d3-MeCN): 152.15 (C), 147.69 (CH), 146.81
(CH), 143.92 (CH), 143.12 (CH), 138.41 (C), 137.98 (C), 135.86 (d,
J = 3.0Hz, CH), 134.55 (d, J = 10.0 Hz, CH), 130.07 (d, J = 12.5 Hz,
CH), 128.04 (CH), 127.81 (CH), 119.31 (d, J = 86.2Hz, C), 62.20
(CH,), 49.19 (CHs), 31.74 (CH,), 30.76 (d, J = 16.2 Hz, CH,), 29.55
(CH,), 29.48 (CH,), 29.30 (CH,), 29.04 (CH,), 26.35 (CH,), 22.81 (d,
J =4.4Hz, CH,), 22.61 (d, J = 50.7Hz, CH,), 17.54 (CH3), 17.41
(CH3). 8p (162 MHz: d3-MeCN): 23.84 (s). m/z (ESI): Found: 200.4568.
C41HsoN,P requires (M3 ™), 200.4565.

4.6. Data analysis

+

All values are expressed as mean = S.E.M. Every set of data has 3
biological replicates (i.e. 3 different cardiac preparations) and every
biological replicate has at least 3 technical replicates (i.e. 3 different
samples of the same preparation). The propagation of error analysis was
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performed to take into account the uncertainty that is present in the
experimental measurements due to measurement limitations (i.e. dif-
ferent accumulation of the sensor in NRVMs derived from different
preparations). Comparison between groups was performed by one-way
ANOVA, followed by post hoc testing (i.e. Tukey's range test, Dunnett's
test) adjusted for multiple comparisons where data were normally
distributed. Data that did not follow the normal distribution were sta-
tistically analysed by Kolgomorov-Smirnov's test. Comparison between
two groups was performed using a two-tailed Student's t-test, with
correction for multiple testing by the Bonferroni method where ap-
propriate. A value of p < 0.05 was considered significant.
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[Ca?*]; intracellular calcium concentration
A/R anoxia/reoxygenation
CsA cyclosporine A
IPC ischaemic preconditioning
I/R ischaemia/reperfusion
LDH lactate dehydrogenase
MitoPQ MitoParaquat
MPG N-(2-Mercaptopropionyl)glycine
mPTP Mitochondrial permeability transition pore
MTR mitotracker red CMH,X-ROS
NRVM  neonatal rat ventricular myocytes
TMRM tetramethylrhodamine
AWm mitochondrial membrane potential
References
[1] F. Di Lisa, R. Menabo, M. Canton, V. Petronilli, The role of mitochondria in the

salvage and the injury of the ischemic myocardium, Biochim. Biophys. Acta 1366
(1998) 69-78.

E.T. Chouchani, V.R. Pell, E. Gaude, D. Aksentijevic, S.Y. Sundier, E.L. Robb,

A. Logan, S.M. Nadtochiy, E.N.J. Ord, A.C. Smith, F. Eyassu, R. Shirley, C.H. Hu,
A.J. Dare, A.M. James, S. Rogatti, R.C. Hartley, S. Eaton, A.S.H. Costa, P.S. Brookes,
S.M. Davidson, M.R. Duchen, K. Saeb-Parsy, M.J. Shattock, A.J. Robinson,

L.M. Work, C. Frezza, T. Krieg, M.P. Murphy, Ischaemic accumulation of succinate
controls reperfusion injury through mitochondrial ROS, Nature 515 (2014)
431-435.

J. Zhang, Y.T. Wang, J.H. Miller, M.M. Day, J.C. Munger, P.S. Brookes,
Accumulation of succinate in cardiac ischemia primarily occurs via canonical krebs
cycle activity, Cell Rep. 23 (2018) 2617-2628.

D.B. Zorov, M. Juhaszova, S.J. Sollott, Mitochondrial reactive oxygen species (ROS)
and ROS-induced ROS release, Physiol. Rev. 94 (2014) 909-950.

F. Di Lisa, M. Canton, A. Carpi, N. Kaludercic, R. Menabo, S. Menazza,

M. Semenzato, Mitochondrial injury and protection in ischemic pre- and post-
conditioning, Antioxidants Redox Signal. 14 (2011) 881-891.

Y.M. Janssen-Heininger, B.T. Mossman, N.H. Heintz, H.J. Forman,

B. Kalyanaraman, T. Finkel, J.S. Stamler, S.G. Rhee, A. van der Vliet, Redox-based
regulation of signal transduction: principles, pitfalls, and promises, Free Radic. Biol.
Med. 45 (2008) 1-17.

Y. Collins, E.T. Chouchani, A.M. James, K.E. Menger, H.M. Cocheme, M.P. Murphy,
Mitochondrial redox signalling at a glance, J. Cell Sci. 125 (2012) 801-806.

E. Robin, R.D. Guzy, G. Loor, H. Iwase, G.B. Waypa, J.D. Marks, T.L. Hoek,

P.T. Schumacker, Oxidant stress during simulated ischemia primes cardiomyocytes
for cell death during reperfusion, J. Biol. Chem. 282 (2007) 19133-19143.

[2]

[3]

[4]

[5]

(6]

[7]

[8]


http://10.5525/gla.researchdata.735
http://10.5525/gla.researchdata.735
https://doi.org/10.1016/j.freeradbiomed.2019.01.034
https://doi.org/10.1016/j.freeradbiomed.2019.01.034
http://refhub.elsevier.com/S0891-5849(18)32178-6/sref1
http://refhub.elsevier.com/S0891-5849(18)32178-6/sref1
http://refhub.elsevier.com/S0891-5849(18)32178-6/sref1
http://refhub.elsevier.com/S0891-5849(18)32178-6/sref2
http://refhub.elsevier.com/S0891-5849(18)32178-6/sref2
http://refhub.elsevier.com/S0891-5849(18)32178-6/sref2
http://refhub.elsevier.com/S0891-5849(18)32178-6/sref2
http://refhub.elsevier.com/S0891-5849(18)32178-6/sref2
http://refhub.elsevier.com/S0891-5849(18)32178-6/sref2
http://refhub.elsevier.com/S0891-5849(18)32178-6/sref2
http://refhub.elsevier.com/S0891-5849(18)32178-6/sref3
http://refhub.elsevier.com/S0891-5849(18)32178-6/sref3
http://refhub.elsevier.com/S0891-5849(18)32178-6/sref3
http://refhub.elsevier.com/S0891-5849(18)32178-6/sref4
http://refhub.elsevier.com/S0891-5849(18)32178-6/sref4
http://refhub.elsevier.com/S0891-5849(18)32178-6/sref5
http://refhub.elsevier.com/S0891-5849(18)32178-6/sref5
http://refhub.elsevier.com/S0891-5849(18)32178-6/sref5
http://refhub.elsevier.com/S0891-5849(18)32178-6/sref6
http://refhub.elsevier.com/S0891-5849(18)32178-6/sref6
http://refhub.elsevier.com/S0891-5849(18)32178-6/sref6
http://refhub.elsevier.com/S0891-5849(18)32178-6/sref6
http://refhub.elsevier.com/S0891-5849(18)32178-6/sref7
http://refhub.elsevier.com/S0891-5849(18)32178-6/sref7
http://refhub.elsevier.com/S0891-5849(18)32178-6/sref8
http://refhub.elsevier.com/S0891-5849(18)32178-6/sref8
http://refhub.elsevier.com/S0891-5849(18)32178-6/sref8

S. Antonucci, et al.

[91

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]
[29]

[30]
[31]

[32]

[33]

[34]

[35]

[36]

[37]

L.A. Sena, N.S. Chandel, Physiological roles of mitochondrial reactive oxygen spe-
cies, Mol. Cell 48 (2012) 158-167.

M. Eguchi, M. Fujiwara, Y. Mizukami, N. Miwa, Cytoprotection by pro-vitamin C
against ischemic injuries in perfused rat heart together with differential activation
of MAP kinase family, J. Cell. Biochem. 89 (2003) 863-867.

J. Hao, W.W. Li, H. Du, Z.F. Zhao, F. Liu, J.C. Lu, X.C. Yang, W. Cui, Role of vitamin
C in cardioprotection of ischemia/reperfusion injury by activation of mitochondrial
KATP channel, Chem. Pharmaceut. Bull. 64 (2016) 548-557.

L.D. Horwitz, P.V. Fennessey, R.H. Shikes, Y. Kong, Marked reduction in myocardial
infarct size due to prolonged infusion of an antioxidant during reperfusion,
Circulation 89 (1994) 1792-1801.

H.H. Klein, S. Pich, S. Lindert, K. Nebendahl, P. Niedmann, H. Kreuzer, Combined
treatment with vitamins E and C in experimental myocardial infarction in pigs, Am.
Heart J. 118 (1989) 667-673.

D.A. Mickle, R.K. Li, R.D. Weisel, P.L. Birnbaum, T.W. Wu, G. Jackowski,

M.M. Madonik, G.W. Burton, K.U. Ingold, Myocardial salvage with trolox and as-
corbic acid for an acute evolving infarction, Ann. Thorac. Surg. 47 (1989) 553-557.
Y. Nishinaka, S. Sugiyama, M. Yokota, H. Saito, T. Ozawa, The effects of a high dose
of ascorbate on ischemia-reperfusion-induced mitochondrial dysfunction in canine
hearts, Heart Ves. 7 (1992) 18-23.

Y.W. Peng, C.L. Buller, J.R. Charpie, Impact of N-acetylcysteine on neonatal car-
diomyocyte ischemia-reperfusion injury, Pediatr. Res. 70 (2011) 61-66.

A.C. Hegstad, O.H. Antonsen, K. Ytrehus, Low concentrations of hydrogen peroxide
improve post-ischaemic metabolic and functional recovery in isolated perfused rat
hearts, J. Mol. Cell. Cardiol. 29 (1997) 2779-2787.

1. Tritto, D. D'Andrea, N. Eramo, A. Scognamiglio, C. De Simone, A. Violante,

A. Esposito, M. Chiariello, G. Ambrosio, Oxygen radicals can induce pre-
conditioning in rabbit hearts, Circ. Res. 80 (1997) 743-748.

K. Ytrehus, R.S. Walsh, S.C. Richards, J.M. Downey, Hydrogen peroxide as a pro-
tective agent during reperfusion. A study in the isolated perfused rabbit heart
subjected to regional ischemia, Cardiovasc. Res. 30 (1995) 1033-1037.

G. Valen, J. Starkopf, S. Takeshima, T. Kullisaar, T. Vihalemm, A.T. Kengsepp,

C. Lowbeer, J. Vaage, M. Zilmer, Preconditioning with hydrogen peroxide (H202)
or ischemia in H202-induced cardiac dysfunction, Free Radic. Res. 29 (1998)
235-245.

Y. Yaguchi, H. Satoh, N. Wakahara, H. Katoh, A. Uehara, H. Terada, Y. Fujise,

H. Hayashi, Protective effects of hydrogen peroxide against ischemia/reperfusion
injury in perfused rat hearts, Circ. J. : Off. J. Jpn. Circ. Soc. 67 (2003) 253-258.
S.D. Bellows, S.L. Hale, B.Z. Simkhovich, G.L. Kay, R.A. Kloner, Do antioxidant
vitamins reduce infarct size following acute myocardial ischemia/reperfusion?
Cardiovasc. Drugs Ther. 9 (1995) 117-123.

F. Gao, C.L. Yao, E. Gao, Q.Z. Mo, W.L. Yan, R. McLaughlin, B.L. Lopez,

T.A. Christopher, X.L. Ma, Enhancement of glutathione cardioprotection by ascorbic
acid in myocardial reperfusion injury, J. Pharmacol. Exp. Therapeut. 301 (2002)
543-550.

M. Meyer, S.P. Bell, Z. Chen, 1. Nyotowidjojo, R.R. Lachapelle, T.F. Christian,

P.C. Gibson, F.F. Keating, H.L. Dauerman, M.M. LeWinter, High dose intracoronary
N-acetylcysteine in a porcine model of ST-elevation myocardial infarction, J.
Thromb. Thrombolysis 36 (2013) 433-441.

Y. Tripathi, B.M. Hegde, Effect of N-acetylcysteine on myocardial infarct size fol-
lowing ischemia and reperfusion in dogs, Indian J. Physiol. Pharmacol. 42 (1998)
50-56.

S.P. Fortmann, B.U. Burda, C.A. Senger, J.S. Lin, E.P. Whitlock, Vitamin and mi-
neral supplements in the primary prevention of cardiovascular disease and cancer:
an updated systematic evidence review for the U.S. Preventive Services Task Force,
Ann. Intern. Med. 159 (2013) 824-834.

Y. Ye, J. Li, Z. Yuan, Effect of antioxidant vitamin supplementation on cardiovas-
cular outcomes: a meta-analysis of randomized controlled trials, PLoS One 8 (2013)
e56803.

M. Ristow, Unraveling the truth about antioxidants: mitohormesis explains ROS-
induced health benefits, Nat. Med. 20 (2014) 709-711.

D.R. Schwartz, M.N. Sack, Targeting the mitochondria to augment myocardial
protection, Curr. Opin. Pharmacol. 8 (2008) 160-165.

J. Yun, T. Finkel, Mitohormesis, Cell Metabol. 19 (2014) 757-766.

E.L. Robb, J.M. Gawel, D. Aksentijevic, H.M. Cocheme, T.S. Stewart,

M.M. Shchepinova, H. Qiang, T.A. Prime, T.P. Bright, A.M. James, M.J. Shattock,
H.M. Senn, R.C. Hartley, M.P. Murphy, Selective superoxide generation within
mitochondria by the targeted redox cycler MitoParaquat, Free Radic. Biol. Med. 89
(2015) 883-894.

H.M. Hassan, Exacerbation of superoxide radical formation by paraquat, Methods
Enzymol. 105 (1984) 523-532.

J.A. Birrell, M.S. King, J. Hirst, A ternary mechanism for NADH oxidation by po-
sitively charged electron acceptors, catalyzed at the flavin site in respiratory com-
plex I, FEBS Lett. 585 (2011) 2318-2322.

V.V. Belousov, A.F. Fradkov, K.A. Lukyanov, D.B. Staroverov, K.S. Shakhbazov,
A.V. Terskikh, S. Lukyanov, Genetically encoded fluorescent indicator for in-
tracellular hydrogen peroxide, Nat. Methods 3 (2006) 281-286.

J. Fauconnier, D.C. Andersson, S.J. Zhang, J.T. Lanner, R. Wibom, A. Katz,

J.D. Bruton, H. Westerblad, Effects of palmitate on Ca(2+) handling in adult
control and ob/ob cardiomyocytes: impact of mitochondrial reactive oxygen spe-
cies, Diabetes 56 (2007) 1136-1142.

J. Kokoszka, P. Coskun, L. Esposito, D. Wallace, Increased mitochondrial oxidative
stress in the Sod2 (+ /-) mouse results in the age-related decline of mitochondrial
function culminating in increased apoptosis, Proc. Natl. Acad. Sci. U.S.A. 98 (2001)
2278-2283.

F. Di Lisa, P.S. Blank, R. Colonna, G. Gambassi, H.S. Silverman, M.D. Stern,

686

[38]

[39]

[40]

[41]

[42]

[43]

[44]
[45]

[46]

[47]

[48]
[49]
[50]

[51]

[52]
[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

Free Radical Biology and Medicine 134 (2019) 678-687

R.G. Hansford, Mitochondrial membrane potential in single living adult rat cardiac
myocytes exposed to anoxia or metabolic inhibition, J Physio 1-13 (1995).

P. Bernardi, Modulation of the mitochondrial cyclosporin A-sensitive permeability
transition pore by the proton electrochemical gradient. Evidence that the pore can
be opened by membrane depolarization, J. Biol. Chem. 267 (1992) 8834-8839.
P. Bernardi, A. Krauskopf, E. Basso, V. Petronilli, E. Blachly-Dyson, F. Di Lisa,
M.A. Forte, The mitochondrial permeability transition from in vitro artifact to
disease target, FEBS J. 273 (2006) 2077-2099.

V. Petronilli, C. Cola, S. Massari, R. Colonna, P. Bernardi, Physiological effectors
modify voltage sensing by the cyclosporin A-sensitive permeability transition pore
of mitochondria, J. Biol. Chem. 268 (1993) 21939-21945.

J. Huser, C.E. Rechenmacher, L.A. Blatter, Imaging the permeability pore transition
in single mitochondria, Biophys. J. 74 (1998) 2129-2137.

V. Petronilli, G. Miotto, M. Canton, M. Brini, R. Colonna, P. Bernardi, F. Di Lisa,
Transient and long-lasting openings of the mitochondrial permeability transition
pore can be monitored directly in intact cells by changes in mitochondrial calcein
fluorescence, Biophys. J. 76 (1999) 725-734.

M. Dietel, I. Herzig, A. Reymann, I. Brandt, B. Schaefer, A. Bunge, H.J. Heidebrecht,
A. Seidel, Secondary combined resistance to the multidrug-resistance-reversing
activity of cyclosporin A in the cell line F4-6RADR-CsA, J. Canc. Res. Clin. Oncol.
120 (1994) 263-271.

D. Eisner, Calcium in the heart: from physiology to disease, Exp. Physiol. 99 (2014)
1273-1282.

C.J. Fearnley, H.L. Roderick, M.D. Bootman, Calcium signaling in cardiac myocytes.
Cold Spring Harbor perspectives in biology 3 (2011) a004242.

A. Carpi, R. Menabo, N. Kaludercic, P. Pelicci, F. Di Lisa, M. Giorgio, The cardio-
protective effects elicited by p66(Shc) ablation demonstrate the crucial role of
mitochondrial ROS formation in ischemia/reperfusion injury, Biochim. Biophys.
Acta 1787 (2009) 774-780.

D.M. Yancey, J.L. Guichard, M.I. Ahmed, L. Zhou, M.P. Murphy, M.S. Johnson,
G.A. Benavides, J. Collawn, V. Darley-Usmar, L.J. Dell'ltalia, Cardiomyocyte mi-
tochondrial oxidative stress and cytoskeletal breakdown in the heart with a primary
volume overload, Am. J. Physiol. Heart Circ. Physiol. 308 (2015) H651-H663.

P. Bernardi, V. Petronilli, F. Di Lisa, M. Forte, A mitochondrial perspective on cell
death, Trends Biochem. Sci. 26 (2001) 112-117.

F. Di Lisa, N. Kaludercic, A. Carpi, R. Menabo, M. Giorgio, Mitochondria and vas-
cular pathology, Pharmacol. Rep. : PR 61 (2009) 123-130.

A.P. Halestrap, A pore way to die: the role of mitochondria in reperfusion injury and
cardioprotection, Biochem. Soc. Trans. 38 (2010) 841-860.

D.J. Hausenloy, J.A. Barrabes, H.E. Botker, S.M. Davidson, F. Di Lisa, J. Downey,
T. Engstrom, P. Ferdinandy, H.A. Carbrera-Fuentes, G. Heusch, B. Ibanez,

E.K. lliodromitis, J. Inserte, R. Jennings, N. Kalia, R. Kharbanda, S. Lecour,

M. Marber, T. Miura, M. Ovize, M.A. Perez-Pinzon, H.M. Piper, K. Przyklenk,
M.R. Schmidt, A. Redington, M. Ruiz-Meana, G. Vilahur, J. Vinten-Johansen,
D.M. Yellon, D. Garcia-Dorado, Ischaemic conditioning and targeting reperfusion
injury: a 30 year voyage of discovery, Basic Res. Cardiol. 111 (2016) 70.

E. Murphy, C. Steenbergen, Preconditioning: the mitochondrial connection, Annu.
Rev. Physiol. 69 (2007) 51-67.

M.P. Murphy, How mitochondria produce reactive oxygen species, Biochem. J. 417
(2009) 1-13.

E.C. Hinchy, A.V. Gruszczyk, R. Willows, N. Navaratnam, A.R. Hall, G. Bates,

T.P. Bright, T. Krieg, D. Carling, M.P. Murphy, Mitochondria-derived ROS activate
AMP-activated protein kinase (AMPK) indirectly, J. Biol. Chem. 293 (2018)
17208-17217.

M. Ristow, K. Schmeisser, Mitohormesis: promoting health and lifespan by in-
creased levels of reactive oxygen species (ROS), Dose-response : Public. Int.
Hormesis Soc. 12 (2014) 288-341.

K. Carvajal, J. Balderas-Villalobos, M.D. Bello-Sanchez, B. Phillips-Farfan,

T. Molina-Munoz, H. Aldana-Quintero, N.L. Gomez-Viquez, Ca(2+ ) mishandling
and cardiac dysfunction in obesity and insulin resistance: role of oxidative stress,
Cell Calcium 56 (2014) 408-415.

P. Wardman, Fluorescent and luminescent probes for measurement of oxidative and
nitrosative species in cells and tissues: progress, pitfalls, and prospects, Free Radic.
Biol. Med. 43 (2007) 995-1022.

N. Kaludercic, A. Carpi, T. Nagayama, V. Sivakumaran, G. Zhu, E.W. Lai, D. Bedja,
A. De Mario, K. Chen, K.L. Gabrielson, M.L. Lindsey, K. Pacak, E. Takimoto,

J.C. Shih, D.A. Kass, F. Di Lisa, N. Paolocci, Monoamine oxidase B prompts mi-
tochondrial and cardiac dysfunction in pressure overloaded hearts, Antioxidants
Redox Signal. 20 (2014) 267-280.

S. Andersson, D.P. Zou, R. Zhang, S.G. Sun, B. Akermark, L.C. Sun, Selective posi-
tioning of CB 8 on two linked viologens and electrochemically driven movement of
the host molecule, Eur. J. Org. Chem. (2009) 1163-1172.

D.J. Fazakerley, A.Y. Minard, J.R. Krycer, K.C. Thomas, J. Stockli, D.J. Harney,
J.G. Burchfield, G.J. Maghzal, S.T. Caldwell, R.C. Hartley, R. Stocker, M.P. Murphy,
D.E. James, Mitochondrial oxidative stress causes insulin resistance without dis-
rupting oxidative phosphorylation, J. Biol. Chem. 293 (2018) 7315-7328.

M.G. Perrelli, P. Pagliaro, C. Penna, Ischemia/reperfusion injury and cardiopro-
tective mechanisms: role of mitochondria and reactive oxygen species, World J.
Cardiol. 3 (2011) 186-200.

F. Di Lisa, R. Menabo, M. Canton, M. Barile, P. Bernardi, Opening of the mi-
tochondrial permeability transition pore causes depletion of mitochondrial and
cytosolic NAD + and is a causative event in the death of myocytes in postischemic
reperfusion of the heart, J. Biol. Chem. 276 (2001) 2571-2575.

J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch,

S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J.Y. Tinevez, D.J. White,

V. Hartenstein, K. Eliceiri, P. Tomancak, A. Cardona, Fiji: an open-source platform


http://refhub.elsevier.com/S0891-5849(18)32178-6/sref9
http://refhub.elsevier.com/S0891-5849(18)32178-6/sref9
http://refhub.elsevier.com/S0891-5849(18)32178-6/sref10
http://refhub.elsevier.com/S0891-5849(18)32178-6/sref10
http://refhub.elsevier.com/S0891-5849(18)32178-6/sref10
http://refhub.elsevier.com/S0891-5849(18)32178-6/sref11
http://refhub.elsevier.com/S0891-5849(18)32178-6/sref11
http://refhub.elsevier.com/S0891-5849(18)32178-6/sref11
http://refhub.elsevier.com/S0891-5849(18)32178-6/sref12
http://refhub.elsevier.com/S0891-5849(18)32178-6/sref12
http://refhub.elsevier.com/S0891-5849(18)32178-6/sref12
http://refhub.elsevier.com/S0891-5849(18)32178-6/sref13
http://refhub.elsevier.com/S0891-5849(18)32178-6/sref13
http://refhub.elsevier.com/S0891-5849(18)32178-6/sref13
http://refhub.elsevier.com/S0891-5849(18)32178-6/sref14
http://refhub.elsevier.com/S0891-5849(18)32178-6/sref14
http://refhub.elsevier.com/S0891-5849(18)32178-6/sref14
http://refhub.elsevier.com/S0891-5849(18)32178-6/sref15
http://refhub.elsevier.com/S0891-5849(18)32178-6/sref15
http://refhub.elsevier.com/S0891-5849(18)32178-6/sref15
http://refhub.elsevier.com/S0891-5849(18)32178-6/sref16
http://refhub.elsevier.com/S0891-5849(18)32178-6/sref16
http://refhub.elsevier.com/S0891-5849(18)32178-6/sref17
http://refhub.elsevier.com/S0891-5849(18)32178-6/sref17
http://refhub.elsevier.com/S0891-5849(18)32178-6/sref17
http://refhub.elsevier.com/S0891-5849(18)32178-6/sref18
http://refhub.elsevier.com/S0891-5849(18)32178-6/sref18
http://refhub.elsevier.com/S0891-5849(18)32178-6/sref18
http://refhub.elsevier.com/S0891-5849(18)32178-6/sref19
http://refhub.elsevier.com/S0891-5849(18)32178-6/sref19
http://refhub.elsevier.com/S0891-5849(18)32178-6/sref19
http://refhub.elsevier.com/S0891-5849(18)32178-6/sref20
http://refhub.elsevier.com/S0891-5849(18)32178-6/sref20
http://refhub.elsevier.com/S0891-5849(18)32178-6/sref20
http://refhub.elsevier.com/S0891-5849(18)32178-6/sref20
http://refhub.elsevier.com/S0891-5849(18)32178-6/sref21
http://refhub.elsevier.com/S0891-5849(18)32178-6/sref21
http://refhub.elsevier.com/S0891-5849(18)32178-6/sref21
http://refhub.elsevier.com/S0891-5849(18)32178-6/sref22
http://refhub.elsevier.com/S0891-5849(18)32178-6/sref22
http://refhub.elsevier.com/S0891-5849(18)32178-6/sref22
http://refhub.elsevier.com/S0891-5849(18)32178-6/sref23
http://refhub.elsevier.com/S0891-5849(18)32178-6/sref23
http://refhub.elsevier.com/S0891-5849(18)32178-6/sref23
http://refhub.elsevier.com/S0891-5849(18)32178-6/sref23
http://refhub.elsevier.com/S0891-5849(18)32178-6/sref24
http://refhub.elsevier.com/S0891-5849(18)32178-6/sref24
http://refhub.elsevier.com/S0891-5849(18)32178-6/sref24
http://refhub.elsevier.com/S0891-5849(18)32178-6/sref24
http://refhub.elsevier.com/S0891-5849(18)32178-6/sref25
http://refhub.elsevier.com/S0891-5849(18)32178-6/sref25
http://refhub.elsevier.com/S0891-5849(18)32178-6/sref25
http://refhub.elsevier.com/S0891-5849(18)32178-6/sref26
http://refhub.elsevier.com/S0891-5849(18)32178-6/sref26
http://refhub.elsevier.com/S0891-5849(18)32178-6/sref26
http://refhub.elsevier.com/S0891-5849(18)32178-6/sref26
http://refhub.elsevier.com/S0891-5849(18)32178-6/sref27
http://refhub.elsevier.com/S0891-5849(18)32178-6/sref27
http://refhub.elsevier.com/S0891-5849(18)32178-6/sref27
http://refhub.elsevier.com/S0891-5849(18)32178-6/sref28
http://refhub.elsevier.com/S0891-5849(18)32178-6/sref28
http://refhub.elsevier.com/S0891-5849(18)32178-6/sref29
http://refhub.elsevier.com/S0891-5849(18)32178-6/sref29
http://refhub.elsevier.com/S0891-5849(18)32178-6/sref30
http://refhub.elsevier.com/S0891-5849(18)32178-6/sref31
http://refhub.elsevier.com/S0891-5849(18)32178-6/sref31
http://refhub.elsevier.com/S0891-5849(18)32178-6/sref31
http://refhub.elsevier.com/S0891-5849(18)32178-6/sref31
http://refhub.elsevier.com/S0891-5849(18)32178-6/sref31
http://refhub.elsevier.com/S0891-5849(18)32178-6/sref32
http://refhub.elsevier.com/S0891-5849(18)32178-6/sref32
http://refhub.elsevier.com/S0891-5849(18)32178-6/sref33
http://refhub.elsevier.com/S0891-5849(18)32178-6/sref33
http://refhub.elsevier.com/S0891-5849(18)32178-6/sref33
http://refhub.elsevier.com/S0891-5849(18)32178-6/sref34
http://refhub.elsevier.com/S0891-5849(18)32178-6/sref34
http://refhub.elsevier.com/S0891-5849(18)32178-6/sref34
http://refhub.elsevier.com/S0891-5849(18)32178-6/sref35
http://refhub.elsevier.com/S0891-5849(18)32178-6/sref35
http://refhub.elsevier.com/S0891-5849(18)32178-6/sref35
http://refhub.elsevier.com/S0891-5849(18)32178-6/sref35
http://refhub.elsevier.com/S0891-5849(18)32178-6/sref36
http://refhub.elsevier.com/S0891-5849(18)32178-6/sref36
http://refhub.elsevier.com/S0891-5849(18)32178-6/sref36
http://refhub.elsevier.com/S0891-5849(18)32178-6/sref36
http://refhub.elsevier.com/S0891-5849(18)32178-6/sref37
http://refhub.elsevier.com/S0891-5849(18)32178-6/sref37
http://refhub.elsevier.com/S0891-5849(18)32178-6/sref37
http://refhub.elsevier.com/S0891-5849(18)32178-6/sref38
http://refhub.elsevier.com/S0891-5849(18)32178-6/sref38
http://refhub.elsevier.com/S0891-5849(18)32178-6/sref38
http://refhub.elsevier.com/S0891-5849(18)32178-6/sref39
http://refhub.elsevier.com/S0891-5849(18)32178-6/sref39
http://refhub.elsevier.com/S0891-5849(18)32178-6/sref39
http://refhub.elsevier.com/S0891-5849(18)32178-6/sref40
http://refhub.elsevier.com/S0891-5849(18)32178-6/sref40
http://refhub.elsevier.com/S0891-5849(18)32178-6/sref40
http://refhub.elsevier.com/S0891-5849(18)32178-6/sref41
http://refhub.elsevier.com/S0891-5849(18)32178-6/sref41
http://refhub.elsevier.com/S0891-5849(18)32178-6/sref42
http://refhub.elsevier.com/S0891-5849(18)32178-6/sref42
http://refhub.elsevier.com/S0891-5849(18)32178-6/sref42
http://refhub.elsevier.com/S0891-5849(18)32178-6/sref42
http://refhub.elsevier.com/S0891-5849(18)32178-6/sref43
http://refhub.elsevier.com/S0891-5849(18)32178-6/sref43
http://refhub.elsevier.com/S0891-5849(18)32178-6/sref43
http://refhub.elsevier.com/S0891-5849(18)32178-6/sref43
http://refhub.elsevier.com/S0891-5849(18)32178-6/sref44
http://refhub.elsevier.com/S0891-5849(18)32178-6/sref44
http://refhub.elsevier.com/S0891-5849(18)32178-6/sref45
http://refhub.elsevier.com/S0891-5849(18)32178-6/sref45
http://refhub.elsevier.com/S0891-5849(18)32178-6/sref46
http://refhub.elsevier.com/S0891-5849(18)32178-6/sref46
http://refhub.elsevier.com/S0891-5849(18)32178-6/sref46
http://refhub.elsevier.com/S0891-5849(18)32178-6/sref46
http://refhub.elsevier.com/S0891-5849(18)32178-6/sref47
http://refhub.elsevier.com/S0891-5849(18)32178-6/sref47
http://refhub.elsevier.com/S0891-5849(18)32178-6/sref47
http://refhub.elsevier.com/S0891-5849(18)32178-6/sref47
http://refhub.elsevier.com/S0891-5849(18)32178-6/sref48
http://refhub.elsevier.com/S0891-5849(18)32178-6/sref48
http://refhub.elsevier.com/S0891-5849(18)32178-6/sref49
http://refhub.elsevier.com/S0891-5849(18)32178-6/sref49
http://refhub.elsevier.com/S0891-5849(18)32178-6/sref50
http://refhub.elsevier.com/S0891-5849(18)32178-6/sref50
http://refhub.elsevier.com/S0891-5849(18)32178-6/sref51
http://refhub.elsevier.com/S0891-5849(18)32178-6/sref51
http://refhub.elsevier.com/S0891-5849(18)32178-6/sref51
http://refhub.elsevier.com/S0891-5849(18)32178-6/sref51
http://refhub.elsevier.com/S0891-5849(18)32178-6/sref51
http://refhub.elsevier.com/S0891-5849(18)32178-6/sref51
http://refhub.elsevier.com/S0891-5849(18)32178-6/sref51
http://refhub.elsevier.com/S0891-5849(18)32178-6/sref52
http://refhub.elsevier.com/S0891-5849(18)32178-6/sref52
http://refhub.elsevier.com/S0891-5849(18)32178-6/sref53
http://refhub.elsevier.com/S0891-5849(18)32178-6/sref53
http://refhub.elsevier.com/S0891-5849(18)32178-6/sref54
http://refhub.elsevier.com/S0891-5849(18)32178-6/sref54
http://refhub.elsevier.com/S0891-5849(18)32178-6/sref54
http://refhub.elsevier.com/S0891-5849(18)32178-6/sref54
http://refhub.elsevier.com/S0891-5849(18)32178-6/sref55
http://refhub.elsevier.com/S0891-5849(18)32178-6/sref55
http://refhub.elsevier.com/S0891-5849(18)32178-6/sref55
http://refhub.elsevier.com/S0891-5849(18)32178-6/sref56
http://refhub.elsevier.com/S0891-5849(18)32178-6/sref56
http://refhub.elsevier.com/S0891-5849(18)32178-6/sref56
http://refhub.elsevier.com/S0891-5849(18)32178-6/sref56
http://refhub.elsevier.com/S0891-5849(18)32178-6/sref57
http://refhub.elsevier.com/S0891-5849(18)32178-6/sref57
http://refhub.elsevier.com/S0891-5849(18)32178-6/sref57
http://refhub.elsevier.com/S0891-5849(18)32178-6/sref58
http://refhub.elsevier.com/S0891-5849(18)32178-6/sref58
http://refhub.elsevier.com/S0891-5849(18)32178-6/sref58
http://refhub.elsevier.com/S0891-5849(18)32178-6/sref58
http://refhub.elsevier.com/S0891-5849(18)32178-6/sref58
http://refhub.elsevier.com/S0891-5849(18)32178-6/sref59
http://refhub.elsevier.com/S0891-5849(18)32178-6/sref59
http://refhub.elsevier.com/S0891-5849(18)32178-6/sref59
http://refhub.elsevier.com/S0891-5849(18)32178-6/sref60
http://refhub.elsevier.com/S0891-5849(18)32178-6/sref60
http://refhub.elsevier.com/S0891-5849(18)32178-6/sref60
http://refhub.elsevier.com/S0891-5849(18)32178-6/sref60
http://refhub.elsevier.com/S0891-5849(18)32178-6/sref61
http://refhub.elsevier.com/S0891-5849(18)32178-6/sref61
http://refhub.elsevier.com/S0891-5849(18)32178-6/sref61
http://refhub.elsevier.com/S0891-5849(18)32178-6/sref62
http://refhub.elsevier.com/S0891-5849(18)32178-6/sref62
http://refhub.elsevier.com/S0891-5849(18)32178-6/sref62
http://refhub.elsevier.com/S0891-5849(18)32178-6/sref62
http://refhub.elsevier.com/S0891-5849(18)32178-6/sref63
http://refhub.elsevier.com/S0891-5849(18)32178-6/sref63
http://refhub.elsevier.com/S0891-5849(18)32178-6/sref63

S. Antonucci, et al.

[64]

[65]

[66]

[67]

for biological-image analysis, Nat. Methods 9 (2012) 676-682.

J.M. Bond, B. Herman, J.J. Lemasters, Protection by acidotic pH against anoxia/
reoxygenation injury to rat neonatal cardiac myocytes, Biochem. Biophys. Res.
Commun. 179 (1991) 798-803.

R. Matsuoka, K. Ogawa, H. Yaoita, W. Naganuma, K. Maehara, Y. Maruyama,
Characteristics of death of neonatal rat cardiomyocytes following hypoxia or hy-
poxia-reoxygenation: the association of apoptosis and cell membrane disintegrity,
Heart Ves. 16 (2002) 241-248.

H.U. Bergmeyer, E. Bernt, Methods of Enzymatic Analysis, Verlag Chemie,
Weinheim, Germany, 1974, pp. 607-612.

T. Eckle, A. Grenz, D. Kohler, A. Redel, M. Falk, B. Rolauffs, H. Osswald, F. Kehl,
H.K. Eltzschig, Systematic evaluation of a novel model for cardiac ischemic pre-
conditioning in mice, Am. J. Physiol. Heart Circ. Physiol. 291 (2006)

687

[68]

[69]

[70]

[71]

Free Radical Biology and Medicine 134 (2019) 678-687

H2533-H2540.

C.A. Schneider, W.S. Rasband, K.W. Eliceiri, NIH Image to ImageJ: 25 years of
image analysis, Nat. Methods 9 (2012) 671-675.

P. Pacher, T. Nagayama, P. Mukhopadhyay, S. Batkai, D.A. Kass, Measurement of
cardiac function using pressure-volume conductance catheter technique in mice and
rats, Nat. Protoc 3 (2008) 1422-1434.

E.R. Larson, M.D. Feldman, J.W. Valvano, J.A. Pearce, Analysis of the spatial sen-
sitivity of conductance/admittance catheter ventricular volume estimation, IEEE
Trans. Biomed. Eng. 60 (2013) 2316-2324.

Julius Rebek Jr., * Timothy Costello, Ruth Wattley, Binding forces and catalysis.
The use of bipyridyl-metal chelation to enhance reaction rates, J. Am. Chem. Soc.
107 (1985) 7487-7493.


http://refhub.elsevier.com/S0891-5849(18)32178-6/sref63
http://refhub.elsevier.com/S0891-5849(18)32178-6/sref64
http://refhub.elsevier.com/S0891-5849(18)32178-6/sref64
http://refhub.elsevier.com/S0891-5849(18)32178-6/sref64
http://refhub.elsevier.com/S0891-5849(18)32178-6/sref65
http://refhub.elsevier.com/S0891-5849(18)32178-6/sref65
http://refhub.elsevier.com/S0891-5849(18)32178-6/sref65
http://refhub.elsevier.com/S0891-5849(18)32178-6/sref65
http://refhub.elsevier.com/S0891-5849(18)32178-6/sref66
http://refhub.elsevier.com/S0891-5849(18)32178-6/sref66
http://refhub.elsevier.com/S0891-5849(18)32178-6/sref67
http://refhub.elsevier.com/S0891-5849(18)32178-6/sref67
http://refhub.elsevier.com/S0891-5849(18)32178-6/sref67
http://refhub.elsevier.com/S0891-5849(18)32178-6/sref67
http://refhub.elsevier.com/S0891-5849(18)32178-6/sref68
http://refhub.elsevier.com/S0891-5849(18)32178-6/sref68
http://refhub.elsevier.com/S0891-5849(18)32178-6/sref69
http://refhub.elsevier.com/S0891-5849(18)32178-6/sref69
http://refhub.elsevier.com/S0891-5849(18)32178-6/sref69
http://refhub.elsevier.com/S0891-5849(18)32178-6/sref70
http://refhub.elsevier.com/S0891-5849(18)32178-6/sref70
http://refhub.elsevier.com/S0891-5849(18)32178-6/sref70
http://refhub.elsevier.com/S0891-5849(18)32178-6/sref71
http://refhub.elsevier.com/S0891-5849(18)32178-6/sref71
http://refhub.elsevier.com/S0891-5849(18)32178-6/sref71

	Selective mitochondrial superoxide generation in vivo is cardioprotective through hormesis
	Introduction
	Results
	MitoPQ induces a primary increase in mitochondrial ROS levels in a dose-dependent manner
	A primary increase in mitochondrial ROS levels affects mitochondrial function in a dose-dependent manner
	A primary increase in mitochondrial ROS levels affects cell function and viability
	Low levels of MitoPQ-induced ROS reduce cell death following anoxia/reoxygenation
	MitoPQ reduces infarct size in an in vivo model of ischaemia/reperfusion injury

	Discussion
	Methods
	Cell culture
	NRVMs
	Transfection
	Imaging
	Assessment of cell death

	Experimental animals
	Open-chest mouse model of acute myocardial I/R injury
	Pressure-volume analysis of cardiac function
	Chemical synthesis
	3-Methyl-4-(3“-methylpyrid-4“-yl)-1-(10‴-triphenylphosphoniodec-1‴-yl)pyridinium diiodide 3
	1,3,3’-trimethyl-1’-(10‴-triphenylphosphoniodec-1‴-yl)-4,4’-bipyridinium (MitoPQ control) triiodide

	Data analysis

	Acknowledgements
	Supplementary data
	Abbreviations
	References




