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Abstract: The design of intrinsically flat two-dimensional optical components, i.e., metasurfaces,
generally requires an extensive parameter search to target the appropriate scattering properties
of their constituting building blocks. Such design methodologies neglect important near-field
interaction effects, playing an essential role in limiting the device performance. Optimization
of transmission, phase-addressing and broadband performances of metasurfaces require new
numerical tools. Additionally, uncertainties and systematic fabrication errors should be analysed.
These estimations, of critical importance in the case of large production of metaoptics components,
are useful to further project their deployment in industrial applications. Here, we report on a
computational methodology to optimize metasurface designs. We complement this computational
methodology by quantifying the impact of fabrication uncertainties on the experimentally
characterized components. This analysis provides general perspectives on the overall metaoptics
performances, giving an idea of the expected average behavior of a large number of devices.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

In conventional optics, light manipulation is achieved by relying on propagation effects in
refractive components. According to their trajectories, the light rays propagate along different
optical paths §, thus accumulating different optical phase shifts, ¢ = k3, where k is the free space
wavevector to mold the wavefront in a desired way. This refractory optics approach uses bulky
materials, which, for a vast majority, have fixed optical properties. In order to fully address the
direction of light, the phase shifts accumulated along the different ray trajectories, traversing across
one or several materials of various shapes, should cover mod(2x), meaning that the longitudinal
dimension of the optical elements have to be several orders thicker than the wavelength, / > A.
Leveraging on nanostructured materials and arranging tiny features in subwavelength arrays, it is
possible to break away from our dependence on refractive materials and propose innovative optical
components capable of controlling the wavefront of light in an almost arbitrary manner. These
artificial components, which do not exist naturally, are called metasurfaces [1-3] and are closely
related to the high-contrast subwavelength dielectric grating (HCG) [4, 5], studied in details in
the nineties. The interested reader will find more details for example in these papers, reviews and
reading references therein [6—11]. HCGs have unconventional properties obtained by varying the
material composition, i.e. by variation of the duty cycle of the grating. Beside the similarities
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with HCG, considerable progress in nanofabrication has recently boosted this field of research to
the point that various sorts of new metasurfaces, achieving multiple optical functionalities going
beyond simple phase addressing, are revolutionizing optical designs. Today, metasurfaces find
numerous important applications in imaging [12,13], in nonlinear and quantum optics, in digital
coding [14-17], polarimetry [18-22] and life-science, i.e. medical applications [23]. For these
applications to bear fruits at the industrial levels, the device performance and their reliability
should be improved and maximized. Being aware of the requirement for real-world applications
of metasurfaces, we are considering suitable material systems for their realization which could
be cost-effective, enabling large-area fabrication techniques and which also maintain the required
material properties after nanoprocessing. The material system for realizing the devices should
also meet the stringent requirements of industrial manufacturing processes such as C-MOS
compatibility. Gallium Nitride (GaN), is a promising industrially relevant semiconductor. Here
we have selected this material for the realization of our optimized metasurface subwavelength
gratings because it offers multiple advantages: GaN is highly transparent in the entire visible
range and components for various wavelengths can be designed; its refractive index (n > 2) is
relatively high and ensures that GaN nanostructures can possess strong scattering resonances,
while the dispersion is sufficiently small as to be considered fixed within the wavelength of
interest; its considerably high thermal and chemical stability make this material suitable even for
extreme applications; from the industrial point of view, it is a mature material, which is also highly
compatible with the semiconductor fabrication techniques, as shown by its numerous implications
in electronics and optoelectronics. To date, the most common way of designing metaoptics
components usually considers the optical response of a unique scatterer (or a subwavelength array
of identical elements). The proximity effects between adjacent nanostructures and the impact
of various sorts of nanofabrication uncertainties are generally neglected. Near-field coupling
plays a detrimental role in the scattering response of closely packed nanostructures. This effect is
sufficiently strong such that it can be used as a design parameter to realize multiwavelength and
broadband metasurfaces [24-29]. However, considering the proximity effects of closely packed
antennas is not a simple task and it often requires tedious and time consuming numerical iteration
procedures to optimize the overall metasurface response. Several promising works have been
recently realized in order to tackle this optimization problem using different optimization methods
including for example particle swarm optimization algorithms [30], gradient-based inverse design
method [31], adaptive generic [32] and genetic algorithms [33], evolutionary [34] and deep
learning models [35]. Although all of these optimization methods could lead to highly efficient
designs, their experimental realizations hardly reach the expected performances. The fabrication
errors and imperfection with respect to the designed structures make these optimization tools
excessively complicated, going way beyond the experimental feasibility. In parallel of the
development of metasurface technology, significant progresses have recently been achieved in the
area of uncertainty quantification (UQ), where the aim is to estimate the influence of fabrication
and measurement errors on physical quantities of interest. Most notably, higher-order stochastic
spectral methods [36—40] have been developed, analyzed and applied with great success to
many different application areas. Contributions in electromagnetics are reported in [41-43]
among others. Relying on surrogate or meta-modeling, with the aid of modern computational
architectures, addressing complex computational models with a large number of uncertain inputs
comes into reach. Yet, a key prerequisite is a smooth input-to-output behavior of the underlying
model, which is not always present in applications. In this case, Monte Carlo techniques and their
contemporary multilevel and multifidelity variants [44,45] are still the methods of choice. In the
area of nanoplasmonics, recent work on uncertainty quantification has been reported in [46]. In
this work we have studied and quantified the robustness of optimized metasurfaces, considering
the impact of structural errors within given experimental uncertainties. The performance of
fabricated optimized structures show relatively good transmission and deflection performances in
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agreement with our numerical simulations. As we will discuss in Section 3, polynomial surrogate
models are not readily applicable for the class of metasurfaces considered in this work and
hence, a Monte Carlo strategy is adopted. Starting from several optimized designs obtained by
computing the electromagnetic response of arrays of subwavelength ridges using rigorous coupled
wave analysis software (RCWA) [47], we performed an UQ analysis and explored the impact of
technologically relevant geometrical parameters such as ridge widths dx; and relative positions
x;. A Monte Carlo ensemble of a million of random realizations has been numerically simulated
to evaluate the sensitivity of the optimal design with respect to manufacturing imperfections
through statistical indicators like mean deflection efficiency, standard deviation to the mean
value and confidence intervals. The results show that the number of elements per phase gradient
period plays a considerable role in the reliability of the structures with respect to small +5
nm uncertainties in the widths and positions. We conclude our discussion with a study on
non-periodic perturbations, i.e. we include more and more gratings with independent uncertain
parameters into a periodic unit cell. These last results are of capital importance for end-users and
industrial users interested in understanding the reproducibility and the overall mean performances
of a large number of metaoptics replica.

2. Simulation, optimization and experimental realization

The overall aim of this work is to design an ensemble of optimized, high contrast, GaN
subwavelength gratings with close to unity blazed response, while seeking robust structures,
insensitive to small manufacturing imperfections. Dedicated tools for robust optimization are
available in the literature [48], where uncertainty typically enters the objective function and
constraints via a penalization. Here, we decouple optimization and uncertainty analysis, for
simplicity. In particular, we first optimize several structures at nominal parameter values before
performing Monte Carlo analysis on the optimized design to carry out UQ. The main reason for
this simplification is that our sampling approach is numerically too expensive to be considered
within the optimization routine. Constructing more efficient UQ methods and performing
robust optimization for this application is subject of ongoing research efforts. Nevertheless,
the uncertainty analysis at the optimum gives important insights into the efficiency of the
manufactured structure. The numerical methods used for simulation and optimization are
described below, followed by a report on experimental results.

2.1. Methodology

GaN metasurfaces and a sketch of the optimization principle are depicted in Fig. 1(a). In
the following, all metasurfaces are optimized for an incident plane wave with a wavelength A,
impinging onto the structure at normal incidence and deflecting the light in the transmission
mode at desired angles 6, given by the grating law mA = T sin(6), where I' > A represents
the width of the unit cell. According to this grating law, only one fixed wavelength with a
fixed period can provide the first order at a desired deflection angle. Due to the periodicity
of the structure (Fig. 1(b)), the deflection angle follows the grating law, but because of the
subwavelength nanostructuration, we expect a strong blazing effect as depicted in Fig. 1(c). The
nanoridges in a unit cell have different widths to introduce a gradual phase retardation ranging
from O to 27 in a period, thus concentrating the light flux into one selected diffraction order
only. The purpose of our optimization procedure and the uncertainty analysis is to reveal the best
arrangement of subwavelength features to adjust the transmission and phase gradient within a
given period, similarly as it is done in echelette gratings. The latter refractive devices which
work by accumulating propagation phase shift across the tiny prisms, from O to 27 going from
the apex to the base of the prism as shown in see Fig. 1(b), are difficult to manufacture and have
high deflection efficiency only around a narrow angular range. An accurate electromagnetic
model of the GaN metasurface is thus crucial for obtaining satisfactory optimization results. For
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Fig. 1. (a) Illustrative schematic of the angular deflection property of a phase gradient
metasurface. Metasurfaces based on arrays of unit cells distributed in a periodic manner
with I > A, allowing discrete diffracted modes only. In the most general case, and assuming
an incident light at normal incidence, in transmission, the light will be deflected into
the different orders (permitted by the periodicity of the microscopic structure). A single
diffracted beam is achievable by controlling the light diffracted by each unit cell. In (b), the
device works essentially as conventional echelette blazed grating. Replacing the periodic
echelette with a subwavelength array of nanoridges (c), we create a metasurface. A strong
influence of the nanoridge response as a function of their width is obtained for TM polarized
incident light. The width of a periodic unit cell is denoted by I', the centers of the ridges
by x = [x1,...,Xj,...,xN ], where i = 1,..., N is the index of the nanoridge and N the
total number of nanoridges. In the same manner, we define the widths of all ridges by
O0x = [0x1, .., 0x;, .., 6xn]. (d) Typical broadband response of the transmission efficiency for
an optimized metasurface obtained using two different electromagnetic simulation solvers,
the Discontinuous Galerkin Time-Domain solver (DGTD) solver and the Rigorous Coupled
Wave Analysis (RCWA) solver in orange dashed.

this purpose and in the scope of this work, we have used two complementary simulation tools,
i.e. two numerical solvers for Maxwell’s equations. First, RCWA is chosen for its extremely
efficient monochromatic simulations, which is very well suited for this type of 1D optimization
calculations. For broadband calculations, the Discontinuous Galerkin Time-Domain (DGTD)
method [49] gives accurate broadband results and serves as a reference. Here, we have used the
RCWA implementation reticolo within the optimizer. The use of RCWA can be justified by a
numerical cross-comparison with the DGTD solver from the DIOGENeS software suite [50], as
depicted in Fig. 1(d). The comparison is carried out over a wide spectrum and shows excellent
agreement. Generally, if not indicated otherwise, all simulations have been performed in the
transverse magnetic (TM) polarization, i.e. for an electric field oscillating perpendicular to the
ridges axis.
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2.2. Optimization results

For the optimization we apply a gradient-free pattern search algorithm, implemented in Matlab’s
optimization toolbox. Pattern search is well suited for this kind of setups due to its simplicity and
robustness. The optimizer seeks to maximize the transmission efficiency of the first diffracted
order. In a first step, we optimize the one-dimensional grating structure at a fixed design angle and
investigate the broadband and geometric robustness of the transmission efficiency 7_; of the first
order diffracted mode. The height of each grating element, the grating period and the minimum
feature size are given by 42 = 1000 nm, I' = 1322 nm and d = 90 nm, respectively. The grating
period I' implies a deflection angle of 6 = 27°, i.e. we seek for an optimal geometry resulting in
maximum light intensities at § = 27°. All grating elements are made of GaN, epitaxially grown
on a double side polished Al/,O3 (Sapphire) substrate using molecular beam epitaxy.

We define the geometry, i.e. the positions and widths of the grating elements, through abstract
geometry parameters @ € [0, 1]V and a € [0, 1]V, which ensure that we obtain a grating with
N € N non-overlapping nanoridges inside of the grating period I of size bigger or equal to the
feature size. The concrete connection between «;, a; and the grating element geometry x;, dx; is
given in the appendix. We define the objective function as fy (@, a) = 1 — nn (e, a), where
nn.m : R2V — R refers to the transmission efficiency of the mode m € Z at a fixed wavelength
Adesign € R. In our case, all materials are passive and hence 7y, € [0, 1].

We formulate the nonlinear constrained optimization problem as

min fn(a,a)
(H

subjectto lallp <1, [lally = L.

In view of the minimal features size d and the grating period I', a maximum number of N = 6
nanoridges is reasonable. We perform the optimization for N € {2, 3,4, 5, 6} and select the most
suitable result, afterwards.

Figure 2 depicts the broadband transmission behavior of the first diffraction order 7_; of all
five designs N € {2,3,4,5, 6}, after optimization. Details of the geometric data is given in Table
2 in the appendix. For the TM mode, the transmission efficiencies are increasing with the number
of nanoridges N. Also, for N = 6, the efficiency is rather independent in a small vicinity of
A =600 nm. Figure 3 outlines the impact of a varying height on the grating. Again, for N = 6,
n_1 is very robust with respect to changes of / around the nominal value # = 1000 nm. This
robustness is less pronounced for decreasing N.

The same optimization strategy as outlined above has now been employed for different design
angles 6, and hence a changing grating period I'(6). Figure 4 depicts the transmission efficiency
n-1 as a function of the design angle 6 on the bottom and their broadband behavior on the top.
Again, the concrete geometric data is provided in the Tables 3 and 4.

2.3. Experimental realization and characterization of optimized metagratings

In this section, we discuss the experimental investigations of optimized metagratings fabricated
using standard nanofabrication processing and their optical characterizations. The latter are
performed using a homemade k-space microscopy setup to measure the angular deflection
efficiency as a function of the incident wavelength. A schematic of the experiment is presented
in Fig. 5(a).

The excitation of the metasurface from the substrate side is realized using a supercontinuum
broadband laser (NKT photonics) coupled to a spectral filter to select 100 nm bandwidth around
600 nm wavelengths. The beam is then filtered in polarization and focused on the metasurface
with a spot size of about 200 um. After interacting with the metasurface, a high numerical
aperture (NA = 0.9) microscope objective coupled to a tube lens collects the transmitted signal
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Fig. 2. Diffraction efficiency spectra for 6 = 27°, h = 1000 nm, d = 1322 nm, d = 90 nm,
and varying N. The design wavelength is Agesign = 600 nm. The upper and lower plots
correspond to a TM and TE polarization, respectively.
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Fig. 3. Diffraction efficiency spectra for 6 = 27°, » = 90 nm, different N and varying
grating height /. The design wavelength and height are Agesign = 600 nm and 7 = 1000 nm,
respectively.

and images the metasurface plane at the exit port of an inverted microscope Nikon eclipse
TE. A pinhole is inserted at this image plane to select part of the transmitted signal. This
way, we are characterizing the transmitted fields passing exclusively across the metasurfaces,
thus avoiding unwanted additional straight light at normal incidence which would change the
deflection efficiency. A modified 4f setup with f; = 2 f; is added to magnify the objective back
focal plane on the entrance slit of an Andor Shamrock 500i spectrograph (500 mm focal distance),
which is in turn coupled to an intensified Istar CDD camera. When the spectrometer is operating
in imaging mode at the zero order, i.e. in the case of specular reflection on the diffraction mirror,
the 2D intensity map gives full k-space information as presented in Fig. 5(b). By closing the
slit and spectrally dispersing the vertical k-space information, we obtain images that contain
both spectral information (along the x dimension) and transverse k, momentum information as
depicted in Fig. 5(c). It is important to underline that the metasurfaces are oriented such that
the deflection, related to direction along which the phase gradient acts, is chosen in agreement
with k, imaging capability of our microscopy system. Using a non-optimized calibration sample,
designed to deflect normally incident 600nm light at an angle of 45deg, we observe an we observe
an intense spot at the m = —1 order and weaker signals at m = 0, 1 indicating that the metasurface
is efficiently refracting light at the designed refracted angle of 45° for 600 nm wavelength.
Moreover, we observe an increasing deflection angle as a function of the incident wavelength
in agreement with the abnormal dispersion given by the generalized Snell law sin(6,) = % Z—;j.
The k-space calibration of our experimental Fourier plane images is performed by measuring the
ky,... and ky,of the objective lens, bringing the spectrometer diffraction grating to the zero
order and calculating the transverse k momentum as a function of the number of pixels filling the
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Fig. 4. Top: Diffraction efficiency spectra for 7 = 1000 nm, d = 50nm (left) and d = 90 nm
(right), and varying design angles 6 and I'(6), respectively. The design wavelength is
Adesign = 600 nm. Bottom: Angle dependence of 77—;. The number of nanoridges N varies
depending on the angle. The design wavelength is again Agegign = 600 nm.

NA of the objective. The latter is delimited by the red circle in Fig. 5(b).

For the fabrication of the structures, we start the process by growing a GaN layer on a double
side polished (111) Sapphire substrate using Molecular Beam Epitaxy (MBE) reactor. The state
of the art MBE technique can provide accurate thickness control as well as large scale uniformity.
A Hydrogen silsesquioxane (HSQ) resist is then spin-coated onto the GaN layer for electron
beam lithography process. The clearly perforated resist pattern is used as an etching mask for
the RIE process. After etching the GaN layer, the rest of the resist is removed using chemical
native oxide removal by dipping the patterned films in a BOE etch. The results of the fabrication
are shown in Fig. 6(a). A scanning electron micrograph of the resulting structures is shown in
Fig. 6(b) showing clearly defined GaN ridges on sapphire substrate.

The experimentally measured transmission spectra as a function of the deflection angles for
an interface deflecting at 27° are presented in Fig. 6(d) for different numbers of nanoridges per
period. A summary of the deflection efficiency is reported in (e) in which we compare the 7_;
and 79 by normalizing the signal directly from the bare substrate transmission (blue curves).
We observe that the structure is highly efficient (> 80%) at the designed wavelength of 600 nm
for 5 nanoridges per period. The performances decrease by decreasing the number of phased
elements, as expected from numerical simulations. We also indicated the ratio between -1 and
0 diffraction orders to clearly show the blazing efficiency of the components. The nanoridges
have important structural birefringence and are therefore sensitive to the state of polarization.
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Fig. 5. Experimental setup and k-space microscopy images of metagrating deflection
properties. (a) the broadband light transmitting through the metasurface is collected with a
high microscope objective (VA = 0.9) of an inverted microscope. A modified 4f lensing
system relays the k-space information to the entrance slit of an imaging spectrometer. (b)
shows a typical k-space image of the light transmitted through the metagrating when the
spectrometer is set in imaging mode, i.e. by looking at the back focal plane image reflected
toward the CCD camera by the diffraction grating oriented to the specular reflection angle.
The deflected fields at m = —1 diffraction order appears as an elongated spot around 45°.
The red circle indicates the NA of the microscope objective. (c¢) The spectral response of
the components is characterized by closing the spectrometer entrance slit and spectrally
dispersing the vertical k-space information. The image displays both spectral information
(along the x dimension) and transverse ky, momentum information. The m = -1 has
higher intensity indicating strong blazing behaviour as expected from the design. Note
also the typical k-space angular dispersion properties of the metagrating as function of the
wavelength.
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Fig. 6. Example of a fabricated metasurface. (a, top) The schematics indicate the fabrication
work flow, starting from GaN growth on Sapphire substrate, followed by eBeam lithography
on HSQ resist which is cured and used as a hard mask for RIE etching. The excess of
resist is then washed away using BOE etch. (b) A typical scanning electron micrograph
of a fabricated structure. (c) Zoomed SEM images of the different nanoridge gratings
with increasing number of elements per period from 2 to 6. In the large scale figure, the
assemblies of nanoridges highlighted in yellow represent unit cells of the metasurfaces. In
the inset, a zoomed of unit cells revealing the sub-unit nanoridges chosen to discretize the
27 phase ramp. In this example, the unit cells are composed of 2 to 6 nanoridges indicated
by the colors ranging from red to violet. (d) Fourier plane optical transmission curves. The
red curves represent the metasurface transmission as a function of the deflection angles for
various nanoridges per periods. The data have been measured at 600 nm. (e) Summary of
the deflection efficiencies as function of the number of elements per period.
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Fig. 7. Measured diffraction efficiency spectra for TM and TE incident polarizations.
The structure is composed of 5 nanoridges per unit cell as presented in Fig. 6 for
6 = 27°, h = 1000 nm, d = 90 nm, and varying polarization. The design wavelength
is Adesign = 600 nm. (a) and (b) are raw experimental k space images obtained with a
microscope objective (0.9 NA). (c) are normalized efficiencies for S and P polarizations.

We have calculated and experimentally confirmed that good blazing effect occurs only for TM
incident polarization as presented in Fig. 7.

3. Uncertainty quantification

We conduct a number of uncertainty quantification (UQ) studies with the aim of quantifying
the impact of random geometrical deviations in the considered structures upon the transmission
efficiency n_;. As explained in the introduction, this analysis is of critical importance to
understand the limitation and to evaluate the mean performance of a large number of components.
We believe that such a study will comfort practical engineers who are interested in having
meaningful numbers to evaluate the general metasurface performances. We consider structures
with N € {2, 3,4, 5,6} nanoridges per period and model the geometrical uncertainties as random
shifts in the x-coordinates of the bounds of the ridges, thus obtaining a total of 2N uncertain
parameters, equivalently, random variables (RVs). This stochastic modeling results in randomly
varied grating element widths and positions.

A realization of a random x-coordinate is given by X; = X" + & (0),i = 1,...,2N, where
X;°™ denotes the x-coordinate in the nominal geometry of the structure, &; the corresponding
RV, and 6 a random outcome. We use capital letters to distinguish the nanoridge boundaries
X; from its centers x;. We model the RVs &; to be independent and identically distributed
(iid), following either uniform distributions with support within the range [—5 nm, 5 nm], or beta
distributions with support in the range [-7.5 nm, 7.5 nm] and with shape parameters o = 8 = 4.
With the selected shape parameters, the beta distribution is a good approximation to the normal
distribution with a mean value ¢ = Onm and a standard deviation o = 2.5 nm, while having a
bounded support. An illustration is provided in Fig. 8(a). The effect of the distribution on the
results will be analyzed below, yet, as we did not observe large differences for several computed
quantities, the results for the beta distribution are often omitted.

Denoting the probability density function (PDF) of a given distribution with g;(&;), under
the independent and identically distributed random variables assumption, the joint probability
function is given by o(¢) = 1—[2]\; 0i(&;), where & = (&1, ...,&pN) is a random vector.

i=
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Our numerical experiments indicate that advanced UQ techniques based on (adaptive) spectral
approaches cannot be used for the given problem, due to the fact that the input-to-output map,
i.e. the behaviour of the underlying model, is not sufficiently smooth. However, since a single
call of the RCWA solver requires less than 1 s of execution time, the classic Monte Carlo (MC)
sampling method remains an attractive option. Exploiting parallel computing resources, even
several millions of solver calls is a feasible task.

Using the MC sampling method, we generate a sample of Myjc realizations of the input
random vector, {f (m)}m . The realizations are drawn randomly from the joint input PDF o(¢).
The solver is called for each one of the realizations and we obtain the corresponding solutions

77( 1) = 1n-1 (f(m)), m = 1,..., Myc. Then, the expected (mean) value of the transmission
efficiency, E [r-1], can be estimated as
Mwyc
E[n-1] ~ Buc 1] = — Z o, @)

Similarly, the MC estimate for the variance of the efficiency, V [r_1], is given by

V-1l = Vmc [7-1] = [T Z ( ) _ By [77—1])2- (3)

The MC estimate for the standard deviation of r_; is given by simply taking the square root of
Vmc [7-1].

A further attractive feature of the MC method is that it is unbiased with a root-mean-squared-
error (RMSE) that can be estimated as

Vmc [17-1]
ERMS = —_— . (4)
Mwuc
The RMSE indicates how far the MC estimate of the expected value lies from the “true” expected
value, on average. Hence, the RMSE can be used to stop the generation of random realizations
once a required accuracy has been reached, as to avoid excessive simulation costs.

Finally, the sample of evaluations {n( )} can be used for the estimation of other statistical

measures, such as confidence intervals, quar_ltiles, or the PDF of the now random 7_;. For the
latter, we use here a kernel density estimation approach, based on an Epanechnikov kernel [51].

3.1. Single frequency and periodic deformations

The simulations performed to obtain the results presented in this section have been executed
for a fixed wavelength of 600 nm and a fixed deflection angle of 8 = 27°. We consider the
cases of N € {2,3,4,5,6} nanoridges. For each configuration we conduct a MC experiment
with My;c = 10° random realizations of the geometry, yielding a negligible sampling error. We
calculate the MC estimates for the mean value and the standard deviation of 7_;, as described
above. We further compute the maximum and minimum efficiency values that occur in the
generated output sample. The results for uniform input distributions are presented in Table 1.
Similar results have been obtained for beta input distributions, but are here omitted. In this table,
we also report the measured efficiencies. Simulation and experiment are in good agreement
since, except for N = 3, the measured values do not deviate significantly more than one standard
deviation of the numerical prediction. Note that the uncertainty analysis is based on estimations
of the manufacturing uncertainty solely and further improvements seem possible by taking into
account geometry measurements. The PDFs of 1_; for uniformly and beta-distributed RVs are
presented in Figs. 8(b) and 8(c).



Research Article Vol. 9, No. 2| 1 Feb 2019 | OPTICAL MATERIALS EXPRESS 903

Table 1. UQ results for n_y in the single frequency case and for uniform input distributions
together with measured 7_; of the fabricated structure.

N Mean St. Dev. Min. Max. | Measured
2 0494 0.024 0384 0.529 0.461
3 0540 0022 0379 0.564 0.387
4 0722 0.044 0510 0.806 0.788
5
6

0.831 0.032 0.541 0.891 0.860
0.833  0.046  0.255 0.901 0.797
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The PDF of the approximated Gaus- grating elements per period. grating elements per period.

sian distribution is given in black.

Fig. 8. Input and output probability density functions.

3.2. Broadband and periodic deformations

We consider wavelengths in the range 500 nm to 700 nm. The frequency range is discretized in
an equidistant way with 41 discrete frequency points, i.e. with a step size of 5 nm. We generate
10° random input realizations for each design, i.e. for N = 2, 3,4, 5, 6 nanoridges per period.
For each input realization, the computational model is evaluated at all frequency points, thus
resulting in 41 transmission efficiency values. We also consider both uniform and beta input
distributions regarding the 2N geometrical uncertainties.

The combinations between input distributions and nanoridges per period, result in 10 distinct
settings. For each one of those settings, we have calculated expected (mean) values, standard
deviations, 10%, 20%, . . ., 90% percentiles, and best/worst case efficiency values, over the given
frequency range. As an example, we present in Fig. 9 the results for the case of uniform inputs
and N = 5 nanoridges per period. In the same plot, the 10% percentile per frequency point is
presented, indicating the percentage of realizations resulting in transmission efficiency values
below the corresponding (black) curve.

3.3.  Non-periodic deformations

In the previous subsection, the simulation was confined to a single grating with periodic boundary
conditions, implying periodic geometric deformations as well. Insight on the structure of the
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Fig. 9. Broadband UQ results for uniform input distributions and N = 5 nanoridges per
period.

geometric uncertainties can be gained from measurement data by applying Bayesian parameter
estimation techniques, for instance. Such a study is beyond the scope of the present work.
Instead we analyze a second case for comparison, where the influence of the periodic boundary
condition is systematically minimized. To this end, we proceed as illustrated in Fig. 10: instead
of one, we consider two gratings per unit cell with identical geometry but independent geometric
uncertainties and repeat the uncertainty analysis. This procedure is repeated with more and more
gratings per unit cells, yielding an ever-increasing number of random variables, until changes in
the mean value become negligible. Such a procedure is tractable in a Monte Carlo setting, as
the computational accuracy only mildly depends on the number of parameters. The accuracy
is controlled for each simulation by choosing the sample size according to (4). A detailed
description of this algorithm is given in the appendix. For simplicity, in this study, we focus on
the case N = 5 and uniform random inputs.

Figure 11 depicts the results for the mean value and variance over an increasing number
of gratings per unit cells (random variables). The mean efficiency decreases slightly, before
saturating after n = 16. The standard deviation in turn decreases continuously with a slope of
0.5. Hence, in absence of systematic fabrication offsets the problem features a more and more
deterministic character, which can be physically attributed to interference effects between the
individual variations. More precisely, the individual grating contributions add up to an overall
efficiency and the central limit theorem implies that the distribution of this overall efficiency is
normally distributed with a standard deviation proportional to 1/+/n, which is clearly visible in
Fig. 11. In summary, the impact of manufacturing imperfections is reduced for robust designs
due to averaging interference effects between neighboring structures. Small deviations from
the ideal gradient phase within neighboring unit cells create a diffuse background signal, which
decreases slightly the overall diffraction efficiency. As shown in this last figure, small variations
do not drastically affect the optical performances of robust metasurfaces designs, indicating
that optimized designs would have reproducible performances. These results are of significant
practical importance, showing that multiple interference effects help to stabilize the overall
performance of a large number of components within a few percent below the design mean value.

4. Conclusion and outlook

The development of metasurfaces and their deployment in real world applications require new
numerical tools to design reliable and high efficient devices. In view of processing a large number
of metasurfaces at once, these performances have to be sufficiently robust with respect to minute
fabrication errors generally occurring in high-throughput wafer-scale manufacturing processes.
In this work, we have analyzed both theoretically and experimentally the deflection efficiency of
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Fig. 10. Sketches of considered numerical models with N = 5 nanoridges per period. Black
solid lines illustrate periodic boundary conditions. Black dots indicate uncertain parameters.
Top: unit cell consisting of n = 1 grating as considered in Section 3.1 and 3.2. Middle,
bottom: increased number of gratings per unit cell (top: n = 2; bottom: n = 4) in order to
systematically reduce the influence of the periodic boundary conditions (Section 3.3).

1D GaN phase gradient metasurfaces. We could observe that the optimized structures are rather
robust against manufacturing errors, in particular for a larger number of nanoridges, even though
robustness was not yet taken into account during optimization. By quantifying uncertainties for
the optimized design we obtained confidence intervals for the transmission efficiencies, which are
in good agreement with the experimental results. Evaluating the potential and the physical limits
of GaN metaoptics is also of importance to push further toward large market applications such as
imaging, lighting and displays and hybrid optical components [52,53]. The results discussed in
this manuscript comfort the initial assumption about the potential impact of GaN metamaterial
and its implication in designing novel and efficient passive and active meta-optical components
for practical applications.

Appendix A: Geometrical data

We present the numerical values of the optimized geometric parameters, i.e. centers x and widths
6x of the nanoridges, for different gratings in Table 2, 3 and 4. In all cases the design wavelength
i Adesign = 600 nm and the grating height is # = 1000 nm. Note that the respective grating period
I" corresponding to a deflection angle 6 can be obtained using Agesign = I sin(0).
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Fig. 11. Effect of periodic boundary conditions on UQ results. Mean value (left) and
standard deviation (right). The periodic part consists of an increasing number of gratings
n. The mean value decreases for an increasing number of gratings before saturating after
roughly n = 15. The standard deviation and hence, the uncertainty due to the manufacturing
are decreasing continuously.

Table 2. Grating geometry. Numerical values of the grating’s geometric parameters for a
deflection angle 8 = 27°, grating period I' = 1322 nm and different numbers of nanoridges
per period N. The optimizations were carried out using the larger minimal feature size

d = 90 nm.
grating  centers X (nm) widths 6x (nm)
N =2 -315.1,518.1 691.5, 84.8
N =3 -607.3,-331.5,215.8 107.1, 212.6, 741.7
N =4 -585.1,-147.3, 242.6, 508.7 151.4,364.3,236.5, 194.4
N =5 -581.2,-116.5,133.3,282.9, 484.1 159.3, 336.9, 50.1, 66.3, 189.4
N =6 -504.3,-179.9,78.8,290.9, 437.1, 561.4 313.1,235.7, 181.8, 142.3, 50.0, 98.7

Appendix B: Algorithmic UQ aspects

Results presented in Section 3.3 are obtained using Fig. 12 with M, = 100 and € = 1074, Table 5
shows that, due to the ever decreasing standard deviation, the needed number of MC samples
decreases with respect to n, too. This partially mitigates the rapidly increasing computational
cost for an increasing number of gratings per unit cell n.

Appendix C: Details on geometric parametrization

The positions of the nanoridges can be derived from the abstract geometry parameters «;, a; €
[0,1], i =1,...,N as follows: the width of the i-th nanoridge is given as

ox; =0+ a;(T - 2ND).



Research Article Vol. 9, No. 2| 1 Feb 2019 | OPTICAL MATERIALS EXPRESS 907

e aISIEXPRES S

Table 3. Grating geometry. Numerical values of the grating’s geometric parameters for
different deflection angles 6 and hence grating periods I'. The optimizations were carried
out using the smaller minimal feature size » = 50 nm. Here, we only show the setting with
the optimal number of nanoridges per period.

grating centers X (nm) widths éx (nm)

6 =81° -2355,-10.1,211.1 136.4,208.6, 51.4

6 =72° -290.1,-168.3, 36.2,239.5 50.6, 50.0, 247.6, 50.9

6 =63° -306.5,-66.6,173.4 60.3, 143.1, 207.6

6 =54° -241.1,243.3 259.5,155.1

6 =45°  -351.6,-117.5, 14.4,114.9, 215.8, 329.6 145.3, 113.3, 50.1, 50.0, 50.0, 68.8
0 =36° -438.1,91.4,316.3 144.6, 116.7, 164.1

0 =27° -585.5, -408.9, -251.1, -104.4, 28.7, 154.4, 270.5, 150.7,102.3, 113.6, 79.8, 86.2, 65.4, 66.9, 51.7,
379.8, 483.0, 585.6 54.7,50.5

0=18° -894.4, -712.2, -549.9, -390.2, -242.3, -97.5, 32.5, 152.8,105.5,119.1, 100.3, 95.6,93.9, 65.7, 76.6,
153.8, 278.5, 390.1, 492.3, 594.2, 694.7,795.3,895.6  72.7,50.4, 53.3, 50.8, 50.4, 50.5, 50.2

0=9° -1819.8, -1461.5, -1315.0, -1147.5, -969.3, -842.5, -  195.9, 101.1, 51.2, 170.4, 70.9, 51.2, 506.9,
504.9,-127.3,64.5,237.5,400.1, 573.3, 746.2, 1001.6,  127.3, 125.7, 98.2, 117.5, 88.1, 123.5, 247.1,
1247.3, 1412.7, 1544.9, 1679.0, 1826.9 106.9, 84.1, 53.3,91.1, 73.6

Table 4. Grating geometry. Numerical values of the grating’s geometric parameters for
different deflection angles 6 and hence grating periods I'. The optimizations were carried
out using the larger minimal feature size d = 90 nm. Here, we only show the setting with the
optimal number of nanoridges per period.

grating centers X (nm) widths 6x (nm)

6 =281° -232.6,-18.8, 168.7 142.4,105.1, 90.0

6 =72° -242.6,-18.2,180.3 145.6, 119.8, 90.1

6 =63° -285.7,-49.8,173.5 101.9, 144.9, 121.6

6 =54° -278.1,-10.9, 218.6, 185.5, 144.0, 121.9

6 =45° -372.3,-149.7, 87.1, 289.0 103.8,160.2, 133.1, 90.0

6 =36° -432.1,-199.2,7.9,195.4,375.4 156.6, 129.1, 105.1, 90.0, 90.0

0 =27° see Table 2
6 =18° -880.6,-562.0,-316.6, -1.5, 358.5, 623.8, 826.4 180.5, 157.9, 148.6, 299.9, 236.3, 100.4, 102.1
0=9° -1838.1, -1527.8, -1111.9, -615.2, -293.2, -76.8, 159.3,158.1,482.8,327.2,128.1,110.4,99.7, 116 4,

120.2, 320.4, 586.0, 842.8, 1036.1, 1279.1, 1517.5,  222.9,97.8,99.1, 193.3, 102.6, 163.0
1745.7

The corresponding center position x; € (—g, g) can then be obtained as

I+ ox; 0 i=1

Xi = + . .
‘ 2 ox +oaa (T-No -3 o) 0> 1.
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Data:

function handle get_sample (n) for unit cell with n gratings,
tolerance e,

minimum number of MC samples My;, for grating

Result:

Expectation E,, and standard deviation o, w.r.t. number of gratings n

Initialize grating number n = 1

repeat
Initialize number of samples M =0
repeat
M=M+1

Draw MC sample 17(}1/1) = get_sample (n)

Estimate expectation E,, as in (2)

Estimate variance o-n2 asin (3)

Estimate error egyis as in (4)
until M > M, and egums < €;
Increase number of gratings n = 2n

until n > 4 and |E,., — Enyy| < 6€ and |E,, — Eyl < 6¢;

Fig. 12. Uncertainty quantification in quasi-periodic structures.

Table 5. UQ results for an increasing number of nanoridges n per unit cell. Npar = 2nN
denotes the number of uncertain parameters and MMC the number of Monte Carlo samples
used to estimate the mean value E,, and the standard deviation o,.

n Npa MMC Mean E,, Std. dev. oy,

1 10 103,339 0.831 0.032
2 20 63,123 0.823 0.025
4 40 35,579 0.818 0.019
8 80 17,923 0.816 0.013
16 160 9,594 0.815 0.010
32 320 4,746 0.815 0.007
64 640 2,457 0.814 0.005
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