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Abstract-This paper gives an overview of trends in radar 
sensing for assisted living. It focuses on signal processing and 

classification, looking at conventional approaches, deep learning 
and fusion techniques. The last section shows examples of 
classification in human activity recognition and medical 

applications, e.g. breathing disorder and sleep stages recognition. 

Keywords: Radar, signal processing, human activity 
recognition, vital signs.  

I. INTRODUCTION 

In recent years, radar sensing for vital sign monitoring and 

human activity in the context of assisted living has attracted a 

lot of attention [1, 2]. Radar has grown quite popular as a sensing 

modality to support innovation in healthcare services (e.g. fall 

events, breathing disorder recognition) [1, 3].  

Aging population is increasing rapidly worldwide, with more 

of them living on their own and at high risk of falling. 30% of 

people aged over 65 experience a serious fall event each year, 

with serious consequences [2]. The World Health Organization 

aims to democratize access to technologies providing older 

people with integrated care and increased autonomy, hence the 

interest in assisted living technologies as 30% of the world 

population will be over 65 by 2050. Societies will have to adapt 

rapidly to the health challenges related to ageing, from 

managing chronical and cognitive diseases, to the need of 

technologies for rehabilitation and preservation of mobility, for 

instance after strokes [2]. 

Many different sensing technologies have been proposed and 

investigated to address different needs in the assisted living 

context [4], ranging from wearable sensors such as 

accelerometers, gyroscopes, and magnetometers, to sensors 

embedded in the built environment such as pressure, acoustic, 

or infrared sensors, as well as cameras based on visible or 

infrared light, or depth perception. Radar is attractive for 

assisted living because it is wireless and seamless integration in 

the person’s environment while preserving privacy [5]. 

This paper gives an overview of radar sensing developments 

in assisted living. In section II, we discuss radar signal 

processing going from conventional to deep learning techniques 

and exploring information fusion: multi-domains and multi-

sensors. In section III, we describe recent applications of radar 

for assisted living. Finally, section IV concludes the paper. 

II. SIGNAL PROCESSING 

The use of radar in the assisted living and healthcare context 

had initially focused on fall detection of the elderly [1]. Recent 

research shows many emerging additional applications, 

supported by innovative signal processing solutions. Figure 1 

provides a compact sketch summarizing them, with the more 

conventional approaches (black), and emerging ones such as 

multi-domain radar analysis (green), multimodal sensing with 

information fusion (blue), and deep learning (orange).  

 
Figure 1. State of the art in radar signal processing for healthcare applications in 
assisted living, with conventional approach for fall detection in black color, and 
recent innovations highlighted in different colors. 

A. Conventional Approach 

Signal processing will start from the raw data, which may be 

directly digitized as complex IQ samples, or reconstructed with 

a Hilbert transform. The transmitted radar signal 𝑠(𝑡) can be 

CW, FMCW, a modulated pulse, or waveforms derived from 

telecommunications. The received signal 𝑠𝑟(𝑡) can be modelled 

as the sum of the backscattered radar echoes from 𝑁  targets 

multiplied by the radar cross section 𝜎𝑛 and delayed by the delay 

𝜏𝑛 to and from a target at range 𝑅𝑛. 

The conventional approach will then apply time-frequency 

(TF) distributions to the received signals (very often Short Time 

Fourier Transform (STFT) [1]) to extract Doppler-time 

signatures, that is to characterize patterns of movements over 

time which are specific to each activity. Historically, those 

measurements were done with CW radar or such narrow 

bandwidth that range did not provide extra information. 

Nowadays, radar systems also provide sub-metric range 

information, with emerging mm-wave radar as FMCW or pulsed 

Ultra-Wide Band systems. This additional information can be 

exploited with Range-Time plots (sequences of received radar 

signals accumulated over time and stacked in matrix format) and 

Range-Doppler plots. STFT applies a FT with sliding window 

w(t) across the range bins r(t), as shown in equation (1) to obtain 

a Range-Doppler plot that is then summed to get a slice of the 

spectrogram. STFT is well known to be a trade-off between 

resolution in time or frequency. More generalized forms of TF 

distributions were proposed to address this issue [6]. 

𝑆𝑇𝐹𝑇(𝑡, 𝜔) = ∫ 𝑟(𝑡′)𝑤(𝑡′ − 𝑡)exp{−𝑗𝜔𝑡′}𝑑𝑡′          (1) 



Wavelets transformations (WT) have also been proposed [1] to 

capture both short-timed and long-timed changes in the received 

radar signal through different positions and scaling of the 

mother wavelet function, as shown in equation (2) where 𝜓(∙) 

is the wavelet, 
𝜔

𝜔0
 is a scale parameter. 

𝑊𝑇(𝑡, 𝜔) = (
𝜔

𝜔0
)

1 2⁄

∫ 𝑠(𝑡′) 𝜓∗ (
𝜔

𝜔0
(𝑡′ − 𝑡)) 𝑑𝑡′         (2) 

Other domains of representation include the Periodogram or 

Cadence Velocity Diagram (CVD), obtained by performing a 

further FFT on the output of the STFT along the time dimension 

as indicated in equation (3), the Cepstrogram shown in equation 

(4), and the Empirical Mode Decomposition (EMD). 

𝐶𝑉𝐷(𝜔𝑐𝑎𝑑 , 𝜔) = ∫ 𝑆𝑇𝐹𝑇(𝑡, 𝜔)exp{−𝑗𝜔𝑐𝑎𝑑𝑡}𝑑𝑡            (3) 

𝐶(𝑡, 𝑡′) = |∫ (log (|ℱ(𝑠𝑟(𝑡))|
2

)) exp{𝑗𝜔𝑡′}𝑑𝜔|
2

           (4) 

These are summarized on the left-hand side of Figure 1 and 

are conventionally followed by feature extraction, i.e. the 

generation of numerical parameters’ values describing relevant 

information in the radar signatures based on a supervised 

learning classification framework (e.g. K Nearest Neighbors, 

Bayesian classifiers, Support Vector Machines, Ensemble 

methods). Numerous different features have been proposed for 

classification of radar data in the assisted living context, ranging 

from physical features, textural features, features based on 

Singular Value Decomposition and Discrete Cosine 

Transformation, and data-driven features extracted from 

adaptation of typical audio/speech processing [7]. Significant 

research focused on optimizing the feature extraction algorithms 

to maximize performances for specific applications and datasets, 

demonstrating that the choice of the most salient features have 

often more impact than the choice of a specific classifier [7].  

Dimensionality reduction and feature selection techniques can 

help reduce the feature space to identify the most relevant and 

informative features, with gain in terms of lighter computational 

load and increased performance. Several approaches exist [7], 

including Principal Component Analysis (PCA), “wrapper” 

approaches testing all combinations of features for a set 

classifiers, and “filter” approaches ranking features based on 

information metrics. The majority of research in the literature 

selects features for a given application and dataset. However, the 

selection of such subset for different operational conditions [7] 

such as radar parameters (e.g. Pulse Repetition Period, aspect 

angle) remains an open question especially as these could be 

dynamic and the radar also needs to adapt accordingly [8].  

B. Deep Learning for Radar 

Deep learning has been recently proposed for radar data 

classification, including in the assisted living context, to 

leverage the breakthrough its adoption had in image 

classification. This opens the possibility to shunt convoluted 

feature extraction and selection algorithms, and the need of 

inputs from “expert human operators”, to let neural networks 

(NNs) decide automatically the best features. This “bypassing 

leap” is highlighted in orange in Figure 1, whereas Figure 2 

shows conventional signal processing radar data domains, with 

the corresponding applied deep/machine learning algorithms [2]. 

 
Figure 2. Typical radar signal processing chain and associated machine/deep 

learning method from the state of the art (SAE: stacked AutoEncoders, CAE: 

Convolutional AutoEncoders, LSTM: Long Short-Term Memory, CNN: 
Convolutional Neural Network), ANN: Artificial Neural Network.  
 

Convolutional Neural Networks (CNN) consist of layers of 

convolutional filters and subsampling pooling layers, followed 

by fully connected layers and a decision block (very often 

Softmax classifier). Stacked Auto-Encoders (SAE) are NNs that 

attempt to learn a non-linear representation of the input at their 

outputs, often through a compression process as the output has 

reduced dimensionality compared with the input [9]. 

Convolutional AE (CAE) can combine the previous 2 

architectures, in particular the unsupervised pre-training of the 

AE with the convolutional filters of CNNs [10]. These NN 

architectures were proposed to process radar data formatted as 

images, e.g. range-time and spectrograms (Figure 2).  

Recurrent NNs (RNN) and in particular the Long Short Term 

Memory (LSTM) variant, have also been proposed to process 

radar data, in particular the time dependencies between samples, 

as these networks have been primarily designed for sequences 

of data such as speech or audio processing. These RNNs can be 

applied on spectrograms [11], combined with CNN on short 

series of spectrograms or range-Doppler plots [12], or directly 

applied on sequences of range profiles and even raw IQ data [2]. 

As deep learning algorithms and their underpinning 

technology progress, there is significant potential to transform 

the classification approaches in radar data. However, there are 

outstanding issues and questions related to the application of 

deep learning to radar data, such as identifying the most 

effective preparation strategy of training sets, choosing the best 

NN architecture for a given application, avoiding overfitting, 

and establishing a fair assessment and comparison procedure 

with limited datasets. Deep learning requires a large amount of 

training data, which, albeit easy to gather for optical images and 

audio, becomes unfeasible for experimental radar data. 

Proposed solutions include resorting to transfer learning 

techniques that can minimize the need of input training data 

and/or learn from simulated data and models, as well as the 

usage of Generative Adversarial Networks to augment the 

limited experimental data available (which is emerging in 

Synthetic Aperture Radar). Furthermore, there is the issue of 

establishing the best formats to provide radar data to NNs. These 

are often derived from research in computer science research 

and designed to process optical images/videos, and real-life 



audio samples. Radar data can be represented as images or 

sequences of samples, but they have physical meaning that may 

go beyond this apparent representation. A spectrogram can be 

seen as a matrix of pixels, but contains velocity information on 

targets’ moving parts that may not be captured in the best way 

by networks designed to look for edges, surfaces, and other 

features of optical images. Hence, there is scope for innovative 

research on how to properly package and pre-process radar data 

for NNs, and conversely on which NN architectures are best 

suited to process them. 

C. Multi-Domain Analysis 

The democratization of UWB radar chips and mm-wave radar 

hardware driven by the automotive sector enables the use of 

“range” information, as finer spatial resolution brings a wealth 

of supplemental information. This enables fusing information 

from multiple radar domains [13, 14], not just spectrograms, but 

also range-time and temporal sequences of range-Doppler 

images. In [13], a combination of range-time, spectrogram and 

integrated range-Doppler (IRD) information (see Figure 2 – 

when the range-Doppler images are integrated over slow time) 

goes through an SAEs to extract features from each domain 

followed by a Softmax layer for classification using features 

from all the domains combined. The most likely activity is then 

labeled: walk, fall, sit or bend. This method displays an overall 

of 95 % which is 3% higher than any of the standalone domains.  

In [14], a binary classification between in-situ and non-in-situ 

activities in the range domain yielding 99.9% accuracy. 2 

distinct algorithms are then tested on the weighted range time 

frequency transform. PCA-based features performed better for 

non-in-situ activities with bagged trees classifier with 95.3% 

accuracy and physical features for in-situ with subspace K-NN 

classifier with 94.4% accuracy. 

D. Multi-Modal Sensing 

Every sensing technology has advantages and disadvantages, 

not only in terms of technical capabilities and limitations, but 

also for costs and perception from the end-users, patients, carers, 

and medical professionals if we consider the assisted living 

context. We argue that as technology progresses in areas such as 

Internet of Things (IoT) and smart homes, radar engineers will 

have to work with radar as “a sensor in a suite of sensors”, 

developing signal processing methods that can combine and fuse 

multimodal information from heterogeneous sensors (video, 

acoustic, wearable, ambient sensors), as shown in blue in 

Figure 1. This poses additional challenges to identify which 

information from each sensor is the most salient for different 

scenarios and problems to address, and at which level fusion 

needs to be implemented, that is at signal, feature, or decision 

level [15]. Signal level fusion takes place when different sensors 

record similar quantities or commensurate data to combine. 

Feature level fusion combines all features’ samples from 

different sources available into a single feature space, which can 

then be processed using feature selection and classification 

methods described in section II.A. Decision level fusion 

combines the partial decisions and levels of confidence of 

separate classification algorithms working independently on 

data from each sensor, in order to form a final decision.  

Although radar in multimodal sensing has been investigated 

for a long time in the remote sensing community (radar data at 

different frequency bands and hyperspectral images) and 

recently for autonomous vehicles (radar plus video and Lidar 

data), it can still be considered an emerging approach for the 

assisted living and healthcare context. There is wide scope for 

radar researchers to investigate what additional and valuable 

information radar systems can provide, and what the best way is 

to exploit this in conjunction with other sensing modalities. As 

an example, Figure 3 reports results from [15] showing how 

combining radar and wearable data can improve the accuracy for 

a 10-class classification problem which included simulated falls 

among various indoor activities. Different approaches were 

considered, namely radar and wearable data on their own 

without feature selection, radar and wearable data with 

Sequential Forward Feature Selection (SFS), and fusion at 

feature and decision level through a voting approach. There is 

considerable improvement in sensitivity and specificity using 

fusion compared to stand-alone sensors.  

 
Figure 3. Classification accuracy using SFS for radar features, inertial sensor 
features, and feature fusion of radar + inertial data with an SVM classifier (left); 
sensitivity and fall specificity for different classification approaches (right) [15] 

III. APPLICATIONS OF RADAR IN ASSISTED LIVING 

Radar can be used the complex challenge of in-home activity 

monitoring and mapping, including their location and frequency 

[10, 14]. Monitoring the repeatability of activities enables the 

detection of anomalies/changes, which may be correlated with 

declining health. The problem becomes more challenging than 

binary fall vs not-fall recognition (e.g. [10, 13, 15]), to include 

finer classification of activities whose intra-class variance in 

feature space may be limited. Classifying between different 

types of gait, e.g. unaided or aided walking has also been 

investigated using information from spectrograms [10, 16]. 

As further research is performed in activity recognition for 

assisted living, potential gaps are related to classification of 

continuous activities and classification over different time-

scales. Current radar research tends to record different activities 

as separated, individual “snapshots” or datasets, whereas in 

realistic environments they would be performed in a continuum. 

It is necessary to develop methods to detect and characterize the 

transitions between activities of interest. Activities of daily 

living (macro-activities) are sequences of micro-activities 

(walking, carrying objects, and so on) performed for a certain 

duration and in a sensible order. How this can be achieved 

accurately and effectively with radar remains an open problem. 

Moreover, a challenge lies in handling multi-occupancy and its 



variability while identifying and discriminating pets for example 

as current research mainly focus on single user classification. 
 

 
Figure 4. Overview of some of the most recent innovations in radar sensing and 
signal processing for healthcare applications. 

 

Radar can provide rich information on many health 

parameters useful for medical applications. They include 

respiration/heartbeat rate estimation [17-19], breathing 

disorders and sleep stages monitoring [3, 20] among other things.  

A fundamental medical application based on radar is the 

respiration/heartbeat rate estimation. It is vital for patients’ 

status evaluation, healthcare monitoring at home, and search & 

rescue of victims after disasters. Conventional signal processing 

approaches including Fourier analysis and spectral estimation 

algorithm (e.g. MUSIC and RELAX) are used to process radar 

echo signals modulated by the periodic movement of the chest 

and heart, to estimate respiration and heartbeat rates. Recently, 

more accurate and quicker approaches have been proposed to 

estimate those from radar data such as stepwise atomic norm 

minimization and synchro-squeezing transformation for an 

accurate estimation of respiration and heart rate [18, 19]. 

Breathing is an important vital sign, and breathing disorders 

and alterations can be an important indicator for diagnosis and 

prognosis of different diseases, such as stroke, heart failures, 

metabolic diseases, injuries of respiratory centers. In [3], the 

system is a 2.4 GHz CW radar for breathing disorder monitoring. 

It works in conjunction with a recognition module based on 

supervised learning signal processing which can select the most 

salient features out of 13 with Relief-F, followed by a SVM 

classifier. It was validated with clinical experiments with 3 

patients to recognize 6 patterns corresponding to diseases. 

Poor sleep quality is correlated with adverse effects on health. 

Polysomnography, albeit accurate, requires dedicated lab 

facilities and staff, whereas radar sensors can monitor sleep by 

observing physiological signs including respiration, heart rate 

and body movements. A sleep stage estimation system based on 

radar from [20]. The baseband IQ signals from the radar are 

processed through a demodulation stage to extract physiological 

signs used to extract 11 features for classification with K-NN 

algorithm into sleep stages: wake, light/deep sleep, and 

dreaming stage. The system was validated on a 6h-sleep 

experiment with 1 volunteer, with over 80% classification 

accuracy compared with a gold standard device as ground truth. 

IV. CONCLUSION 

This paper provided an overview of radar sensing in assisted 

living, capturing the latest trends such as deep learning, fusion 

of information from multiple radar domains and heterogeneous 

sensors, and innovative systems and processing for estimation 

of medical parameters (breathing and heart rate). Trends and 

challenges for each application have been highlighted. We 

believe that radar will be a ‘corner stone’ in assisted living and 

aging in place for smart homes in the future. 

ACKNOWLEDGMENT 

This work was partly supported support by UK EPSRC grant 

EP/R041679/1 INSHEP, Campus France PHC Cai Yuanpei 

41457UK, Horse Betting Levy Board SP006, and the National 

Science Foundation China under grant 61871224. 

REFERENCES 

[1] M. G. Amin et al., "Radar signal processing for elderly fall detection: 

The future for in-home monitoring," IEEE Signal Process. Mag., vol. 

33, no. 2, pp. 71-80, 2016. 
[2] J. Le Kernec et al., "Radar for Assisted Living in the Context of Internet 

of Things for Health and Beyond," 26th IFIP/IEEE Int. Conf. Very 

Large Scale Integr. VLSI-SOC, Verona, 2018, pp. 1-5. 
[3] H. Zhao et al., "A Noncontact Breathing Disorder Recognition System 

Using 2.4-GHz Digital-IF Doppler Radar," IEEE J. of Biomed. and 

Health Informat., 2018. 
[4] V. Nathan et al., "A Survey on Smart Homes for Aging in Place: 

Toward Solutions to the Specific Needs of the Elderly," IEEE Signal 

Process. Mag., vol. 35, no. 5, pp. 111-119, 2018. 
[5] E. Cippitelli et al., "Radar and RGB-depth sensors for fall detection: A 

review," IEEE Sensors J., vol. 17, no. 12, pp. 3585-3604, 2017. 

[6] V. Chen,H. Ling, Time-Frequency Transforms for Radar Imaging and 
Signal Analysis. Boston-London: Artech House, 2002, pp. 234-234. 

[7] S. Z. Gürbüz et al., "Operational assessment and adaptive selection of 

micro-Doppler features," IET Radar, Sonar & Navigation, vol. 9, no. 9, 
pp. 1196-1204, 2015. 

[8] F. Fioranelli et al., "Feature Diversity for Optimized Human Micro-

Doppler Classification Using Multistatic Radar," IEEE Trans. Aerosp. 
Electron. Syst., vol. 53, no. 2, pp. 640-654, 2017. 

[9] B. Jokanović,M. Amin, "Fall Detection Using Deep Learning in Range-
Doppler Radars," IEEE Transactions on Aerospace and Electronic 

Systems, vol. 54, no. 1, pp. 180-189, 2018. 

[10] M. S. Seyfioğlu et al., "Deep Convolutional Autoencoder for Radar-
Based Classification of Similar Aided and Unaided Human Activities," 

IEEE Transactions on Aerospace and Electronic Systems, pp. 1-1, 2018. 

[11] R. I. A. Harmanny et al., "Radar micro-Doppler feature extraction using 
the spectrogram and the cepstrogram," 11th Eur. Radar Conf., 2014, pp. 

165-168. 

[12] Z. Zhang et al., "Latern: Dynamic Continuous Hand Gesture 
Recognition Using FMCW Radar Sensor," IEEE Sensors J., vol. 18, no. 

8, pp. 3278-3289, 2018. 

[13] B. Jokanovic et al., "Multiple joint-variable domains recognition of 
human motion," IEEE Radar Conf., Seattle, USA, 2017, pp. 0948-0952. 

[14] C. Ding et al., "Non-contact Human Motion Recognition based on 

UWB Radar," in IEEE J. on Emerging and Sel. Topics in Circuits and 
Syst., ed, 2018. 

[15] H. Li et al., "A Multisensory Approach for Remote Health Monitoring 

of Older People," IEEE J. of Electromagn., RF and Microw. in Med. 
and Biol., vol. 2, no. 2, pp. 102-108, 2018. 

[16] A. K. Seifert et al., "Radar-based human gait recognition in cane-

assisted walks," pp. 1428-1433. 
[17] T. Sakamoto et al., "Noncontact Measurement of the Instantaneous 

Heart Rate in a Multi-person Scenario Using X-band Array Radar and 

Adaptive Array Processing," IEEE Journal on Emerging and Selected 
Topics in Circuits and Systems, pp. 1-1, 2018. 

[18] L. Sun et al., "Noncontact Vital Sign Detection based on Stepwise 

Atomic Norm Minimization," IEEE Signal Process. Lett., vol. 22, no. 
12, pp. 2479-2483, 2015. 

[19] H. Zhao et al., "Noncontact Physiological Dynamics Detection Using 

Low-power Digital-IF Doppler Radar," IEEE Trans. Instrum. Meas., 
vol. 66, no. 7, pp. 1780-1788, 2017. 

[20] H. Hong et al., "Noncontact Sleep Stage Estimation Using a CW 

Doppler Radar," in IEEE J. on Emerging and Sel. Topics in Circuits and 
Syst., ed, 2018.  


