

Sablotny, M., Jensen, B. S. and Johnson, C. W. (2019) Recurrent neural

networks for fuzz testing web browsers. In: Lee, K. (ed.) Information

Security and Cryptology – ICISC 2018. Series: Lecture Notes in Computer

Science (11396). Springer, pp. 354-370. ISBN 9783030121457

(doi:10.1007/978-3-030-12146-4_22)

This is the author’s final accepted version.

There may be differences between this version and the published version.

You are advised to consult the publisher’s version if you wish to cite from

it.

http://eprints.gla.ac.uk/179096/

Deposited on: 27 February 2019

Enlighten – Research publications by members of the University of Glasgow

http://eprints.gla.ac.uk

http://dx.doi.org/10.1007/978-3-030-12146-4_22
http://eprints.gla.ac.uk/

Recurrent Neural Networks for Fuzz Testing
Web Browsers

Martin Sablotny[0000−0002−9836−8254], Bjørn Sand Jensen, and
Chris W. Johnson

University of Glasgow, School of Computing Science, Glasgow, Scotland
m.sablotny.1@research.gla.ac.uk, bjorn.jensen@glasgow.ac.uk,

christopher.johnson@glasgow.ac.uk

Abstract. Generation-based fuzzing is a software testing approach which
is able to discover different types of bugs and vulnerabilities in soft-
ware. It is, however, known to be very time consuming to design and
fine tune classical fuzzers to achieve acceptable coverage, even for small-
scale software systems. To address this issue, we investigate a machine
learning-based approach to fuzz testing in which we outline a family of
test-case generators based on Recurrent Neural Networks (RNNs) and
train those on readily available datasets with a minimum of human fine
tuning. The proposed generators do, in contrast to previous work, not
rely on heuristic sampling strategies but principled sampling from the
predictive distributions. We provide a detailed analysis to demonstrate
the characteristics and efficacy of the proposed generators in a chal-
lenging web browser testing scenario. The empirical results show that
the RNN-based generators are able to provide better coverage than a
mutation based method and are able to discover paths not discovered
by a classical fuzzer. Our results supplement findings in other domains
suggesting that generation based fuzzing with RNNs is a viable route
to better software quality conditioned on the use of a suitable model
selection/analysis procedure.

Keywords: Software security, fuzz testing, browser security

1 Introduction

Fuzz testing has recently enjoyed increased popularity in theoretical and practi-
cal software testing. This can be primarily attributed to the apparent capability
to trigger unintended behaviour in complex software systems, e.g. the summary
of bugs found by American Fuzzy Lop (AFL) [28] and further evidenced by the
use of fuzz testing in software companies like Microsoft and Google (e.g. through
their open-source tool ClusterFuzz [12]) which shows success and applicability in
many different domains. However, the standard approach of combining mutation
on a set of input examples with an evolutionary approach has its limitation with
increasing necessity of keywords and compliance to syntactic rules (e.g. HTML
as considered in this work). Those problems can be tackled by generation-based

2 M. Sablotny et al.

fuzzers that are able to comply to those rules, use the correct keywords and gen-
erate novel inputs. Traditionally, the time needed to develop generation-based
fuzzers is dependent on the input specification’s complexity. For example it is
less time consuming to develop a generator for a network protocol, which has
a single field with three different possible values compared to implementing the
File Transfer Protocol (FTP) [16] with it various fields and states. In addition,
it is necessary to find the right balance between introduced errors and overall
correctness to trigger code paths that lead to unintended behaviour.

The main bottleneck in the development of generation-based fuzzers is the
need for a strict understanding and implementation of the input file format.
Therefore, the potentially complex input specification has to be studied carefully
to transfer it into a test case generator, which then needs to be fine tuned in
order to find the right balance between correctness and introduced errors into the
test cases. This implicit optimization process looks to maximize code coverage
by generating test cases that deviate in certain areas from the given specification
and therefore are capable of exercising different low-level execution paths. Thus,
it is clear that methods which could automatically derive or lean the input
specification would be able to speed up software testing by faster deployment of
generation-based fuzzing techniques. This would potentially lead to an increase
in software security and stability.

Learning an input specification (e.g. syntactic rules) is obviously not triv-
ial, especially due to the long time dependencies input specifications can apply.
Those dependencies have an direct impact on the possible outputs at a certain
position and therefore have to be captured by a learning algorithm to produce
specification adhering outputs. However, recent advancements in generative ma-
chine learning models ([26], [3], [6], [2]) have demonstrated how machine learning
models can be use to learn complex rules and distributions from examples and
generate new examples from acquired knowledge.

These advancements have been previously explored for fuzz testing by Gode-
froid et. al. [11]. They demonstrated the use of deep neural networks to generate
PDF-objects, which were used as input for a rendering engine. Those input files
were able to trigger new instructions in the rendering engine. However, they fo-
cused on the tension between learning the correct input structure and fuzzing -
or in other words, finding the balance between adhering to the learned specifi-
cation and deviating from it. They did not provide an analysis of the learning
process itself and gave no comparison to a naive mutation based baseline. In
addition, they have not provided any information about the overlap between the
baseline and their proposed sampling strategies. In order to use deep learning
models during fuzz testing, it is important to see whether it is worth the devel-
opment and training. Therefore, it is necessary to compare it with an easy to
implement approach, like a naive mutation algorithm. The analysis of an existing
overlap between different approaches also gives more insight into the model and
sampling choice, since it is important to trigger as much new execution paths as
possible during testing to find the ones that trigger unintended behaviour.

In this work, we investigate how Recurrent Neural Networks (RNNs) with
different types of cells can be trained and used as a HTML-fuzzers. The models

Recurrent Neural Networks for Fuzz Testing Web Browsers 3

Fuzzer
generates test

case

Start program
with test case

as input

Unintended
behaviour?

Behaviour
exploitable

?

Save test case
Yes Yes

NoNo

Test case creation Behaviour Analysis

Fig. 1: Classic Fuzzing Workflow for finding security related flaws

are trained on a dataset created by a generation based HTML-fuzzer, which al-
lowed us to adjust the dataset size and complexity in a fast and systematic way.
We use the models to generate new HTML-tags from the resulting probability
distribution, which were used to form test cases. Those were executed with Fire-
fox [19] to gather their code coverage data and compared to a baseline generated
by the HTML-tags from the dataset and a naive mutated dataset. Thus, the
contribution of the paper includes:

- A systematic and robust approach for training and evaluating recurrent neural
networks with different types of cells for HTML fuzz testing.

- A procedure and metrics for model-selection and comparison of machine learn-
ing fuzzers against standard and a vanilla mutation-based methods including
a similarity-based analysis.

- An extensive empirical evaluation on a web browser, demonstrating that learned
fuzzers are able to outperform standard test methodologies.

- Open-source implementation and data available via Github 1.

2 Background

2.1 Fuzzing

Fuzz testing is a dynamic software testing approach, hereby dynamic means the
software under test is actually executed in contrast to statically analysed. The
goal of the fuzz test is to provoke unintended behaviour that was not detected in
earlier testing stages, therefore software under test is executed with inputs cre-
ated by a so-called fuzzer. Those inputs do not fully comply with the underlying
input specification in order to find paths that lead to a state that triggers unin-
tended behaviour. We adopt a broad definition of unintended behaviour, which
makes it applicable for various kinds of software and devices [27]. For example,
during fuzz testing desktop software, unintended behaviour can be the termina-
tion of a running process or even the possibility to take control over a process.
Whereas during the test of a web application unintended behaviour might be
defined as an information leak or the circumvention of access restriction both
cases might happen due to a SQL-injection vulnerability, where arbitrary input
is used as a valid SQL-statement.

1 Code and data is available from https://github.com/susperius/icisc_rnnfuzz

https://github.com/susperius/icisc_rnnfuzz

4 M. Sablotny et al.

As those examples highlight, a case of unintended behaviour becomes more
severe if it could provide an attacker with an advantage. Here advantage can
mean everything from accessing restricted information to taking over control of
a device. In order to find those vulnerabilities fuzz testing is utilised. The general
workflow during fuzz testing is shown in Figure 1. The testing itself is split in
two parts first the test case generation and secondly the behaviour analysis. In
general, the creation of test cases during fuzzing can be divided into the two cat-
egories: mutation based and generation based [27], [8] and [20]. First mutation
based fuzzing uses a valid input set and a mutation fuzzing in order to derive new
test cases from the input set. This type of fuzzing can be implemented quickly
if the input examples are available (e.g. JPG files). The main disadvantage is
that test cases created by plain mutation based fuzzing are not able to quickly
discover code paths deep in the call tree because many created test cases are
filtered out in early program execution stages. A very prominent and successful
example of this category is the aforementioned fuzzer AFL with its evolutionary
mutation approach. Secondly, generation based fuzzing uses an approach where
test cases are created from scratch, for example through grammar based cre-
ation. This method needs a lot of effort during studying the input structure and
developing the generator but in general it is able to discover deeper lying code
paths. However, a balance between complying to the rules and breaking them
has to be found in order to provoke unintended behaviour in the target.

2.2 Recurrent Neural Networks

The input data for many software products is readily available on the inter-
net (e.g. HTML, JPG, PNG) and deep learning algorithms have shown their
performance in different use cases especially where they are trained on a large
available dataset, for example text generation [26], program creation [3] and ma-
chine translation [6], [2]. This led us to the use of a generative model for the test
case creation during fuzz testing. In addition the structure of HTML and other
input formats, where the actual character or byte is dependant on the previous
positions in a sequence led to the use of RNNs.

RNNs are used to model sequential data, e.g. for text generation [26], lan-
guage modelling and music prediction [21]. They use a hidden state as short
term memory which carries information between time steps. The conventional
RNN with input xt is defined through a hidden state vector ht and an output
ŷt at time step t as follows

ht = fh(xt,ht−1) , ŷt = fo(ht),

with fh and fo being the hidden transformation and output function respectively.
Hereby, the input xt can be a N -dimensional vector, representing the input
structure, e.g. a single pixel’s RGB values at position t.

As described by Hochreiter [13] and later by Bengio et al. [4], RNNs suffer
from either the vanishing or exploding gradient problem. This means that the
weight updates are becoming infinitesimal during training, which consumes a

Recurrent Neural Networks for Fuzz Testing Web Browsers 5

Output ModuleRecurrent ModuleInput Module

x0

x1

…

xn

One-hot
coding

Recurrent
Layer

1

Recurrent
Layer

2

Dense
Softmax
Output
Layer

x1

x2

…

xn+1

Fig. 2: Model overview for a stacked RNN with 2 recurrent layers (either LSTM
or GRU)

lot of time but does not lead to a better optimised network. Hochreiter and
Schmidhuber introduced the concept of Long-Short Term Memory (LSTM) cells
[14] RNNs using those cells do not suffer from the vanishing (exploding) gradient
problem. LSTM cells use a hidden state, a candidate value and three gates
namely a forget gate, an input gate and an output gate. The gates control how
much information is forgotten, used from the input and controlling the flow into
the new hidden state respectively. They are default feed forward neural networks
and each have their own trainable parameters.

Another popular RNN cell, the Gated Recurrent Unit (GRU) was introduced
by Cho et al. [6]. This unit only uses two gates, a reset and an update gate. Here
the reset gate controls what information from the past hidden state is forgotten
and the update gate controls the information flow into the new hidden state.
This simpler model arguably makes it easier to train than a standard LSTM
based model.

The capability to learn sequential structures, where dependencies to former
inputs exist, is obviously an important characteristic when learning input format
structures for test case generation. This is especially evident in for example
HTML where there are long term dependencies between an opening-tag and the
corresponding closing-tag.

3 Stacked RNN for HTML-Fuzzing

The basic concept of the model used in this work is shown in Figure 2. The model
consists of three modules. First, the input module, let X = {x1, x2, . . . xN}
be the sequence of input values with xt ∈ N0 | 1 ≤ t ≤ N , where xt is the
natural number representing the character at position t in the input sequence.
For example the character ’f’ is at position t in the input sequence, its assigned
number is 17 and xt = 17.

The input module then takes such a xt and transforms it into a one-hot coded
vector x̂t ∈ RI with I = max(X) + 1, the one is added to account for the zero.
Let x̂t = (x̂1, x̂2, . . . , x̂I)ᵀ then

x̂j = 0 ∀ 1 ≤ j ≤ I : j 6= xt ∨ x̂j = 1 ⇔ j = xt,

and for the former example character ’f’ all x̂j = 0, except for x̂17, which equals
1. This conversion from integer values is necessary as interpret our input as

6 M. Sablotny et al.

categorical data (each character is its own category) and those categories are
handled as features during the training process.

Secondly, the recurrent module consists of LSTM or GRU nodes as described
in Section 2.2 with s, l ∈ N hereby s is the internal size of the nodes and l the
amount of layers used, e.g. l = 2 for the LSTM based model shown Figure 2.
LSTM cells have demonstrated a high performance gain compared to the basic
RNN approach as demonstrated by Chung et al. [7]. Gated Recurrent Units
(GRUs) introduced by Cho et al.[6] perform similar to LSTM cells [7], however
Jozefowicz et al. [17] have shown that LSTM cells perform better during XML
modelling. We decided to evaluate the performance of both cells to analysis
whether the XML modelling results are transferable to HTML modelling.

Finally, the output layer consists of a default feed forward network with I
nodes. It takes the output of the last recurrent layer hl

t ∈ Rs as input value and
after computing its output the softmax function is applied. The resulting ŷt

provides the probability distribution for predicting the next value of the input
sequence. The goal during training is to minimise the cross entropy loss function

L(Θ) = − 1

N

N∑
i=1

yi log(ŷi) + (1− yi) log(1− ŷi),

where Θ denotes the model’s parameters (i.e. a collection of W’s and b’s). In
order to find a Θ that minimises the above loss L the ADAM [18] optimisation
algorithm is applied. It is a gradient-based optimisation algorithm which only
needs first order gradients and has a reduced memory footprint compared to
other algorithms. Additionally, Dropout (30% dropout probability) [25] is used
as regularisation.

4 Experiments

The following sections present the methodology that was used to validate our
application of RNNs to generate test cases for fuzz testing of cyber security in
complex systems.

The basic idea is to train the aforementioned neural networks with different
depths on a large collection of HTML-tags. After training those models are used
to generate HTML-tags directly using the probability distribution over charac-
ters given the sequence. The generated output is then used as input for a web
browser. This browser is instrumented in order to gather the code coverage data
during execution on a basic blocks basis. The collected code coverage data is then
used to compare the models’ performances with code coverage data collected by
executing the dataset’s HTML-tags and a naive mutation strategy performed on
this HTML-tags.

4.1 Environmental Setup and Implementation

The model training took place on a Ubuntu 16.04 system equipped with a single
NVIDIA GeForce 1080 Ti and a NVIDIA GeForce TITAN Xp, which shortens

Recurrent Neural Networks for Fuzz Testing Web Browsers 7

the necessary training time by utilising their parallel computational capabilities.
The models were implemented using Google’s TensorFlow framework [1] along
with its Python bindings. This frameworks already provides the necessary cell
types, optimisation algorithm and loss function for our model, which shortens
the development time.

The code coverage data was collected on a Virtual Machine (VM) also run-
ning Ubuntu 16.04 and Firefox 57.0.1, which allows to run in so-called headless
mode. In this mode Firefox does not display the graphical user interface, but it
still renders the webpage. We also modified the standard configuration in order
to disable internal services to avoid as much false code coverage data as possible.
Furthermore safe mode was disabled, because during the automated code cover-
age collection Firefox was not closed correctly and therefore might tries to start
in safe mode after just a few test cases. The use of the headless mode also saves
time during the code coverage collection, which was collected by DynamoRIO’s
drcov tool (see subsection 4.4). The VM itself utilises 16 GB of RAM and a Solid
State Disk. A VM was used to facilitate parallel data collection via cloning and
deploying onto multiple host systems.

4.2 Data Set Generation

In order to provide a reproducible and controlled experiment, the training (and
ground-truth) data set was generated by an existing HTML-fuzzer included in
PyFuzz2 [24]. It provides a controllable generator thus ensuring less uncertainty
about the variation within the training dataset in comparison to collecting a
dataset from the Internet. Therefore, it was possible to control the complexity
of the generated HTML on a per tag basis, whereas a collected set would have
to be parsed and then filtered for unwanted HTML-tags to control the resulting
dataset.

The pre-existing fuzzer was modified in order to avoid nesting of HTML tags,
remove all Cascading Style Sheets and output exactly one HTML tag per line.
Due to the restriction of not having nested HTML-tags some like td or th are
excluded because they need an outer tag in this example table. Those restrictions
were introduced to reduce to focus on the fundamental problem by reducing the
overall data set complexity. This further reduced the necessary model complexity
and effectively the time needed to train those models.

1 <h2 id="id0" style="style" spellcheck="false" dir="rtl"

title="eval(n1, $)"> 2e100 </h2>

2 <ul id="id3" style="style" translate="no"

contenteditable="true" tabindex="4400000000">

4400000000

Listing 1.1: Example from the training set.

8 M. Sablotny et al.

Listing 1.1 shows an excerpt from the data set used for training the models,
which highlights the modification mentioned above. The created file consisted of
409,000 HTML-tags, which results in a total size of 36MB.

4.3 Training

All models were trained to predict the input shifted by one on a per character
basis. For example take ”< h2 i” from line 1 in Listing 1.1 as input sequence
of length 5 then the label for that particular input sequence would be ”h2 id”.
The actual sequence length used during training was 150 characters and each
model was trained for 50 epochs, which has shown sufficient for the models to
converge. In order to train the models we used the previously mentioned ADAM
[18] optimisation algorithm. The starting learning rate was set to 0.001 and
halved every 10 epochs. The models were trained with a batch size of 512. The
internal size of the LSTM and GRU cells was set to 256 for all models trained and
the number of layers varied from 1 to 6. The weights of the layer were initialised
by the Glorot uniform initializer [10]. So the weights are drawn from a uniform

distribution in the interval (−
√
6√

nj+nj+1
,

√
6√

nj+nj+1
), with nj being the internal

size of layer j.
The first 30MB of the data set were used for training and an additional gen-

erated 1MB for validation. All models were trained on 5 different training/vali-
dation splits repeated 3 times with different initialization (to mitigate extremely
poor local minima) which results in a total of 90 trained models per cell type.
The splits were chosen randomly without overlapping parts.

4.4 Data Collection

The code coverage data was collected by executing Firefox instrumented by Dy-
namoRIO’s drcov [9]. This tool gathers data about the executed basic blocks of
the program under test. The collected code coverage data was parsed for uniquely
executed basic blocks inside of Firefox’s libxul.so library, which includes the
whole web engine responsible for HTML rendering. It is possible to identify those
basic blocks even when the process is restarted because the recorded data uses
the offset of the basic block from the base address of the library in memory and
this offset is always the same for a fixed version. Hereby a basic block is defined
as a linear sequence of machine instructions with a single entry (branch target)
and single exit (branch instruction).

All test cases consisted of a basic HTML-template with the HTML-tags in-
serted into the body tag. Initial experiments showed that executing the same
test case multiple times returns different code coverage data. This is due to the
other functions that are bundled into the libxul.so library, which are not part
of the web engine itself. Those functions might for example only be executed
after a number of restarts or in fixed time intervals. In order to identify the
corresponding basic blocks the blank HTML-template was executed 1, 024 times
and the resulting code coverage was store for later use.

Recurrent Neural Networks for Fuzz Testing Web Browsers 9

The comparison baseline was established by using the HTML fuzzer to create
6× 16, 384 HTML-tags Each collection of 16, 384 HTML-tags was then used to
create two datasets, one containing 64 files with 256 HTML-tags each and a
second one with 128 files containing 128 HTML-tags. This resulted in twelve
datasets.

In order to establish a second baseline for comparison, additional test sets
were created by mutating the dataset test cases and collecting the code coverage
from those. A simple mutation function was applied with a fixed chance that a
position is replaced by a randomly chosen character (only characters that were
already present in the dataset). The results were 20 additional test case sets, 10
sets consisting of 128 cases with 128 HTML-tags each and 10 sets consisting of
64 cases with 256 HTML-tags each, resulting in a total of 1, 920 additional cases.
The replacement probability varied between 0.1% and 51.2%. This was done to
ensure that there is difference and therefore an incentive to use a trained model
for test case creation instead of implementing a naive mutation based approach.

For each trained model, a total 16, 384 HTML-tags were generated and then
used to create two different sets of test cases. The first set used 128 HTML-tags
per case, which resulted in 128 cases per model trained, whereas the second set
used 256 HTML-tags per case, which resulted in 64 cases per model. This was
done to analyse the impact of HTML-tags on code coverage and to observe the
relationship with the model performance. The HTML-tags were generated by
using the ”<” character as starting input, sampling the next character from the
resulting probability distribution, which was then used as new input. This was
repeated until a ”\n” (newline character) was sampled, since it marks the end
of a HTML-tag.

Finally, the set difference between the collections of basic block sets from the
test cases and the blank cases was computed to filter out the aforementioned
irrelevant basic blocks.

4.5 Results

The training phase already showed a difference in behaviour between the two cell
types. The LSTM based models showed a decrease in average validation loss and
standard deviation up to three layers, as shown in Figure 3a, with an increase
afterwards. Especially, the 6-layer models show a large standard deviation and
a huge increase in average validation loss compared to the other models This
indicates that those models have too many parameters in order to be trained on
our problem and training set. This behaviour is to be expected from a general
machine learning perspective and since the training process is the same compared

1 <war id="id55804" scellcheck="false" tpalleaeck="false"

class="style_class_0" title="50000000"> null</sab>

Listing 1.2: Example HTML-tag from a 1-layer LSTM model

10 M. Sablotny et al.

(a) LSTM (b) GRU

Fig. 3: Average validation loss for models of different complexity (i.e. number of
layers) models and dataset splits. Error-bars indicate the standard deviation.

to other similar applications using generative neural networks, like generating
text.

In contrast the training of the GRU based models showed a small increase
from the 1-layer models to the 2-layers case, but a decrease afterwards with
overall small differences in the standard deviation. This indicates that the GRU
based models are either better suited to reproduced the input structure or do
not reach the overall complexity of the 6-layer LSTM based model, which is also
supported by comparing the trainable parameters of those models. The GRU
based model has 2, 276, 971 compared to 3, 026, 795.

Overall, a small numeric difference in validation loss can lead to a big differ-
ence in the quality of the resulting HTML-tags. For example Listing 1.2 shows an
excerpt generated by a 1-layer LSTM model. It is barely recognisable as HTML
and the model did not generate existing HTML-opening and closing tags and
two of the generated HTML-attributes are misspelled in this particular exam-
ple. In contrast to that Listing 1.3 shows two HTML-tags generated by a 3-layer
LSTM model. Both use only existing HTML-tags, however the second one does
not use the correct closing tag and misspelled one attribute name. Further ev-
idence regarding the quality differences between the models of both cell types
is provided by Figure 4. It shows how the HTML error rate per tag follows the
trend of the validation loss and highlights how small differences has a large effect

1 <p id="id38564" lang="mk">

BB</p>

2 <head id="id240801" sang="al" style="style" class="

style_class_0" dir="rtl"> 7500000000</pre>

Listing 1.3: Example HTML-tag form a 3-layer LSTM model

Recurrent Neural Networks for Fuzz Testing Web Browsers 11

1 2 3 4 5 6
layers

0.0

0.2

0.4

0.6

0.8

1.0

er
ro

r p
er

 ta
g

LSTM
GRU
dataset error area

Fig. 4: Average error rate per HTML-tag generated by the LSTM and GRU
based model in comparison to the datasets.

on the HTML quality. The high spread of the 6-layer LSTM HTML error rate
reflect the large standard deviation observed during training.

Test cases with 128 HTML-tags
In terms of code coverage performance the overall trend also follows the valida-
tion loss and standard deviation, where a smaller validation loss and standard
deviation indicates a better performance. Figure 5a shows the total discovered
basic blocks of both cell types per layer. It highlights that both types of 4-layer
models and the GRU 5 and 6-layer models are able to discover basic blocks in
the range of the datasets or even outperform it.

In addition, Figure 6a shows the difference in number of basic blocks to the
best performing dataset. It shows that all models were able to discover basic
blocks not triggered by the dataset, with the 5-layer GRU models performing
best on average. In comparison with the different mutation sets the maximum
overlap reaches 90% with a mutation chance of 1.6%, which is not surprising
because the same mutation set has an overlap of 87.6% with the best performing
dataset, as also shown in Figure 7. The best performing 5-layer GRU models have
an overlap of 78% with the union of different mutation chances, highlighting the
models ability to discover basic blocks, which can not be triggered by the naive
mutation approach. The overall best performing models are also those with the
largest overlap with the dataset.

Test cases with 256 HTML-tags
The code coverage results for the test cases with 256 HTML-tags each showed
a similar development, but a slightly lower overall performance, as shown in
Figure 5b and Figure 6b. The lower overall performance was expected, because
both runs basically use the same HTML-tags and only the number of inserted
HTML-tags is different.

12 M. Sablotny et al.

1 2 3 4 5 6
layers

0

10000

20000

30000

40000

50000

60000
ba

si
c

bl
oc

ks

1.6%
3.2%
6.4%

12.8%

25.6%

51.2%mutation sets
LSTM
GRU
dataset coverage area

(a) 128 HTML-tags per case

1 2 3 4 5 6
layers

0

10000

20000

30000

40000

50000

60000

ba
si

c
bl

oc
ks

1.6%
3.2%
6.4%

12.8%

25.6%

51.2%mutation sets
LSTM
GRU
dataset coverage area

(b) 256 HTML-tags per case

Fig. 5: Total number of uniquely discovered basic blocks on a per model ba-
sis. The dataset coverage area and the different mutation sets are included as
baselines with the mutation probability indicated on the right vertical axis.

In terms of absolute basic blocks the 4-layer model was the best LSTM
based model, however in this setting it did not reach the dataset coverage area.
However, the 4-, 5- and 6-layer GRU based models were able to reach the dataset
coverage area with the 6-layer model having the highest number of uniquely
triggered basic blocks.

Considering the overlap with the mutation test cases the overall result is
the same as in the 128 HTML-tags case. The best performing four layer models
have an average overlap with the mutation sets of 74.6%. This shows that the 256
HTML-tags cases were also able to trigger new code paths in the web rendering
engine.

5 Discussion

The results demonstrate that is is indeed possible to successfully train models
and generate test HTML cases using the RNN based model. However, it is crucial
to monitor this process to get robust results, e.g., the 6-layer LSTM model was
not trainable in a reliable way. This may very well have been due to a lack of
training data, or the high amount of parameters involved in the optimisation.

Once the models have been trained the results indicates that the average
validation loss can be used as good initial selection criteria for choosing a good
model for generation of test cases despite the implicit coupling with the code
coverage metric. This is particularly interesting, since there is no code coverage
data available during the model selection phase and covering as many code
paths as possible during fuzz testing is important to discover software bugs. The

Recurrent Neural Networks for Fuzz Testing Web Browsers 13

1 2 3 4 5 6
layers

1000

2000

3000

4000

5000

6000

7000

8000

9000
ba

si
c

bl
oc

ks

LSTM
GRU

(a) 128 HTML-tags per case

1 2 3 4 5 6
layers

1000

2000

3000

4000

5000

6000

7000

8000

ba
si

c
bl

oc
ks

LSTM
GRU

(b) 256 HTML-tags per case

Fig. 6: Number of uniquely discovered basic blocks that were not triggered by
the best performing dataset.

results also have shown that the HTML error rate can be used to determine
a good generative model and therefore augment the selection process. This is
especially helpful, since the average validation loss and standard deviation alone
might indicate a low difference between two models, see for example the Listings
1.2 and 1.3. The highest average validation loss difference between those models
is ≤ 0.02, but the difference in the HTML error rate is 0.3. This means that the
worst performing 1-layer LSTM model has twice as many error per tag than the
best performing 3-layer LSTM model.

Overall the best performing models generated more valid HTML-tags than
the other models, which leads to the use of existing HTML-tags. Those generated
and generally valid HTML-tags are not always closed with right corresponding
HTML-tag. This results in the best performing models building nested valid
HTML-tags by accident, because those models use a valid opening HTML-tag,
but do not generate the corresponding closing HTML-tag. However, this might
still be generated at a later stage in the file. The assumed rendering behaviour
and the creation of nested HTML-tags trigger code paths that have not been
triggered by the baseline set, since in the baseline set every opened tag is closed
with the corresponding closing tag in each line.

The similarity in terms of overlapping basic blocks (see Figure 7a) between
the LSTM models and the baseline set is lower than the overlap with the mu-
tation sets and the models between each other in the 128 HTML-tag case. This
might indicate that the models are not able to fully replicate the given input
structure and therefore another model choice would be better suited to learn

14 M. Sablotny et al.

(a) LSTM (b) GRU

Fig. 7: The similarity between all the models, the dataset and mutation-based
fuzzer in terms of their overlapping basic blocks for test cases with 128 HTML-
tags.

this structure or the provided training set was too small to capture the input
structure with the chosen model architecture. For the GRU models the best per-
forming models also show that the overlap with dataset is higher than the one
with the mutation sets (see Figure 7b). This further strengthens the assumption
that a certain quality has to be reached by the models in order perform well.

Overall, we were able to demonstrate that especially GRU-based RNNs are
capable of creating HTML-tags, which then can be used during fuzz testing
a browser. Critically, the generated HTML test cases are also able to trigger
a significant number of unique basic blocks, which were not reached by the
dataset’s baseline and the naive mutation approach.

6 Related Work

The closest related work was done by Godefroid et al. [11]. They studied the
achievable code coverage using a two layer stacked RNN to sample PDF-objects
and focused on the effects the training duration has on this. The code coverage
results they achieved were compared against a baseline, which was randomly
selected from the training set. In contrast to that we used data not seen by the
models during the training phase to establish our baseline for comparison. In
addition, they analysed different approaches of creating test cases and compared
those. They also highlighted an observed tension between learning and fuzzing
and proposed an algorithm called SampleFuzz. This algorithm uses the lowest
predicted probability, if the model’s highest predicted probability is above a
certain threshold value and a random coin toss is successful. Whereas our work
studied a different input format, namely HTML, which is a more structure-

Recurrent Neural Networks for Fuzz Testing Web Browsers 15

reliant input format compared to PDF-objects. We also researched the effects of
the model depth on the resulting code coverage. We were not able to observe the
former described tension between learning and fuzzing. This might be connected
to the relative large size of our training set or indicate that their models started
to overfit to the training examples, thus requiring additional stochasticity to
produce novel test cases. Regardless, we did not identify the need to introduce
additional random values (e.g. through the use of SampleFuzz).

Other related works make use of the control and data flow during the ex-
ecution in order to generate new test cases. Rawat et al.[23] utilise so-called
evolutionary algorithms to derive new test cases. Whereas Höschele et al.[15]
derives an input grammar from the collected execution information. Both ap-
proaches need direct access to the program under test to instrument it and to
collect the necessary data. In contrary, our approach is able to learn the input
structure directly from input examples, which shortens the design and learning
process.

A different approach utilising code coverage and mutation-based fuzzing was
presented by Böhme et al. [5]. They augmented AFL with Markov Chains in
the mutation process. Their AFLFast called approach uses Markov Chains to
determine the state transitions into new test inputs. They have shown that they
shorten the time necessary for finding bugs in an ensemble of tested software.
However, they have not provided any information on highly structure dependent
input formats like HTML, which is described as a shortfall in the general AFL
approach.

Another way of combining deep learning in order to find bugs in software
was evaluated by Pradel et al. [22]. They used trained models in order classify
potential buggy source code. Hereby they trained their models as individual
classifiers for a certain bug category. In contrast to them we trained our models to
generate inputs, which then can be used to trigger and observe bugs in software.
Furthermore, their approach needs direct access to the source code, whereas we
need access to enough input examples to train a RNN model.

7 Conclusion and Future Work

Our work provides evidence that it is possible to use a stacked RNN to generate
HTML-tags in order generate novel test cases for fuzz testing a browser’s render-
ing engine. The results also clearly show that the GRU based models are able to
outperform LSTM ones even with less trainable parameters. Furthermore, the
proposed evaluation procedure and similarity-based analysis demonstrates that
the overlap in basic blocks between the dataset and the model generated test
cases are very low on average. In addition, the overlap with the naively mutated
sets is approximately 70% on average, which indicates that the trained networks
are able to discover new code paths formerly not discovered by the naive mu-
tation approach with different mutation chances. This provides amble evidence
that RNNs can be trained and used as an effective HTML-fuzzer provided that
a suitable model-selection and analysis procedure is applied.

16 M. Sablotny et al.

We are currently looking to extent the present work in least three ways:
Firstly, investigating more complex/suitable neural network models is necessary
to improve the overall quality of the generated HTML as other prevalent web
technologies, like JavaScript, cannot be used on broken HTML-tags. Secondly,
it is important to validate the generalisation of the current work on real-world
HTML-examples in contrast to the fuzzer generated training data considered
here. Lastly, we are exploring ways to utilise the gathered code coverage data
during the training process and rewarding the learning algorithm when discov-
ering unintended behaviour or new code paths. We speculate that this can be
achieved with the help of reinforcement learning to systematically trade-off the
model fit vs exploration.

Acknowledgements
We gratefully acknowledge the support of NVIDIA Corporation with the provi-
sion of the GeForce 1080 Ti and the GeForce TITAN Xp used for this research.
We also like to thank Chris Schneider from NVIDIA for his ongoing interest in
our research and his support.

References

1. Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado,
G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A.,
Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg,
J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J.,
Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V.,
Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng,
X.: TensorFlow: Large-scale machine learning on heterogeneous systems (2015),
http://tensorflow.org/, software available from tensorflow.org

2. Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning
to align and translate. arXiv preprint arXiv:1409.0473 (2014)

3. Balog, M., Gaunt, A.L., Brockschmidt, M., Nowozin, S., Tarlow, D.: Deepcoder:
Learning to write programs. arXiv preprint arXiv:1611.01989 (2016)

4. Bengio, Y., Simard, P., Frasconi, P.: Learning long-term dependencies with gradient
descent is difficult. IEEE Transactions On Neural Networks 5(2), 157–166 (1994)

5. Böhme, M., Pham, V.T., Roychoudhury, A.: Coverage-based greybox fuzzing as
markov chain. IEEE Transactions on Software Engineering (2017)

6. Cho, K., Van Merriënboer, B., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk,
H., Bengio, Y.: Learning phrase representations using rnn encoder-decoder for
statistical machine translation. arXiv preprint arXiv:1406.1078 (2014)

7. Chung, J., Gulcehre, C., Cho, K., Bengio, Y.: Empirical evaluation of gated recur-
rent neural networks on sequence modeling. arXiv preprint arXiv:1412.3555 (2014)

8. DeMott, J.: The evolving art of fuzzing. DEF CON 14 (2006)
9. DynamoRIO: Dynamorio. http://dynamorio.org/ (June 2017)

10. Glorot, X., Bengio, Y.: Understanding the difficulty of training deep feedforward
neural networks. In: Proceedings of the thirteenth international conference on ar-
tificial intelligence and statistics. pp. 249–256 (2010)

11. Godefroid, P., Peleg, H., Singh, R.: Learn&fuzz: Machine learning for input fuzzing.
Automated Software Engineering (ASE 2017) (2017)

http://tensorflow.org/
http://dynamorio.org/

Recurrent Neural Networks for Fuzz Testing Web Browsers 17

12. Google: Using clusterfuzz. http://dev.chromium.org/Home/chromium-security/
bugs/using-clusterfuzz

13. Hochreiter, S.: Untersuchungen zu dynamischen neuronalen netzen. Diploma, Tech-
nische Universität München 91 (1991)

14. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural computation
9(8), 1735–1780 (1997)

15. Höschele, M., Zeller, A.: Mining input grammars from dynamic taints. In: Pro-
ceedings of the 31st IEEE/ACM International Conference on Automated Software
Engineering. pp. 720–725. ACM (2016)

16. J. Postel, J.R.: File Transfer Protocol. Tech. rep. (October 1985), https://tools.
ietf.org/html/rfc959

17. Jozefowicz, R., Zaremba, W., Sutskever, I.: An empirical exploration of recur-
rent network architectures. In: International Conference on Machine Learning. pp.
2342–2350 (2015)

18. Kingma, D., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980 (2014)

19. Mozilla Corporation: Firefox. https://www.mozilla.org/en-US/firefox/ (Au-
gust 2018)

20. Oehlert, P.: Violating assumptions with fuzzing. IEEE Security & Privacy 3(2),
58–62 (2005)

21. Pascanu, R., Gulcehre, C., Cho, K., Bengio, Y.: How to construct deep recurrent
neural networks. arXiv preprint arXiv:1312.6026 (2013)

22. Pradel, M., Sen, K.: Deep learning to find bugs (2017)
23. Rawat, S., Jain, V., Kumar, A., Cojocar, L., Giuffrida, C., Bos, H.: Vuzzer:

Application-aware evolutionary fuzzing. In: Proceedings of the Network and Dis-
tributed System Security Symposium (NDSS) (2017)

24. Sablotny, M.: Pyfuzz2 - fuzzing framework. https://github.com/susperius/

PyFuzz2 (2017)
25. Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.:

Dropout: a simple way to prevent neural networks from overfitting. The Journal
of Machine Learning Research 15(1), 1929–1958 (2014)

26. Sutskever, I., Martens, J., Hinton, G.E.: Generating text with recurrent neural net-
works. In: Proceedings of the 28th International Conference on Machine Learning
(ICML-11). pp. 1017–1024 (2011)

27. Sutton, M., Greene, A., Amini, P.: Fuzzing: brute force vulnerability discovery.
Pearson Education (2007)

28. Zalewski, M.: American fuzzy lop. http://lcamtuf.coredump.cx/afl/ (2017)

http://dev.chromium.org/Home/chromium-security/bugs/using-clusterfuzz
http://dev.chromium.org/Home/chromium-security/bugs/using-clusterfuzz
https://tools.ietf.org/html/rfc959
https://tools.ietf.org/html/rfc959
https://www.mozilla.org/en-US/firefox/
https://github.com/susperius/PyFuzz2
https://github.com/susperius/PyFuzz2
http://lcamtuf.coredump.cx/afl/

	179096.pdf
	Recurrent Neural Networks for Fuzz Testing Web Browsers

