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We study the mechanism of optical angular momentum transfer from light to a dielectric medium on
total internal reflection. We employ a quantized approach and, in particular, work with a single-photon
pulse. This allows us to evaluate the force and torque per photon and also, crucially, to evaluate forces
and torques conditioned on transmission or reflection at an interface. The reflected electric and magnetic
fields of an incident paraxial beam carrying orbital and spin angular momentum are obtained using an
angular spectrum method. We calculate the expectation value of the single-photon torque exerted on the
dielectric, due to total internal reflection of a single-photon pulse, using the dipole-based Lorentz force
density. We apply this result to describe the angular momentum transfer from light on passing through

an M-shaped Dove prism. © 2019 Optical Society of America
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1. INTRODUCTION

It is now well-established that light can carry both spin S [1], and
also orbital angular momentum L [2]. In the paraxial regime, the
spin and orbital angular momentum are associated with circular
polarization and helically-phased spatial modes respectively. A
beam in a Laguerre-Gaussian (LG) mode with azimuthal phase
term €/!¢ carries Kl units of orbital angular momentum per pho-
ton in free space. Some care is needed as, more generally, neither
the spin nor the orbital angular momentum alone can represent
a true angular momentum, only the total angular momentum,
J = S+ L, is a true angular momentum [3-5]. However, each
is separately measurable, as shown in many experiments, and
also separately conserved, as they correspond to different sym-
metries [6, 7].

In this work, we study the mechanism of angular momen-
tum transfer from a single-photon pulse to a lossless dielectric
medium by using the dipole-based force density [8, 9]. Working
directly with the force bypasses the need to specify the momen-
tum of the photon and hence avoids the subtle issues associated
with the much-discussed Abraham-Minkowski dilemma [10-
12].

For definiteness, we consider our incident photon to be in an
LG mode with zero radial index. The dielectric medium size is
taken to be very large compared to the pulse length so that we
can isolate the effects of transmission through or reflection from
interfaces. The incident beam is assumed to be a paraxial single-
photon pulse with narrow-bandwidth spectrum, so that each
of the quantities reported here are normalized for one photon.
The central wavelength of the photon is assumed to be much

smaller than its beam waist. The physical results presented
might be obtained, with effort, from classical electrodynamics.
A quantum calculation has the key advantage, however, that
we can eliminate the complications due to the coexistence of
reflection and transmission at an interface by conditioning the
forces and torques on the transmission or reflection of the photon.
This greatly simplifies the analysis and also clarifies the physical
interaction. Moreover, the quantum calculation allows us to
express the physical quantities obtained in units of per photon.

In section 2, we present the angular spectrum representation
as an important ingredient used to determine the form of the
reflected beam. We apply the regular quantization procedure to
promote the classical fields to the corresponding field operators.
We then give, in section 3, a discussion of total force and total
torque in the case that there is an interface involved. In section 4,
the form of the total torque given in section 3 is used to evaluate
the effective torque exerted by the single-photon pulse to the di-
electric medium, and the angular momentum transfer. Section 5
then focuses on the transfer of angular momentum from a single
photon to an M-shaped Dove prism.

2. ANGULAR SPECTRUM REPRESENTATION AND
FIELD QUANTIZATION

A. Angular representation

In this section, we will start by introducing the angular spectrum
representation. For a paraxial beam with finite cross-section,
the Lorenz-gauge vector potential of the electromagnetic wave
of frequency w traveling in the z direction in a dielectric with
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refractive index n(w) will be of the form [13]
A(r,t) = Ap(ax + ﬁy)uk,l(x,y,z)e’i“’t“kz, 1)

where Ay is a complex constant, x and y are unit vectors in the
positive x and y directions respectively, k = n(w)w/c, and the
complex constants & and B, with |a|2 + |8|? = 1, determine the
polarization. As we are working in a lossless medium, the refrac-
tive index, n(w), is a real number. To simplify the calculation,
we restrict ourselves to the simplest form of Laguerre-Gaussian
modes by considering only the case when the radial index p = 0,
and the complex scalar function in Cartesian coordinates is given
as [2, 13]

o 11
- 2 V2(x +isign(l)y)
U (x,y,2) = |11 (z) ( w(z) )

1 ikz
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where [ is an orbital angular-momentum quantum number, or
a topological charge and the Rayleigh range is denoted by zg,
which is related to the beam waist w as zgr = kw% /2. The origin
of the coordinates is placed at the position of the waist. Our
approximation is valid only in the range of z < zg, and in this
work we will focus, for simplicity, only in this region of z. The
mode function is normalized such that the integration of its
strength over the xy- plane is unity:

/:’" /700 dxdy ’Mk,z(x,y,z)\z =1, 3)

where

olI+1
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|1,
)

The paraxial regime implies that the beam waist is much larger
than the wavelength, in other words, kwy > 1. The spin angular
momentum quantum number of the beam, denoted by ¢, can be

calculated by the given polarization coefficients in Eq. 1 as [2, 14]
oc=1i(ap* —a*p), (5)

which correspond to +1 for right and left circular polarizations
and 0 for linear polarization.

An electromagnetic beam may be expressed as a superposi-
tion of plane waves whose amplitudes and propagation direc-
tions are varied. This indicates that each plane wave component
of the beam will hit the interface with a different incident angle
and also have its own plane of incidence. The angular spectrum
representation thus significantly helps us to determine both the
transmitted and reflected beams. Within the paraxial approx-
imation the two dimensional Fourier transform of the vector

potential in an LG mode is

A
_ —lwt+ik: 0
A(r,t) =(ax+ By)e '™ 27(271)2

X /oo /.oo dkydky 1 (ky, Ky e 28 HE)/ Zkeilker i),
(6)

where
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and the paraxial approximation k; =~ k — (k2 + ki) /2k has
been applied. The transverse components of the wave vector
are much smaller than the wave vector magnitude: k; < k,
where we denote k| as the wave vector components in the trans-
verse directions, which are ky and ky, in this case. The positive-
frequency electric and magnetic fields in the Lorenz gauge can
then be obtained from the given vector potential A as [15]
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where the paraxial approximation has been applied: the terms
that are of order (k| )2/k or higher are omitted as they only give
extremely small contributions compared to the first order terms.
The last lines of Eq. 8 and Eq. 9 are the fields in real space after
the inverse Fourier transform has been applied. We note that,
in contrast to the case of a plane wave, there are electric and
magnetic fields in the direction of propagation. However, these
fields still obey Maxwell’s equations for the source-free case:
V-E=0and VB = 0. The z components of the electric and
magnetic fields are much smaller than their x and y components,
which can be seen in their angular spectrum representations.

B. Reflected field calculation

As we are focusing on the case of total internal reflection, this
subsection will demonstrate how one can determine the reflected
field using the angular spectrum representation and the physics
of reflection of plane waves. As mentioned earlier, an electro-
magnetic beam is a superposition of plane waves, and these
plane waves hit the interface differently. With the help of the
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angular spectrum representation in the previous subsection, we
can determine the reflected fields for each plane wave individu-
ally and sum these up later to determine the reflected beam as
desired. Figure 1 presents three different local coordinate sys-
tems: incident, reflected and interface coordinates denoted by
(x1, Y1, 21), (Xr, Yr, 2r) and (x,y, z) respectively. We suppose that
the interface plane is located at z = 0 and the dielectric medium
occupies in the region z < 0 as depicted in the figure. The unit
vectors of these coordinates are as depicted in the figure, but to
simplify the calculation we let the origins of those coordinates
be located at the same point, at the origin of the coordinates
(x,y,z). The unit vectors y;, yr and y are pointing into the same
direction.

Fig. 1. The geometrical alignment of incident, reflected and
interface coordinates is illustrated, and these coordinates share
the same origin point. The red line shows the propagation
path of the local plane wave with the incident wave vector k;.
The local wave vector and the local polarizations form a local
Cartesian coordinate system.

We suppose that the incident field is in an LG mode as previ-
ously discussed, and it is in the form given in Eq. 8 but written
in the incident coordinates, (xi,y;,zi). The position of the inci-
dent beam waist is at the origin. However, to directly apply the
reflection law, it is convenient to use the interface coordinates
(x,y,2). The coordinate transformation between (x;, y;, z;) and
(x,y,z) coordinates can be expressed as

X; =xcos6 — zsin#,

Yi =Y,
z; =zcos 0 + xsin 6. (10)

The electric field of the incident beam in the interface coordinates
is then

1 (oo} o0
Ei(x,y,21) = W/W /700 dkydk,Ei(ky ky t), (D)

with

Ei(ky, ky, £) = Age ! { (iwzx cosf — %(Dékx + Bky) sin 9) X+

iwpy — (iwa sinf + %(akx + Bky) cos 9) z}
x 1y (ky, ky) e (12)

and k; = ((k —x)sin6 + kycosf,ky, (k — «) cos@ — ky sinf)
where x = (k2 + ki) /2k. The electric field of the incident beam
Ei(x,y,z 1) is now in the form of a superposition of plane waves.
Therefore, E;(ky, ky, t) can be thought of as a local plane wave
because it represents a plane wave component in the superposi-
tion. Note that ky and ky, are regarded as the components in the
xj and y; direction of the local wave vector in the incident frame.

However, their physical meanings at the interface frame (x,y,z)
are difficult to picture, so at this point we treat kx and k;, as the
transform variables. We are then ready to calculate the reflected
beam.

Let us consider the plane wave E;(ky, ky, t) traveling with its
own wave vector k; in the interface coordinates. As this plane
wave has its own plane of incidence, two local eigenpolariza-
tions for this local plane wave are expected, and we denote
e%(k;) and eP(k;) as the unit vectors for those local polarizations.
The superscripts s and p are used to indicate the polarizations
perpendicular and parallel to the local plane of incidence. The
local plane of incidence generally is defined as the plane that
the normal vector of the interface n and the local wave vector lie
in. In this case, the normal vector is the unit vector z. The local
polarization e®(k;) can thus be defined as

x ki
(k) = o 1)
1

and the unit vector which is parallel to the local plane of inci-
dence will then be

eP(k;) = — L2 14)

The electric field of the local plane wave can now be written in
terms of these unit vectors as

Ei(kx ky, 1) = {Ep()e (ki) + EP (kg )eP (i) } e+, a5)

where Ef(ki) = Ei(kyky t) - e5(k)e! T and EP(k;) =
Ei(ky, ky, t) - P (k;)el“! "kt and ris the position vector in the
interface coordinates (x,y, z).

The propagation direction of the reflected and transmitted
fields of this local plane wave can be determined directly by
the law of reflection and Snell’s law. The components of wave
vectors parallel to the interface are unchanged after transmission
and reflection:

K.o=k. =k, and

kiy =k =k, (16)

and the components perpendicular to the interface are

= /il = ()2 = ()2 = /Il = (k)2 = (&))2,
K= —k., 17)

where kiny, k{Y and k% are the components of the wave vectors of
the incident plane wave, k;, its corresponding reflected plane
wave, with wave vector ki, and its transmitted plane wave, with
wave vector kg, in y directions when 7y = x, y, z. The magnitudes
of those waves are related by the fact that the frequency of the
field is not changed by reflection or transmission:

il _ k| @
N i c

, (18)

where n; and n; are used to represent the refractive indices of
the media where the wave is propagating from and transmitted
through. As plane waves in the superposition of Eq. 11 hit the
interface with different angles, their corresponding transmission
and reflection coefficients of the two local eigenpolarizations
vary with their particular incident angles, in other words they
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depend on the propagation of the local incident plane wave [16]:

2kL

ke k) = (192)
P (ke ky) = ]':z ; % (19b)
P (ks ky) :ﬁ (190)
1P (kx, ky) =%, (19d)

where we have defined n as the relative index of refraction,
n = n;/n.. We will concentrate on the reflection coefficients
to calculate the reflected wave. The transmitted wave can be
determined, but we will not show it explicitly as we can see later
that this field does not give rise to an angular momentum trans-
fer. The Taylor expansion of the reflection coefficients around
kx = ky = 0, after applying the paraxial approximation, gives

3 (ky) 0 7° + PSky = 7°(1 + ik, D®), (20a)
P (ky) m 7P + 7Pk, = 7P(1 + ik, DP), (20b)

where 7 and 7P are reflection coefficients evaluated at k, =
ky = 0, and 7 and 7'P are their derivatives with respect to ky
at the same point in the reciprocal space. We define 78 /7 and
7P /7P to be iD® and iDP respectively and these correspond to
longitudinal beam shifts [17, 18]. The dependence of reflection
coefficients on ky is negligible as those terms including k, are
much smaller than the mentioned terms.

With the given local incident plane wave E;(ky, ky), its local
reflected plane wave can then be expressed as

Ex (x ky 1) = {7 (ko) B (i) e (r) + 1 (k) EF (1 )P (k) |
% e—iwt+ikr~r. (21)

We note that e®(k;) = e°(k;) as they are normal to the same local
plane of incidence, as depicted in figure 1. The reflected beam
can then be determined directly to be

@n)? /W /W dkxdkyEr (ks ky,t),  (22)

where the explicit form of E, (ky, ky, t)is

E (x,y,z,1t) =

E; (kx, ky, t) =Age 1wt { (—irpwzx cos 0

irP irScBky
+ (akx sinf — Bk, cotf cos 0) — Teind ) X

ky cot®
+ (irswﬁ - 71“‘ ynco (r® +rP)> y

—rP (iwrx sin6 + %(akx + Bky) cos 9) z}

x 1) (ky, ky)el T, (23)

where k; = (ky cos 6 + (k—«) sin 6, k, —(k — «) cos 6 + k sin 6).
The reflected beam E,(x,y,z,t) takes its simplest form when
expressed in the reflection coordinates, and the coordinate trans-
formation between the interface coordinates (x,y,z) and the
reflection coordinates (xr, yr, zr) is given by

Xr = —xcosf — zsin0,
=Y
Zy = —zcos B + xsinf. (24)

Applying this transformation to Eq. 23 and substituting
E; (kx, ky, t) into Eq. 22, the reflected electric and magnetic fields
are

w(t— nz,/c), (25)

Er(xr/ Yy, Zr/ = A {Xxxr + Xyyr + XZZI‘} e

with

ouy c ouy
—iwafP _ pp—k h P 4 8y =k
Xx =lwar (uk,l D P ) + n,BcotO(r +7) 3y, (26a)

. ol | c g
_ =S _ DS Ay & P 4 7S 2
Xy =iwpF (Ek,l D E)xr) nacot()(r +7) T (26b)
_ o, 0ug 534,1
Xz = n (KX o, + pr )’ (26¢)
and
1
Br(xr/]/rrzr/ t) :EV X Er(xr/]/rlzr/ t)/

A
=) Y~ XX

+c ('st aaE;,l _ P aaﬂyk,l ) Zr} e—iw(t—nzr/c)_

27)

We have defined uy ; = uy ;(—xr, Yr, 2r), where uy (x,y, z) is the
complex function given in Eq. 2. These forms of the electric and
magnetic fields respect the transverse property of free electro-
magnetic fields, as with the paraxial approximation V - E; = 0
and V - B, = 0. The minus sign in front of x; indicates the
change of the topological charge, from [ to —I, in the reflected
beam.

The positive-frequency field operators corresponding to the
classical fields, given in Eq. 8, Eq. 9, Eq. 25 and Eq. 27, in their
own frames of reference according to the regular quantization
procedure as in [19-21] are

. © h R —iw(t—nz:
¢ (%, i,z ) :/o dw\/74ﬂeocnwﬂ(w)e wltzn=/o)

X {ia}(axi + ﬁyi)u}(,l
c [ oul, oul |
_— ((X x; +B ayl Zi o, (28a)

| ﬂw (t—nz;/c
X1/y1121/ / 47’(80(337160 i/¢)

X {—inw(ﬁxi - ocyi)u}(’l

oul oul
k1 k1
+c (/3 oy >z} (28b)
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¢ (e Yz 1) / \/ 47Tsocnw
X {Xxxr + Xyyr + Xzzr} ’ (28¢)
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where 1} ; = u(x;, ¥, 2) and 4(w) is the continuum photon
annihilation operator which obeys the commutation relation:

{a(w),a*(w’)] = d(w — ). 29)

As the field operators have the same space and time dependence
as their classical versions, Maxwell’s equations are manifestly
satisfied. The normalization factors give the correct energy in
a single-photon wave packet case. The single-photon pulse is
represented by the state vector [20, 22],

) = / dwé(w)at (w) |0Y, (30)

where the state vector |0) represents the vacuum state. The
function ¢(w), which describes the distribution of probability
amplitudes in the frequency domain, is normalized,

/dw E(w)P = 1. 31)

It can conveniently be taken to be the narrowband Gaussian
distribution function [13]

LZ 1/4 L2 . 2

where L is the spatial length of the pulse and ¢/L < wy. This
spectrum is centred at the central frequency wy, and the spectral
components of frequencies that are not in the range around the
central frequency are very small.

One might think that to determine the reflected electric field
we can treat the whole beam as an approximate plane wave with
a wave vector k traveling in the direction of propagation to the
interface and using the physics of reflection and transmission
of plane waves to calculate the Fresnel coefficients directly so
that the transmitted and reflected fields are given by the multi-
plication of those coefficients and the incident field, where the
direction of propagation of the fields is given by geometrical
optics. It is a good approximation, but this procedure leads to
transmitted and reflected fields that are not transverse, in that
V - B: # 0, and therefore are unphysical and do not suffice for
our purposes.

3. TOTAL FORCE AND TORQUE WITH PHYSICAL
BOUNDARY CONDITIONS

With the dipole-based form, the force density acting on the di-
electric at position r due to the light beam is [8, 9]

oP(r, 1)
ot

f(r,t) = (P(r,t) - V)E(r,t) + x B(r, t). (33)
As we focus on the interaction between light and the dielectric,
there is no free charge and current included present.

The problem is that with the presence of the boundary the
fields are not continuous and smooth, while the vector calculus is
based on continuity and smoothness. Therefore, vector calculus
identities should be cautiously applied. By writing Eq. 33 in
terms of the electric displacement, D = ¢gE + P, and applying
Maxwell’s equations, Eq. 33 becomes

f=(D-V)E—¢o(E-V)E—¢Ex (VXE)—Bx(V xB)

—80%(]5 X B), (34)

Fig. 2. The vector field of the force density acts on the dielec-
tric medium inside it. The interface plane is located at z = 0
and the dielectric is occupied in the region z < 0. In the fig-
ure, we enhance the magnitude of the azimuthal force den-
sity, which is contained only in d; (P x B). This is the part that
causes angular momentum transfer to the dielectric.

where the space and time dependence of the fields is omitted
for brevity. The force density in Eq. 34 is depicted in figure 2.
In this figure we present the intricate structure of the force den-
sity as the pulse hits the interface. We see that the azimuthal
component circulates around the center of the beam. It is this
that is responsible for the transfer of angular momentum to the
dielectric.

In physics, we generally deal with discontinuity problems by
introducing distribution functions, and a function with a jump
can be expressed in terms of the Heaviside step function,

0 z<0
H(z):{ , (35)
1 z>0

We suppose that the interface is the xy-plane, or the plane z = 0
and the dielectric occupies the region z < 0. The ith component,
where i can take one of three values: x, y and z, of the electric
field is given by

Ei = EM™ 4 (B — EM™)H(z), (36)
where El(m) and Ei(om) indicate the ith component of the electric
field inside and outside the medium respectively. With the given
definition of the step function, this equation apparently reflects
the discontinuity of the electric field at the interface and the term
on the left-hand side is now defined everywhere in space except
the points lying at the interface. The other fields in Eq. 34, D and
B, are continuous but not smooth at the interface, so they need
to be written in the same way as the electric field in Eq. 36.

The derivative of the step function gives the familiar Dirac
delta function, and the product of these is half of the delta func-
tion, as from Eq. 35 only the part of the delta functioninz > 0
survives,

agiz) —5(2), (37a)
H(z)4(z) :@. (37b)

With every field being in the form of Eq. 36, using Eq. 37a and
Eq. 37b and the fact that 1 — H(z) = H(—z), the ith component
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of the force density is given by

. . (out)y2 _ (p(in)y2
fi:<D£m><E§°“f>ES“)MO“EZ FoLE ”>5<z>fsiz

+ay (D™ E™ 4 plim) plin)) pr(—z)

1

+ al(Dl(out)E(out) + B(out)B(out))H(z)

i 1 i

—9; | €0 El(m)zEl(m) + Bl(m)ZBl(m) H(-z)
El(out) El(out) Bl(out) B l(out)
—9; | € ) + 2 H(z)
— 0¢(goE x B);, (38)

where we defined 0; as the derivative operators with respect to
x' when x' € {x,y,z} and dij is the Kronecker delta. We have
employed the summation convention with repeated indices, /,
implying a summation over x y and z. To obtain the first and
second terms of the equation we used the boundary condition
that the electric field components parallel to the interface are
continuous: E\*Y = gl
I lz=0+ Iolz=0-
means (E°") — Ei™)s(z) = (B — E{™)6(2) 5.
Let us suppose that the observation is started at the time
t = —T and ended at t = T and the center of the pulse is
supposed to hit the interface approximately around ¢ = 0. The
time interval 2T is taken to be much larger than the time that
the beam pulse take to pass the interface so that the period 2T
includes the full interaction between the pulse and the interface.
We can define the integration volume V to be large in such a
way that the photon pulse is inside it during the observation and
there is no field at the surface of V. This automatically implies
that the terms being in the form of the derivatives with respect
to x and y in Eq. 38 will not contribute to the total force after
integration over the volume V. The terms with the z derivative,
on the other hand, will exactly cancel with the first two terms
that contain the delta function after the integration using the
physical boundary conditions, when there is no free charge and
current,

where j = x,y, which

(out) (in) ) .
E] z=0" o E] 7z=0— 4 ] =X y/ (393)
Blout) — g(in) ) (39b)

z=0"% 2=0-

(out) (in)

D e = P (39¢)

Therefore, only the last term in Eq. 38 remains:
/ £dV = —/ dVa;(eE x B) = —at/ dV(eoE x B). (40)
v v 1%

This equation is a manifestation of Newton’s third law, with
the kinetic momentum of light being in the Abraham form:
c2 (E x H) [10, 11, 23]. The force that the photon exerts on
the dielectric is of the same magnitude as the force that the di-
electric gives to the photon but in the opposite direction. We now
see that once the physical boundary conditions are applied, the
Lorentz force reproduces Newton’s third law of motion straight-
forwardly. With the form of Eq. 40 in the case of total internal re-
flection with a glass-air interface, we see that the evanescent field
can contribute some force to the dielectric, while this interpreta-
tion cannot be directly realized in the form of the dipole-based

force density as there is no polarization outside the dielectric,
which directly implies no force density outside the medium.
However, because the evanescent field outside the medium is
not long-lasting, its effects cancel as time evolves and hence it
provides no net contribution. As Eq. 40 agrees with the third
law of motion, the conservation of linear momentum is satisfied.

From Eq. 38 and the chain rule, the torque density is directly
given by

T =€ijkXjfr @1

where €;j; is the Levi-Civita symbol and fj is the force density
given in Eq. 38. We used the fact that the electric field E and
the electric displacement D are parallel to each other in linear,
homogeneous and isotropic lossless media, where the refractive
indices are real numbers. The vector product of these two fields
then vanishes: D x E = 0. Integration over space, in the same
manner as for the force density case, gives the total torque:

T:(/VTdV:—at/VdV(rx(sOExB)). 42)

This equation clearly guarantees the conservation of the total
mechanical or kinetic angular momentum. The evanescent field
also makes a torque at an instant time around ¢ = 0, but this
torque again cancels itself as time evolves.

4. EFFECTIVE TORQUE AND ANGULAR MOMENTUM
TRANSFER

This section is devoted to determining the enacted torque on
the dielectric by the photon pulse and the associated angular
momentum transfer. The total force and linear momentum can
also be calculated by using Eq. 40 and the electric and magnetic
operators given in section 2. This work, however, focuses mainly
on torque and angular momentum. From Eq. 42, the expectation
of the total torque exerted on the dielectric due to total internal
reflection of a single-photon pulse is given by

ST o= oS [ AV (ex (1B BT LB B 1),

(43)
where
E- xBY = (B +E ) x (B +B}) H(—z) + (E; xB}) H(2).
(44)

The subscripts i, r and t are used to denote the incident, reflected
and transmitted fields respectively. The terms in E x B contain-
ing two annihilation and creation operators are omitted as they
do not contribute to the expectation value for the single photon
state. We use the colons to notify that the operators between
these two colons are in normal order [24]. Even though there
are numerous terms involved in Eq. 43 and Eq. 44, only some
of these give effective torques, the ones that do not cancel them-
selves when time evolves. As mentioned, the evanescent field
exists only when the pulse hits the interface, only within a short
period of time. The torque caused by this field is not effective,
and the same goes for the cross terms:

. d o B
< Ti eff >—— a /VdVr X (<1‘ : (Pir +pri)H(_Z)

+puH(z) 1 1)), 45)

where the vector product between the electric field of the beam i
and the magnetic field of the beam j is denoted by

ﬁij = Sof‘:; X Bf +h.c., (46)
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and h.c. denotes the Hermitian conjugate of the preceding terms.
Only the effective torques can cause angular momentum transfer
because they are still valid after integration over the observation
time, and we will focus only on these:

<7eff 5= %/V dV (rx ((1] : Py +Pwr : |1))) H(—2)

=< T > <75 7

where

< T >=- ;t av ( <<1| : Piiger) \1))) H(—z). 48)
Recall that the electric and magnetic fields of the incident and
reflected fields will be in the simplest forms when they are writ-
ten in terms of their own coordinates. The benefit of writing the
effective torque in the form of the second line of Eq. 47 is that
we can calculate the torques caused by incident and reflected
beams in their own coordinates separately, because torques are
vectors, and rotations of coordinate systems are passive trans-
formation for vectors (or more precisely pseudovectors). Only
their descriptions are changed. In other words, the electric and
magnetic field operators given in Egs. 28 can be directly used.
Once we have evaluated these torques, < T > and < 7¢% >
written in terms of their own coordinates, the incident and re-
flected coordinates respectively, one can then use the previously
given rotational transformations, Eq. 10 and Eq. 24, to express
these torques in terms of the interface coordinates. With the
given rotational transformations, the step function H(—z) in the
incident and reflected coordinates is directly given by

H(—z) = H(xjtan 6 — z;) = H(zy + x; tan ). 49)

The effective torque given by the incident beams is then

d o 0 0 A
g/, L dxidyiL dzjr x (<1‘ P |1>)

9 [ [ drd xitanGd R
— o [ ddy [ dz o 1 s 1)
(50)

< T >=—

The integration over the observation time of the last term van-
ishes, so it makes no net angular momentum transfer. This can
be verified easily as at both start and stop times there is no in-
cident field in the region between z; = 0 and z; = x; tan 6. The
same holds for the torque from the reflected part,

/ / dxrdyr/ dzr (£ (1] pre < [1)) .

(51)

< T >=

We assume that the refractive index of the medium does not
vary much with the wave frequency: n(w’) ~ n(w) = n. Using
Egs. 28, the normal ordered Poynting vector operator of the
incident beam may be written as

(eoc?) 718 = ]AE._ x B Jr]AE.+ x B :

) N /
_47_[€0C2 / w)i(w'’)
il )(t,nzi/c) {S{‘Xi +Siyyi +szi}, (52)

with

—iwe(ud k1) Ox uk,, +iw’ cul, lax,(uk,)

/

(uy
+ Ccoj <(U(Mkl a% uk/l + w ukr lay‘ (ukl)*> ’ (533)
iwe(ul ) ayluk,l +iw cuk, ,ayl(uk,)

—c0j a)(ukl il 0t w' uk, lax.(”kz) ) , (53b)

S? =2nwaw' (ul k) ”k’ I (53¢)
where 0; = i(ap* — a*p) is the spin angular momentum quan-
tum number of the incident beam. To obtain the expectation
value of the Poynting vector in Eq. 52 one can replace annihila-
tion and creation operators with the function ¢(w’) and its com-
plex conjugate ¢*(w). With the narrowband wave packet state
of the single-photon pulse defined previously, the frequencies w
and «’ in the integrand can then be approximately replaced with
the central frequency wy, with the exception of the difference:
w — w'. Substituting back to Eq. 50, the expectation of the torque
from the incident part then becomes

2 (I+ o))z / dzl/ / dwdw' e (w)E(w')

w—w')(t—nz;/c)

< T >=—
><1(w w')ell

ho|2c2
=— (I+0y)zie

7_[L2 —212c2 /12 ) (54)

The angular momentum transfer due to this part of the effective
torque is simply

lim dt < Teff >= —
T—ooJ—-T n

(l + 07)z;. (55)

The components in x; and y; directions do not appear because,
after applying the narrow-bandwidth approximation, the term
&F is symmetric about both x; and y; axes, and integrations of
odd functions vanish.

As the forms of the reflected fields are more complicated than
those of the incident fields, the effective torque given by these
fields contains many terms. However, with the help of the sym-
metry in the x;y;-plane of the strength of the complex function

| Ug |2 some of these can then be omitted as their integrations
vanish. The expectation value of the effective torque caused by
the reflected part is then written as

h o [® B
off 9 / E* /
<TY >=- o, at/o dz; (/0 /0 dwdw'* (w)¢(w')

><ei(wfw’)(tfnzr/c)

X / / dxrdyr{jrxxr+jryyr+$zzr}),

(56)
with
Ji =2c(0i + 07 )yr cot 00y, |uy, 2, (57a)
TV =20n <|tx|2 DP 4 | /3|2DS) e, [1tg, | (57b)
J? :icxr(gkoflayrg,ﬁorl — g,jmlay,gko,,) — COyXrOx, |U, | |2
— deyr (uky 1 0x Uy, | — U, 19xUky, 1) + COrXrOx, |Uk, 1 2,
(57¢)
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where we defined &’ = 7Pa and ' = 7B which can be thought
of as approximate polarizations of the reflected beam. We also
defined oy = i(a/p™* ") to be the spin quantum number of
the reflected beam. The terms whose integration over the x,y,-
plane vanish are not shown explicitly in the above equations.
With symmetry and relabeling, the effective torque from the
reflected fields may be written in the form

<7 > ,71/ t“/Lz 0’1—|—(7r)C0t9Xr (I —0v)zy

0% (jaf* DP + B> D)y } (58)

The effective torques in the x; and y, directions actually appear
because the reflected beam is shifted in both longitudinal and
transverse directions. This can be verified by determining the
center of gravity of the reflected beam and by the corresponding
torque. We note that this torque is associated with a change in the
mechanical, or Abraham, angular momentum of the photon. The
Minkowski angular momentum, by contrast, is unchanged [25,
26] and, indeed, its constancy has been used to obtain the form
of the beam shift in analogy to the Hall effect [27, 28].

By expressing the effective torques < Tt > and < 7¢% >
in terms of the interface coordinates (x, y, z), the total effective
torque is then given by

<TH o= <7t s | <7l

R[22
=2 %e’zt%z/y{—(Ui-i-(rr)cos(?z

— (07 + o) cot 6 cos Ox + %(\aﬁ DP + |/3‘2 D)y
[(21 + (07 — 07)) sin Ox + (03 + 07 ) cos 0z] } . (59)

The exponential term indicates that the photon exerts a torque
on the dielectric only when it hits the interface, and there is no
net torque appearing elsewhere while it is traveling inside the
dielectric. The part of the effective torque corresponding to the
transfer of the intrinsic angular momentum of the photon to the
dielectric is separated from the rest of the effective torque, given
by the beam shift effect, by the square bracket in the last line of
Eq. 59.

5. DOVE PRISM APPLICATION

This section evaluates the angular momentum transfer to an M-
shaped Dove prism, as depicted in figure 3. This type of Dove
prism is generally designed to convert the polarization state of
photons in the same manner as a quarter-wave plate [29], and
also inverts the orbital angular momentum of incoming photons
like other Dove prisms. Our aim is to account for the observed
change in the intrinsic angular momentum of the light [30],
—h(21 + 0in — Oout )Xo, Wwhere (i — 0out) denotes the change in
polarization of the light. For this reason, we concentrate here on
the contribution in the square bracket in Eq. 59. The remaining
parts account for for a small torque associated with the shift of
the beam center in the plane perpendicular to the propagation
axis:

R 2c2 2.2 /12
ff - .
Tlentrmslc :? me /L [(21 ( - Ur)) sin fx

+ (03 + 07) cos 0z]. (60)

The angular momentum change of the dielectric arising from
this torque is

(o)
ff
< ALgielectric >= ‘/_ - dt < T;entrmslc

:%((21 + (07 — 0v)) sin@x + (03 + 07 ) cos 6z).

(61)
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Fig. 3. The figure illustrates the optical path of the single-
photon pulse passing through the M-shaped Dove prism.

With the geometric configuration of the Dove prism shown
in figure 3, there are three total internal reflections involved.
Following Loudon, [13], we note that there are five different po-
sitions at which the angular momentum of the photon is changed
and transferred to the dielectric: these are the points where the
photon hits the interfaces. To calculate the angular momentum
transfer due to three total internal reflection processes, we intro-
duce three different coordinate systems, as shown in the figure.
The rotational transformations of the unit vectors between those
coordinates are given by

X1 =Xp sin ¢y — zg €os ¢y, (62a)
z1 =z sin ¢ + X cos ¢, (62b)
Xy =X sin ¢y + zg cos ¢y, (62¢)
zy =2z sin ¢y — Xg €OS ¢Po. (62d)

We suppose that the incident single photon initially has spin
angular momentum #0j, and orbital angular momentum #! in
the positive xq direction. The direction of polarization of a single
photon is not changed if it passes normally through a dielectric
interface. The spin angular-momentum quantum number is
conserved after the single photon entering the entrance surface.
With this transformation, the total change of angular momentum
of the Dove prism due to three total internal reflections is given

by

< ALt >= < AL; > + < ALy > + < AL >

:% {21+ (0in — 071)) sin ¢pxq

+(oin + 071) cos pozq

+(=21+ (01 — 02)) sin(2¢pg — /2)%o
— (01 + 02) cos(2¢o — 7/2)zo

+(21 4 (02 — Tout)) sin goxa
(

+ (02 + Tout) cos ¢ozy }
h
=5 (21 + (‘Tin - Uout))XOI (63)

=
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where 0 and 0y are the spin angular-momentum quantum num-
bers of the beam after encountering first and second total internal
reflections, and 0oyt is the spin quantum number of the outgoing
photon. We used < AL; > to represent the angular momentum
change after the photon hit the interface j. Each time that the
beam is reflected the topological charge is flipped from [ to —!/
or vice versa. From [13], we know that the angular momentum
transfer at the entrance and the exit points are

1
< ALentrance >:h(lm + Uin) (1 — ?> X0, (64a)
1
< ALegyjt >= — h(lout + aout) (1 — ?> XQ. (64b)

where [, (lout) is the topological charge the incoming (outgoing)
beam. As we supposed that the incoming photon has an orbital
angular momentum #lj, = kil and the Dove prism inverts the
orbital angular momentum of the outgoing beam, the outgoing
photon at the exit point will have the orbital angular momentum
hlout = —hl. Combining this result with the one we obtained
in Eq. 63, we find that in the case that the single photon pulse
passes through the Dove prism, the angular momentum change
of the Dove prism is

1 h
< ALDove >:h(l + Uin) (1 - ﬁ) Xp + ﬁ(zl + (Uin - Uout))xO

1
- h(—l + U'Out) (1 - ?) X0,
:h(ZI + (U’in — Uout))X(). (65)

As this M-shaped Dove prism manipulates polarization in the
same way as a quarter-wave plate, if the incoming photon is
circularly polarized, oy, = 1, the outgoing will be linearly po-
larized, oout = 0. The angular momentum change of the Dove
prism due to the intrinsic angular momentum transfer from a
single-photon pulse in this case is then

< ALpoye >= (21 + 1)ix, (66)

in the direction of propagation of the outgoing photon, while
the angular momentum of the photon itself is changed by
< ALppoton >= —(21 + 1)fixg. Clearly, the total angular mo-
mentum is conserved as required. The change of angular mo-
mentum of the Dove prism and the torques exerted on it at each
interface are shown in figure 4 for the case of an incident pho-
ton with topological charge I = 1 and spin quantum number
Oin = 1, while the longitudinal force and momentum transfer
are depicted in figure 5. We note that there is an asymmetry in
the torque that is not apparent in the longitudinal force. The
origin of this is the change in the polarization of the light on re-
flection which affects the angular momentum but not the linear
momentum.

6. CONCLUSION

We have demonstrated that the angular spectrum method can
be employed to determine transverse reflected fields. The physi-
cal boundary conditions lead us to results fully in accord with
Newton'’s third law: the force that photons exert on a dielectric
is equal and opposite to that which the dielectric exerts on the
photons. The third law ensures the conservation of both lin-
ear and angular momentum. We discussed the torque exerted
on the dielectric via total internal reflection. The result shows
that photons only exert a net torque on the dielectric when they
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Fig. 4. The effective torques given by the light pulse with
orbital angular momentum 7 and the angular momentum
change of the Dove prism when the photon hitting each in-
terface at the time ¢4, f5, 3, t4 and t5 consequently. The red
dashed line and the blue solid line represent the torques and
angular momentum change in xg and zg directions respec-
tively.

hit the interface. The shifting effect also produces an effective
torque on the dielectric, but this torque does not correspond to
a net change of intrinsic angular momentum of photons. We
applied our results to analyze the angular momentum transfer
to the M-shaped Dove prism and found an angular momentum
transfer fully consistent with the observed change in angular
momentum of the light.

Finally, we expect similar torques to exist in other optical com-
ponents that transform the angular momentum of light. These
include, in particular, astigmatic mode converters [31], which
have been shown to transform the orbital angular momentum
as the light propagates through the lenses [32].
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