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Abstract

The Internet of Things (IoT) offers a vast infrastructure of numerous inter-

connected devices capable of communicating and exchanging data. Pervasive

computing applications can be formulated on top of the IoT involving nodes that

can interact with their environment and perform various processing tasks. Any

task is part of intelligent services executed in nodes or the back end infrastruc-

ture for supporting end users’ applications. In this setting, one can identify the

need for applying updates in the software/firmware of the autonomous nodes.

Updates are extensions or patches important for the efficient functioning of

nodes. Legacy methodologies deal with centralized approaches where complex

protocols are adopted to support the distribution of the updates in the entire

network. In this paper, we depart from the relevant literature and propose a

distributed model where each node is responsible to, independently, initiate and

conclude the update process. Nodes monitor a set of metrics related to their

load and the performance of the network and through a time-optimized scheme

identify the appropriate time to conclude the update process. We report on

an infinite horizon optimal stopping model on top of the collected performance

data. The aim is to make nodes capable of identifying when their performance

and the performance of the network are of high quality to efficiently conclude

the update process. We provide specific formulations and the analysis of the
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problem while extensive simulations and a comparison assessment reveal the

advantages of the proposed solution.

Keywords: Pervasive Computing, Internet of Things, Updates Management,

Optimal Stopping Theory

1. Introduction

1.1. Motivation

The rapid evolution of the Internet of Things (IoT) in combination with per-

vasive computing sets new challenges for the development of new services and

applications. The adoption of wireless technologies (e.g., Wireless Sensors Net-

works - WSNs) and Internet accompanied by the respective hardware gives the

opportunity to numerous nodes to be interconnected. The transition from closed

networks to interconnected autonomous nodes capable of interacting with their

environment and performing simple processing tasks increases the quality of

services that end users enjoy. The basic concept of adopting many autonomous

devices is the pervasive presence around end users of various technologies such

as sensors, actuators, mobile phones and so on [5]. IoT nodes have, usually,

different characteristics and capabilities that pose a set of requirements for any

novel application. For instance, communications should be realized on top of

specific rules adopted for the exchange of the collected data while intelligent

interfaces may assist in the efficient management of the observed heterogeneity.

IoT nodes can collect and process ambient data in very dynamic environ-

ments. They come with the software/firmware of the corresponding manufac-

turers. Two main issues may positively affect their performance: (i) the appli-

cation of software updates extending their functionalities; (ii) the application

of firmware updates covering any potential gaps. As IoT nodes could manage

sensitive user data, it is imperative to apply the discussed updates during their

functioning. The challenge is to apply these updates in the entire network. Tim-

ing is everything, thus, the application of the updates should not be delayed.
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Once nodes are in operation, they will start receiving updates that should be ap-

plied as soon as possible. However, every node performs some tasks significant

for supporting applications, thus, applying updates should not disturb them

from their initial goal. Updates must be delivered in a way that conserves the

limited bandwidth and intermittent connectivity and eliminates the possibility

of compromising functional safety.

Various models have been proposed for the application of updates in WSNs

[27], [28], [30], [37], [38], [40], [42], [49], [52], [53], [54], [60], [61], [66]. To the

best of our knowledge, the vast majority of them deal with centralized systems.

A central server is responsible to define the steps for distributing the updates

based on a delivery protocol. Apart from the simplicity of the solution (updates

are located in a single point and transferred to all nodes at the same time),

one can identify a number of disadvantages in this centralized approach: (i)

the central server is the main responsible for delivering the updates, thus, it

should apply complex protocols to distribute them without affecting the perfor-

mance of the network; (ii) the central server cannot be aware of the nodes being

connected in the network, thus, it cannot be aware if all nodes have received

the updates; (iii) when the central server distributes the updates, nodes should

interrupt their processing tasks to apply them; (iv) the network is flooded by

update distribution messages limiting the available bandwidth and reducing the

performance of the network.

In this paper, we propose a distributed model for applying updates to avoid

the aforementioned disadvantages. Through our approach, the central server

should not be aware of the status of each node and the network, thus, it acts as

a ‘repository’. Nodes undertake the responsibility of downloading and applying

the updates when they observe that it is the appropriate time to do it. Nodes’

line of actions is realized by our time-optimized, performance-aware mechanism

defined by means of the Optimal Stopping Theory (OST). The proposed scheme

aims to intelligently support the nodes and provide a decision making model

that finds the appropriate time for initiating and concluding the update process.

We focus on an infinite horizon scheme with each node having no deadline
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for concluding the process. In such scenarios, updates are considered as ‘non

critical’ (e.g., software extensions), however, they should be applied as soon as

possible as they positively affect nodes’ performance. We consider a reward

function and a discount factor for each time step where nodes delay the process,

thus, we try to ‘force’ them towards its immediate conclusion. The reward

function involves multiple metrics monitored by nodes that depict their load

and the performance of the network.

1.2. Our Idea, Contribution & Paper Organization

We propose an update scheme building on the autonomous nature of nodes,

i.e., an autonomous entity capable of performing lightweight processing on top

of collected data. Nodes are capable of collecting information related to the

performance of the network. Specific metrics could be taken into account like

the bandwidth, the error rate and so on. Our scheme is distributed i.e., each node

autonomously decides when to download and apply software updates (from

this point forward we refer to ‘updates’ to depict software/firmware updates,

extensions and patches).

Legacy systems, as we discuss in Section 2, deal with centralized schemes.

The most common model in such systems is broadcasting, thus, one of the key

challenges is the messaging overhead [39] and [65]. Nodes rebroadcast any new

incoming data packet increasing the number of the unnecessary transmissions.

For instance, if a software update of x packets is to be sent over a network

of y nodes, potentially x · y times y broadcast packets could be sent out [39].

This may have a negative effect in the performance of the network, i.e., a high

number of broadcasts could lead to more cumulative power that should be con-

sumed to support communications. In addition, the increased messaging over-

head could introduce more collisions, thus, it may affect the reliability of the

channel. Due to the increased size or the multiple assignments of the updates,

a set of techniques have been proposed to alleviate the burden of the mul-

tiple broadcasted messages. Incremental updates, compression, diffusion and

various dissemination protocols are adopted to find the appropriate means for
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delivering the updates. However, all these techniques have specific drawbacks.

Incremental updates require an efficient management mechanism to maintain

the updates history while compression and, accordingly, decompression require

a complex management. The additional overhead for the management of incre-

mental and compression/decompression schemes becomes significant limiting

the central system’s and nodes’ performance. Incremental techniques should

also incorporate mechanisms for handling the heterogeneity of nodes while dif-

fusion mechanisms require an increased number of messages especially in dense

networks. In any case, the design of a reliable dissemination protocol that could

manage the heterogeneity of nodes is a real challenge. Heterogeneity makes

difficult the application of a protocol that is capable of covering all the types of

nodes.

Various operating systems like Contiki [13], LiteOS [9] and RETOS [8] al-

ready support dynamic linking and updates loading, however, the adopted ELF

format (Contiki adopts the format) leads to binaries potentially large for trans-

fer [62]. In these cases, the minimization of the disseminated messages [54] can

reduce the load of the network. In general, legacy dissemination protocols as-

sume an ad-hoc network and use a form of controlled flooding [6]. Epidemic

approaches combined with scalable multicasting through which updates are pe-

riodically transferred to nodes are another approach (e.g, [42], [45], [27]). Apart

from the increased number of messages, one can observe an increased complex-

ity in the resources required for maintaining data related to the management of

the updates (e.g., [45], [61], [27], [53] ). These data are related to the patterns

of the updates, their advertisement, the combination of their parts an so on.

There is a trade off between the overhead in the management of the updates

compared to the time for the final conclusion.

The aforementioned problems of the centralized techniques combined with:

(i) the absence of knowledge about if nodes are connected to the network dur-

ing the dissemination, (ii) the absence of knowledge about if nodes have the

availability to receive and conclude the updates at the time of the broadcasting,

and (iii) the complexity of the presented dissemination protocols, consist of the
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motivation behind the current work. The proposed approach can be applied

in any network involving autonomous devices, i.e., IoT and WSNs. It should

be noted that we do not aim to provide a methodology on how updates will

be installed but on when updates should be retrieved and installed towards

the maximization of the performance of the network and nodes. The compu-

tational and storage complexity of our model is minimal, thus, it can be easily

executed by devices with limited capabilities. The novelty compared to the

state of the art is that our scheme does not ‘impose’ the application of updates

and leaves nodes independently deciding their course of actions. Hence, we can

avoid all the negative consequences of centralized systems for the dissemination,

the recreation and the application of the updates locally.

Every node monitors its current load (e.g., the tasks waiting for execution)

and the status of the network. We should discern the tasks to: (i) regular tasks

(e.g., temperature/humidity monitoring, complex events reasoning); (ii) tasks

related to the application of the updates. Nodes, when applying updates, cannot

work efficiently till the process is finished, especially, when the size is high. This

time is critical as nodes should continuously operate and deliver their results.

Our time-optimized scheme derives when the updates could be applied based

on the current status (e.g., current load, current status of the network) and the

estimation of the future status (i.e., the expectation of the adopted parameters).

The central system sends to nodes only a lightweight message containing the

indication about the presence of an update. We consider two schemes: (i) the

server defines a deadline for the application of the update; (ii) the server does

not impose a deadline, however, the sooner the update is applied, the better for

nodes’ performance. The following list reports on the benefits of the proposed

solution compared to the remaining research efforts in the domain:

• the central server should not be aware of the status of each node;

• the central system should not spend resources to handle the heterogeneity

of nodes;

• the proposed scheme alleviates the complexity of the central system’s be-
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haviour as it is not necessary to define and adopt complex protocols and

dissemination schemes;

• each node independently runs the proposed scheme and selects the appro-

priate time for applying the update;

• the proposed model takes into consideration the dynamic nature of nodes,

i.e., nodes initiate the process by themselves, thus, the application of the

updates is secured;

• the proposed model is fully adapted on the performance of the network

securing the uninterrupted application of the updates. Nodes will decide

to initiate the process only when they ‘see’ that the network’s and their

performance are at high levels.

The contribution of our work is summarized as follows:

• a novel time-optimized, performance-aware mechanism based on OST,

which decides when an update process, P, should be activated. As men-

tioned, the proposed model does not deal with how P should be installed

but when P should be concluded towards the maximization of the per-

formance of the network and the node;

• a method for delivering the optimal time t∗ for initiating P. P consists

of two stages: (i) get the software from the central system; (ii) install the

component locally. At t∗, the node enjoys the best possible performance

to support P. As the best performance, we define the highest possible

network performance and the limited load of nodes;

• a method that alleviates the overhead required by legacy systems to dis-

seminate and maintain the updates. The overhead is related to messaging

as well as the required resources for combining parts of the updates and

their patterns;

• a mechanism that is characterized by a lower complexity than legacy sys-

tems giving to nodes the room for acting autonomously and defining their
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own scheduling for P;

• a model that requires only light weight advertisement messages compared

to legacy systems that require additional messaging for controlled flooding

or multicasting parts of P;

• extensive simulations and an analysis of the results where we reveal the

strengths of the proposed model and compare it with baseline solutions

and a centralized approach.

The paper is organized as follows. Section 2 reports on the related work. In

Section 3, we describe and formulate the problem under consideration. Section

4 presents the analysis of the problem and provides specific formulations for its

solution. Simulations reveal the performance of the proposed model in Section

5. Finally, in Section 6, we conclude our paper by presenting our future research

agenda.

2. Related Work

The pervasive nature of the IoT is enhanced by the presence of sensors either

in the ‘standalone’ mode or embedded into users’ smart devices. An IoT node

consists of two parts: (i) the hardware that makes the device capable of record-

ing/collecting/sending data from/to the environment, and, (ii) the software that

makes the node capable of processing the collected data and producing some

outcomes. The produced knowledge could be adopted to deliver decisions re-

lated to the presence of events and the provision of the appropriate responses. In

this section, we shortly review the IoT domain by presenting the taxonomies of

the devices, the communication schemes as well as the envisioned applications.

Finally, we report on schemes for delivering software updates in IoT nodes.

Specific taxonomies have been already defined for describing the components

required by the IoT vision [7], [63], [64]. There are three components that en-

able the pervasive computing aspect [21]: (i) the required hardware i.e., sensors,
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actuators and communication hardware; (ii) the required middleware i.e., func-

tionalities related to storage, processing and support for intelligent analytics;

(iii) the required presentation i.e., tools that support visualization and interpre-

tation. Hardware defines a number of requirements related to power, connec-

tivity and security that should be handled to provide a node ready to support

high quality applications. For instance, a device cannot execute energy consum-

ing tasks when the underlying hardware poses strict constraints in the energy

consumption. In addition, when a node has limited power or computational ca-

pabilities, it cannot be used in applications that require the continuous presence

of the node in its environment. For communication purposes, the technology

that is widely adopted is RFID. RFIDs help in the automatic identification of

anything where they are attached and act as electronic bar codes [31], [69]. In

addition, the WSN technology leads to the adoption of low power, miniaturized

nodes capable of supporting remote sensing applications. Sensors enable the

collection, processing, analysis and dissemination of the observed information

gathered in a variety of environments [2]. The interesting is that sensors can

easily support both, distributed or centralized applications and, especially, the

provision of the basis for deriving intelligent analytics. Nodes communication

capabilities offer functionalities for connecting them to e.g., the Cloud to invoke

specific services or to fire more complex processing.

Smart IoT nodes are based on the appropriate middleware to be capable of

performing the required functionalities. The middleware is a mechanism to com-

bine cyber infrastructure with Service Oriented Architecture (SOA) and WSNs

to have access on heterogeneous sensor resources [18]. The management of

heterogeneity, accompanied by a platform-independent middleware, are of high

importance in future applications. The Open Sensor Web Architecture (OSWA)

[58] offers a set of operations and standard data formats to ‘cover’ the retrieved

data and provide a uniform view on the sensors results. The middleware con-

nects different, complex, new or existing software that are not designed to be

connected. The architectural aspects of middleware, the requirements and the

available methodologies have been already discussed in various research efforts.
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For surveys on the IoT middleware, the interested reader could refer in [26],

[33], [50], [68].

Concerning the application domains, those can be classified according to

the type of networks, coverage, scalability management, heterogeneity, users in-

volvement and impact [19]. Four categories of the IoT application domains are

identified i.e., [21]: (i) Personal and home applications. Intelligent applications

are delivered on top of the collected data fully adapted to users’ characteris-

tics and the dynamics of the environment; (ii) Enterprise applications. The

information is collected by enterprise networks and intelligent applications are

delivered in domains like environmental monitoring [1], [20], [23], [24], [35], [36],

smart IoT environment [19], [44], etc.; (iii) Utilities. They involve intelligent

applications on top of information retrieved by networks adopted to produce

solutions for service optimization. Typical examples are the Smart Grid and

smart energy management applications like those presented in [14], [17], [47],

[55]; (iv) Mobile applications. They are built on top of the information con-

veyed by mobile nodes. A smart transportation system [4], [10], [32], [71], is the

typical representative of such applications.

Software updates for IoT nodes are necessary after deployment to have the

nodes capable of efficiently performing the assigned tasks. A survey on the

adopted methodologies are presented in [6]. Firmware updates are necessary

in non-modular sensor operating systems [41]. Apart from firmware, generic

re-programming (i.e., software components that are not directly related to the

firmware) is another problem that aims to extend or correct devices’ function-

alities. Re-programming is related to updates in the software components that

aim to provide extensions i.e., new functionalities or solve possible errors. As

mentioned, the envisioned algorithms target to minimize the time required for

applying any update through the minimization of the amount of data that will

be transferred to nodes. Incremental updates and data compression could be

adopted to reduce the size of messages [62]. However, splitting the data in mul-

tiple parts requires an increased number of messages for concluding the whole

process. When only the differences with the previous version of the software is
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sent, a mechanism that combines the new version with the old one without jeop-

ardizing the functioning of nodes is necessary. The incremental management of

the updates does not eliminate the necessary process for maintaining updates

history and the aforementioned combination.

Data dissemination protocols are the key part of a dissemination strategy for

transferring software updates to any member of a WSN. Some protocol examples

are discussed in [28], [30], [38], [52], [40], [60], [66]. The use of a controlled

flooding differs from the data collection protocols in storage, coverage and data

flow. However, controlled flooding does not eliminate the need for an increased

number of messages that will be distributed in the network, especially, in dense

networks. In WSNs, resources are limited and nodes cannot cache overheard

packets which might not be useful [28]. The normal pattern for dissemination

protocols is a three-step process [6]: (i) the advertisement of available software;

(ii) the selection of a source; and (iii) the reliable downloading to the target.

A subscription approach could be adopted, however, this results a significant

overhead in the network and, more specifically, in the server where the updates

are present.

Some widely cited research efforts in the domain are as follows. Trickle

[42] is an algorithm that disseminates and, accordingly, maintains software up-

dates in WSNs. Trickle adopts an epidemic approach with scalable multicasting

through which updates are periodically transferred. Epidemic approaches, in

general, may involve the transmission of several copies to random nodes, thus,

there is an increased cost for the management of the received messages. In addi-

tion, there is no guarantee that nodes will be always connected to the network to

receive the envisioned messages. Special attention is paid by the data discovery

and the Dissemination Protocol (DIP) on the elements that could be exchanged

between nodes [46]. The protocol tries to randomly scan the network and detect

new items while maintaining the latency at low levels. DHV [12] is an efficient

code consistency maintenance protocol that ensures that nodes will, eventually,

have the same code. The Multicast-based Code redistribution Protocol (MCP)

[45] is another protocol that performs code maintenance. MCP ‘forces’ every
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node to maintain a table that contains the information of known applications.

The table supports the delivery of multicast-based code dissemination requests.

In any case, the use of additional data structures increase the storage com-

plexity of the corresponding models. Multi-hop, Over-the-Air code distribution

Protocol (MOAP) [61] uses a store-and-forward approach providing a pattern of

updates. The updated code is broadcasted in a neighbour-per-neighbour basis

forcing nodes to disseminate the incoming code to reduce the latency. Deluge

[27] is a protocol that builds on top of algorithms related to density-aware,

epidemic maintenance protocols and includes several optimisations. It adopts

Trickle for the advertisement of code and splits the code into a set of fixed-size

pages. Through this approach, the time required for the propagation of large

components is reduced. In any case, the adoption of multiple optimizations in-

creases the complexity of the proposed solution especially for the recreation of

the updates from multiple parts. Stream [53] adopts Deluge and optimizes the

code parts sent in the network. Stream deals with pre-installing in each node

the re-programming application. Hence, Stream transmits the minimal sup-

port (about one page) needed for the activation of the re-programming image.

Resource-awareness, time-efficiency, and the integration of security solutions

are involved in the model presented in [48]. A multi-hop propagation scheme

is proposed enhanced by security codes and means from fuzzy control theory.

In any case, the definition of fuzzy logic rules that cover all the aspects of real

scenarios is very difficult. MELETE [73] is another code dissemination protocol

designed to support multiple concurrent applications in a WSN. It assumes that

the network is a set of groups of nodes that execute different tasks. The frame-

work adopts a group-keyed model to selectively distribute the code to only the

interested nodes, and reactively distribute the code only when it is required.

A monitoring process (like in our model) over various parameters before

performing a set of actions is adopted in various domains. In [57], the authors

describe a distributed scheduler that opportunistically schedules data transmis-

sions, with a view of minimizing the energy consumption of a wireless device. By

exploiting the stochastic characteristics of the channel, the model postpones the
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communication up to an acceptable time deadline until it finds the best expected

channel conditions. In [51], the authors study Device-to-Device (D2D) commu-

nications and demonstrate the energy, capacity and Quality of Service (QoS)

benefits of link-aware opportunistic D2D communications. In [11], the authors

study the energy efficiency of channel-aware random access with multiple paral-

lel channels under a collision channel. An asymptotic relationship between the

energy efficiency and the total bandwidth is described, which shows that the re-

lationship depends on the energy consumption properties of sensors. In [16], the

authors focus on the Distributed Opportunistic Scheduling (DOS) model that

exploits multiuser diversity in wireless networks without the requirement of a

central scheduler. With DOS, users take their own scheduling decisions based

on local observations related to the channel. In [67], the authors propose an

online scheduling algorithm designed to decide the optimal action in each time

slot (i.e., to transmit or hold the packet on the top of the transmitter queue)

based on the predicted channel condition and the packet queue status. Finally,

[43] reports on a model that builds on top of the prediction of the channel SNR

to schedule the desired transmissions.

3. Problem Statement

In this section, we discuss the problem under consideration and present basic

information about our model. In Table 1, we provide the basic notation adopted

throughout the paper.
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Table 1: Nomenclature

Notation Description

P The update process

S The update server

N The set of nodes (ni, i = 1, 2, . . . , |N |)

UE The update epoch

U The deadline for an update epoch

M The set of the performance metrics (mk, k = 1, 2, . . . , |M|)

Ik The function that defines if a metric is proportional or not

rt The reward value at t

t∗ The optimal stopping time

yt The maximum reward at t

zt The discounted maximum reward at t

β The discount factor

S∗ The stopping rule

Z∗ The optimal reward

T The discrete time domain

3.1. Preliminaries

We envision a setting where a set of IoT nodes N =
{
n1, n2, . . . , n|N |

}
per-

form specific processing tasks. These tasks are independent each other even if

some of the nodes could perform the same task (e.g., temperature or humidity

monitoring). An IoT node, ni, is a physical device embedded with electron-

ics and software having capabilities of collecting, processing and exchanging

of data. An update process P is an independent task that alters the software

of a node. An update could be [62]: (i) an update of the operating system;

(ii) an update of an application; (iii) an addition of a new application; (iv) a

modification of parameters in an existing application. A server S, a software

component, is responsible to store, manage and disseminate the updates. We

try to alleviate the load of S when serving a high number of nodes. When many

nodes try to contact S, download and install the available updates, bottlenecks

could be present. In such cases, S should adopt an intelligent algorithm or be

accompanied by powerful hardware to efficiently serve the increased load. In

Figure 1, we depict an example architecture of the envisioned model. In gen-
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eral, the execution of P is characterized by bursts allocated near the time of P’s

advertisements. For alleviating the problem and avoid possible bottlenecks, we

propose a distributed scheme that each node adopts to be able to get and apply

P.

P (from the node perspective) is concluded after the reception of the corre-

sponding S’s advertisement message and consists of the following steps: (i) ni is

connected to S; (ii) ni downloads P; (iii) ni applies P, locally. We assume that

S, when P is available, sends a lightweight message (e.g., a single packet) for P’s

presence. Based on the criticality of P, the message could be accompanied by a

deadline. We define the update epoch UE as the time required to apply P. UE

is an interval [1,U ] in which the entire set of nodes should have concluded P.

When U =∞, we consider the infinite horizon version of our scheme, otherwise,

we deal with the finite horizon version of the problem. When no deadline is set,

ni has unlimited time to conclude P. In any case, ni should conclude P as soon

as possible, however, under specific constraints related with ni’s performance

that secures the successful conclusion of P. We focus on the infinite horizon

version of the aforementioned problem. The finite horizon version is studied

in [34] where we provide specific formulations and the solution of the problem

through backward induction. The finite version ‘suffers’ from the need of meet-

ing the pre-defined deadline, thus, nodes are forced to immediately conclude P.

This can affect the performance as multiple nodes may decide to initiate P at

the same time. The identified research challenges are as follows:

• Research Challenge 1. Each node should monitor its performance and

the status of the network to retrieve the corresponding data. These data

will become the basis for the decision making related to the conclusion

of P. The challenge is to select the appropriate performance metrics and

build the discussed mechanism.

• Research Challenge 2. Based on the collected performance data, for

every UE, we should find the optimal stopping time t∗ ∈ [1,U ] where

nodes will stop the monitoring process and initiate/conclude P.
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Figure 1: An example architecture of the proposed model.

3.2. Update Management Optimization

A performance metric mk measures the activities and the performance of an

entity. LetM be the set of the adopted metrics, i.e.,M = {mk, k = 1, 2, . . . , |M|}

on top of which the decision for concluding P is made. For instance, when the

node enjoys a high bandwidth and exhibits a low load, it can initiate P. In such

cases, the execution of P will not affect the performance of the node and it will

not disturb the node from the execution of the assigned tasks.

In our model, we focus on two types of metrics related to (i) the network ,

and, (ii) the performance of a node . Network performance metrics can

be categorized into [22]: (i) availability ; (ii) packet loss and error ; (iii) delay ;

(iv) bandwidth. On the one hand, nodes’ performance can be easily obtained

locally by measuring the tasks waiting for execution. On the other hand, the

performance of the network can be obtained by specific tools/methodologies or

through the use of operating systems’ commands. For instance, in Linux one

can retrieve the overall bandwidth with the use of nload, bmon, netload, etc

commands applied on top of the kernel statistics. In an other example, Contiki

supports the ping6 tool that is capable of reporting values related to the trans-

mitted/received messages, the packet loss, etc. TinyOS supports the TOSSIM

suite for getting MAC statistics. Other solutions involve theoretical models for
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e.g., the calculation of the available bandwidth [29], [72] that refers to the max-

imum unused bandwidth at a link or end-to-end path. This depends on the

link capacity and the traffic load during a certain time period. The monitoring

process of the aforementioned metrics adds an overhead, however, this overhead

could be eliminated if the data collection is characterized by low frequency. Re-

cent studies show that when the reporting frequency is low, the impact on the

traffic performance increases [25]. The frequency of the monitoring process af-

fects the throughput and the end-to-end delay. When the reporting frequency is

set to a high value, i.e. 15 seconds, the impact is almost zero [25]. In this paper,

we consider that nodes adopt a frequency that leads to almost zero overhead

for network monitoring. An analytical study on the constraints of the network

monitoring overhead is beyond the scope of the paper.

Consider the discrete time T with t ∈ T. Let an advertisement message

indicating a new update has been arrived in ni. A new UEj starts and, at

t ∈ UEj , ni checks every mk, k = 1, 2, . . . , |M| and calculates the ‘reward’ that

will gain if it initiates P. The reward is based on the observed values and it is

proportionally or inverse proportionally affected according to the type of mk.

For proportional metrics, the higher the value is, the higher the reward becomes

(e.g., the bandwidth). For inverse proportional metrics, the lower the value is,

the higher the reward becomes (e.g., the load of each node). We define the

function Ik that incorporates the information that mk is proportional or not:

Ik =

 mk if mk is a proportional metric

1−mk if mk is a non-proportional metric
(1)

Based on Ik, ni calculates the reward rt as follows:

rt =
1

|M|

|M|∑
k=1

Ik (2)

rt gives an indication about the current status of the node and the network.

rt can be easily calculated and acts as a weighted aggregation scheme where all

metrics are of equal weight (the node pays equal attention on all of the observed
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metrics). ni tries to maximize rt and ‘safely’ conclude P. Based on rt, ni should

decide when it is the appropriate time to initiate and conclude P. Hence, at t,

ni should take one of the following decisions:

• D1. Stop the monitoring process, initiate and conclude P.

• D2. Continue the monitoring process without deviating from the current

task fulfilment.

4. The Time-Optimized Mechanism

4.1. Optimal Stopping Theory

The OST [56] could be adopted for determining the best time to take an

action (decision) based on sequentially observed random variables. An optimal

stopping problem is defined by the sequence of random variables X1, X2, . . .

whose joint distribution is known and the sequence of real-valued reward func-

tions J0, J (x1) , J (x1, x2) , . . .. Let (Ω, B, P ) be the probability space, and Gt
be the sub-σ-field of B generated by X1, . . . , Xt. We have the sequence of σ-

fields G1 ⊂ G2 ⊂ . . .Gt ⊂ B. A stopping time is defined as a random variable

ST ∈ 0, 1, . . . ,∞ such that the event ST = t is in Gt. The aim is to choose an

optimal stopping time t∗ to maximize the expected reward E[Jt∗ ]. If there is

no bound on the number of steps at which one has to stop, this is an infinite

horizon problem and the optimal return can be calculated through the optimal-

ity equation. When there is a known upper bound on the number of steps, it

is a finite horizon problem and the optimal return can be solved by backward

induction.

4.2. Model Analysis

In our infinite horizon problem, each node has not an upper time limit to

conclude P. At t, ni enjoys a ‘disturbance’ in the performance metrics depicted

by the mk random values. We focus on independent metrics and do not consider

any adaptation process, especially in the underlying network. The reward at t is
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realized through a function yt = ft(yt−1, rt), t ∈ UEj , j = 1, 2, . . .. In our case,

we adopt yt = max {rt}, as ni tries to find the maximum possible performance

to conclude P. Based on yt, we consider the following reward function:

zt (yt, rt) = βtyt. (3)

It should be noted that no recall is permitted because ni cannot adopt any pre-

vious realizations of the performance metrics (node’s and network’s performance

are dynamically updated). The discount factor β ∈ (0, 1) affects ni’s behaviour

as follows. ni should delay the decision in the anticipation of a better zt when

β → 1. ni should not delay the decision when the S requires an immediate

conclusion of P (β → 0). If ni never stops, the reward is considered equal to

zero, thus, we assume z0 = z∞ = −∞. The two main problems that should be

solved are:

• Identify t∗ where the expected reward is maximized.

• Find an optimal stopping rule, such that ni terminates the monitoring

process to maximize the expected reward Zt, i.e., E[Zt] (Z is the random

variable depicting the ni’s reward).

We can treat the first problem as an infinite horizon problem where ni receives

zt and it has no ‘pressure’ on the final decision. However, β makes ni to conclude

P in a rationale time interval.

Once ni observes zt, it decides whether to continue the process or not, by

examining the expectation of the future reward without recall. In other words,

ni has to find a t∗ where the supremum in Eq(3) is attained i.e., supt E[Zt].

Suppose that at some t, ni has observed Zt = z and it is optimal to continue

the process. Then, at t + 1, if Zt+1 is still z, because yt+1 ≤ z, it is optimal

to continue due to the invariance of the problem in time [15]. Hence, based on

the principle of optimality, this problem can be solved as an optimal stopping

problem with discounted future reward and without recall. This means that the

reward can be considered as Z ′t = βtYt = βtmax (Rt) and the problem assumes
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the same solution as the following problem: Find a t∗ such that the supt E[Z ′t]

is attained.

Consider the rewards Z0, Z1, . . . , Z∞ where Zt = f (r1, r2, . . . , rt). The se-

quence 〈rt,Ft〉 is defined by a probability space Ω, an increasing sequence of

sub σ-algebras {Ft}∞1 , the sequence of random variables Ri (ri ∈ Ft) and E[ri],

∀i. The following two assumptions should be true to have an optimal stopping

time: [A] E[suptZt] <∞; [B] lim supt→∞Zt ≤ Z∞.

Definition 1. A stopping rule S∗ is the rule for which the following inequality

holds true: E([ZS∗ ]|Ft) > Zt a.s. on {S∗ > t}, ∀t.

Ferguson proved the following theorems related to the existence of the opti-

mal stopping rule S∗ [15], i.e.,

• Theorem. Assuming condition [A], for any stopping rule S∗, there is a

regular stopping rule S′ such that E[ZS′ ] ≥ E[ZS∗ ].

• Theorem. Under [A] and [B] conditions, there exists a stopping rule S∗

such that E[ZS∗ ] = M∗ where M∗ = supSE[ZS ].

• Theorem. Under [A], if an optimal stopping rule exists, in particular, if

(B) holds true, then S∗ is optimal.

The interested reader could refer to [15] for more details.

Theorem 1. For the model defined by Eq(3), an optimal stopping time exists.

Proof 1. We have Zt ≤ βtmax (r1, r2, . . . , rt) ≤ max
(
βr1, β

2r2, . . . , β
trt
)
≤∑∞

j=1 β
j |rj |. Additionally, we have E[suptZt] ≤

∑∞
j=1 β

jE[|rj |] = β
1−βE[|rj |] <

∞. Based on the above, condition [A] is satisfied.

Furthermore, lim suptZt ≤ limtβ
t
∑t
j=1 |rj | = limtβ

t
∑t

j=1 |rj |
t . From the

law of large numbers, we get
∑t
j=1 |rj | → E[|r|] and tβt = 0. Hence, limsuptZt ≤

Z∞ = 0 and condition [B] is satisfied.

Based on the above, the optimal stopping rule and the optimal stopping time

is given by the principle of optimality i.e., t∗ = min {t ≥ 0 : Zt ≥ Z∗}. Hence,
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Z∗ is the expected return as defined by the optimal stopping rule. As discussed,

the problem is invariant in time, thus, the principle of optimality will never

require to recall a previous observation. Hence, the following equation holds

true:

Z∗ = βE (max(Z1, Z
∗)) . (4)

4.3. Expected Reward maximization

For simplicity in our calculations, we focus on proportional metrics that get

values in the interval [0,1]. Our model depends on the selection of the probability

distribution for variables Rt with realizations rt. We rely on two probability dis-

tributions to provide a solution for our model, i.e., (a) the Uniform distribution

and (b) the Exponential distribution. The selection of multiple distributions

aims to cover as many real cases as we can. When applying the Uniform dis-

tribution, we assume that rts are of equal probability to be observed by ni.

By applying the Exponential distribution, we aim to focus on multiple scenar-

ios where performance metrics are affected by the rate of the distribution. It

should be noted that there is no reason to adopt a distribution ‘favourite’ to

large values (rt → 1) as in these cases, the intelligent mechanism is useless.

By solving Eq(4), we can get the reward limit Z∗ above which ni should

stop the monitoring process and conclude P.

Lemma 1. If mk ∼ U(0, 1), with k = 2, the optimality equation Z∗ = β
(
Z∗3 − Z∗2

2 −
Z∗

2 + 10
6

)
,

defines values that indicate the optimal stopping rule at t.

Proof 2. We consider two cases: (i) Z∗ ≤ 1; (ii) Z∗ > 1. In the former case

(i.e., Z∗ ≤ 1), we should find the solution to the following equation:
∫ Z∗
0

Z∗rdr+∫ 1

Z∗
r2dr +

∫ 2

1
r(2 − r)dr. By solving the integrals, we get β

(
Z∗3

6 + 2
)

. In the

latter case (i.e., Z∗ > 1), we should find the solution to the following equation:∫ 1

0
Z∗rdr +

∫ Z∗
1

r(2 − r)dr +
∫ 2

Z∗
r(2 − r)dr. By solving the integrals, we get

β
(
11
6 Z
∗3 − Z∗2 − Z∗ + 4

3

)
. The two cases are of equal probability, thus, we get

that Z∗ = β
(
Z∗3 − Z∗2

2 −
Z∗

2 + 10
6

)
.
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Lemma 2. If mk ∼ Exp(λk), with k = 2, R ∼ Hypo(λ1, λ2, . . .) [59], the

optimality equation

Z∗ = β

(
λ2
Λ

(
1− e−λ1Z

∗
)

+
λ1
Λ

(
e−λ2Z

∗−1
)

+
λ1λ2

Λ
(f(λ1)− f(λ2) + g(λ2)− g(λ1))

)
(5)

with Λ = λ2 − λ1, f(x) = e−x(x+1)
x and g(x) = e−Z∗x(Z∗x+1)

x2 , indicates the

optimal stopping rule at t.

Proof 3. The pdf hR of the random variable R i.e., a sum of exponentials with

different rates, is given by [3]:

hR(t) =

|M|∑
i=1

λ1 . . . λ|M|∏|M|
j=1,j 6=i

eλitI0,∞(t) (6)

∀t ∈ T. By applying hR in Eq(4) and through calculations, we conclude the

recursive equation as the Lemma indicates.

4.4. Estimation of the Expected Return

For evaluating the final value of Z∗, we adopt a Monte Carlo simulation.

Monte Carlo methods (or Monte Carlo experiments) rely on repeated random

sampling to obtain numerical results. In our case, we perform a large number of

simulations to obtain the distribution of Z∗. In each simulation, we randomly

generate the realizations of β. Accordingly, we record Z∗ that satisfy the equa-

tions provided by the aforementioned Lemmas, thus, we can derive the final

distribution. In Figure 2, we present the histograms of the Z∗ distribution. It

should be noted that mean values for Z∗ are 0.48 and 0.32 for the Uniform and

the Exponential distributions, respectively.
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(a) Uniform (b) Exponential

Figure 2: Histogram of the Z∗ distribution.

5. Performance Evaluation

5.1. Methodology and Experimental Setup

We elaborate on the performance of the proposed model. Through a high

number of simulations, we evaluate the proposed infinite horizon Optimal

Stopping Scheme (OSS). Various simulation scenarios are adopted to evaluate

the performance of the OSS adopting the Uniform or the Exponential distri-

bution for getting values for the performance parameters. When the Uniform

distribution is adopted, we aim to handle scenarios where ni monitors the system

in an ‘agnostic’ manner. The term ‘agnostic’ means that ni considers that val-

ues for the performance metrics have an equal opportunity of occurring. When

we adopt the Exponential distribution, we focus on high or low values depend-

ing on the rate λ of the distribution. For instance, when λ = 2.0, ni monitors

low values for the adopted parameters. The higher the λ is, the smaller the

values become. In this setting, we aim to evaluate different scenarios where the

environment affects the performance metrics, thus, the decision of ni. When

λ → 1.0, we assume that performance data exhibit low ‘fluctuations’ and ni

could easily enjoy high performance values. When λ is very high, we assume

that the monitored performance exhibits ‘heavy fluctuations’ and ni cannot

easily conclude high performance values.

P, usually, involves large amounts of data, thus, for our study, we consider

the bandwidth (let us define parameter b to depict the available bandwidth)

as one of the most important network performance metrics. b assesses the
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amount of data that a node can transfer through the network. Node performance

parameters are related to its behaviour and load concerning the executed tasks

(let us define the parameter l to depict the current ‘availability’ of each node).

When a node has a lot of tasks to execute, l will be low. For simplicity, we

do not focus on hardware related issues (e.g., memory size, CPU speed, storage

used). However, our model can be easily extended to include more metrics into

the decision scheme.

5.2. Evaluation Metrics & Simulation Setup

We report on the performance of the OSS concerning two aspects: (i) the

time required for deciding the initiation of P; and (ii) the quality of the decision

in terms of the network and node’s performance (our model aims to identify

the highest possible value for the observed metrics that secures the optimal

performance). We report on the optimal stopping time t∗ and ‘stopping’ values

of b and l, i.e., b∗, l∗. The optimal performance is realized when t∗ → 0 and b∗,

l∗ are the maximum possible for the specific update epoch UEj . Without loss

of generality, we consider b, l ∈ [0, 1], thus, the optimal performance is achieved

when b∗ → 1, l∗ → 1.

We define the τ metric to depict the time required to conclude a stopping

decision. As τ → 0.0, ni requires limited time to conclude P; the opposite

stands when τ → ∞. The quality of the result (i.e., the maximum possible b∗

and l∗ for the epoch UEj) is evaluated by the γ and δ metrics. The following

equations hold true:

γ =

∑E
i=1 b

∗

E
(7)

δ =

∑E
i=1 l

∗

E
(8)

where E is the number of the experiments. γ depicts the average bandwidth

while δ depicts the average ‘availability’ of each node. The higher the γ and

the δ are, the better performance the OSS exhibits. The optimal performance

is achieved when γ → 1.0, δ → 1.0. We also define the ω metric depicting the
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percentage of nodes deciding to initiate P at each t. ω shows how many nodes

decide to start P at the same time. The following equation holds true:

ω =
|N t

s |
|N |

∗ 100% (9)

where |N t
s | is the number of nodes deciding to initiate P at t. Recall that the

stopping decision and the initiation of P is based on the network performance

as well as the availability of each node. As we are based on the random behavior

of nodes, thus, it is an exceptional case to have all the available nodes deciding

to initiate P at the same time. This is because, even if nodes observe the

same network performance, their availability could differ. It is very difficult

to have all nodes with the same load, the same complexity in the tasks they

are going to execute in order to take the same decision for the initiation of P.

In any case, apart from the dynamic nature of their internal status, when a

number of nodes decide to initiate P, the remaining nodes will enjoy a different

network performance affecting their future decisions. The adoption of ω aims at

revealing this randomness in nodes behavior that will prove that nodes’ decisions

are ‘distributed’ in time and add value to the proposed model compared to a

broadcasting scenario.

We compare the proposed model (i.e., OSS) with a distributed deterministic

model DM . The DM concludes P immediately when an update message is

received only if b and l are over a pre-defined threshold. In our simulations, this

threshold is defined to be equal to 0.70 (also produced by simulations). The

DM is the theoretical limit for our model concerning the time spent to derive

a decision in combination with the assurance of a relatively high bandwidth

and availability. The DM also incorporates the risk of not exceeding the pre-

defined threshold, especially, in noisy and low performance networks. We also

compare our model with the distributed Moving Average Estimator (MAE)

[70] and the Exponentially Weighted Moving Average (EWMA) estimator [70].

MAE is a simple estimator that is widely used in measuring the link quality

of wireless networks. The algorithm performs on top of a window of historical

values and derives the average value. When the average is over a pre-defined
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threshold (it is defined to be equal to 0.70), MAE concludes P. EWMA

estimator is memory efficient, requiring a constant storage of the old estimates

for any kind of history tuning. EWMA adopts a linear combination of infinite

history, weighted exponentially. Again, when the EWMA’s result is also over a

pre-defined threshold (i.e., 0.70), P is realized. Finally, we compare OSS with

a centralized model, i.e., Deluge [27]. As OSS and Deluge have a completely

different orientation (OSS is distributed while Deluge is centralized), we rely on

the comparison of the required messages and the required time for concluding

P.

We also define the difference D for each metric to depict the difference in

the performance between the OSS and DM , MAE, EWMA. The following

equation holds true:

D =
POSS − PREF

PREF
· 100% (10)

where POSS is the performance of the OSS and PREF is the performance of the

reference model (i.e., REF ∈ {DM,MAE,EWMA}). D is realized for each

performance metric i.e., γ, δ, τ and shows if OSS performs better than the

reference models DM , MAE, EWMA. Depending on the metric, we expect to

observe positive/negative values for D as follows: (i) D should be positive for

γ and δ metrics, thus, OSS achieves higher b∗ and l∗ than the corresponding

reference model. The higher the D is, the better the performance of OSS

becomes; (ii) D should be negative for τ , thus, the OSS requires less time for

the initiation of P than the corresponding reference model.

We evaluate our model for various realizations of β and λ1, λ2 (we adopt dif-

ferent rates for the Exponential distribution for b and l), i.e., β ∈ {0.2, 0.5, 0.95}

and λ1, λ2 ∈ {1, 5}. The higher the β is, the higher the loss/cost becomes. The

cost is realized as the cost for each observation and the loss that the ni enjoys

when selecting values with low expected ranks. The higher the λ1 and λ2 are,

the lower the values of b and l become. We also consider different scenarios

for b and l by incorporating a set of λ1, λ2 combinations i.e., λ1 = λ2 = 1,

λ1 = λ2 = 5, λ1 = 5, λ2 = 1, λ1 = 1, λ2 = 5. At t, we randomly generate b
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and l realizations and apply our model to record t∗, b∗ and l∗. For each set

of experiments, we consider E = 1, 000 and get performance results for the

aforementioned metrics.

We adopt two simulators, i.e., a simulator defined in Java and the Cooja

simulator 1. The former simulator ‘behaves’ as already described and delivers

results for the envisioned metrics. The latter is a network simulator designed for

WSNs. It builds on top of various types of nodes running the Contiki operating

system. Several Contiki libraries can be compiled and loaded in the same Cooja

simulation representing different kinds of sensor nodes. In this set of simulations,

we assume the default bandwidth of the Cooja tool which is equal to 250Kbps.

For producing ‘fluctuations’ in the bandwidth of the network, we consider that

every µ seconds, nodes send messages to a random peer. We get µ ∈ {20, 120}

aiming to simulate two types of network load. When µ = 20, there is an

increased number of messages in the network apart from the messages related

to P. If µ = 120, the number of messages is lower than in the previous case.

5.3. Performance Assessment

Initially, we report on the complexity of the proposed model which depends

on the length of UEj ‘fired’ just after the reception of P’s advertisement mes-

sage. Nodes should monitor the adopted metrics and perform the required

calculations (e.g., calculation of the reward). At t, the realization of each per-

formance metric is stored in a list of historical values, e.g., LB for b and LL for l.

The size of LB and LL could be at most equal to UEj , thus, the computational

complexity of the proposed model is O(max(UEj)
2. The storage requirements

of the proposed OSS are O(UEj).

We report on the probability density estimation (pde) of t∗, b∗ and l∗. In

Figure 3, we plot the pde(t∗) for β ∈ {0.2, 0.5, 0.95}. In general, t∗ is below 35

which indicates that the stopping decision requires at most 35 steps. Recall that

β applies ‘pressure’ on nodes to conclude P as soon as possible. In any case,

1http:anrg.usc.educontikiindex.phpCooja Simulator
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t∗, derived by adopting the Uniform distribution, is lower than the t∗ derived

through the adoption the Exponential distribution. In Figure 4, we observe that

λ does not affect the realization of t∗, however, nodes require more than 1,000

steps (the highest value) to conclude P. Apart from that, the combination of

λ1 and λ2 do not affect t∗. These results show that many fluctuations in the

realization of b and l as depicted by the Uniform distribution make the proposed

model to immediately conclude P.
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Figure 3: PDE of t∗ adopting the Uniform distribution.
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Figure 4: PDE of t∗ adopting the Exponential distribution.

In Figures 5 & 6, we depict our results concerning b∗. b∗ is kept at high levels

close to 1.0 no matter the β values. We observe some slight variations when
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β = 0.95. In such cases (i.e., β = 0.95), nodes enjoy limited loss for waiting

better b and l under the risk of facing a low performance network in the future.

A high β makes the node to pursue high values for b and l even in the burden

of the time (increased time for concluding P). In the case of the Exponential

distribution (Figure 6), we observe that λ1 and λ2 do not significantly affect

the performance of our model. OSS enjoys similar bandwidth at the stopping

decision as such a decision is taken in combination with the l realizations. This

means that the focus of the proposed model is not derived exclusively on b but

also on l. The decision making tries to pay equal attention on both parameters

before deciding to conclude P. In our simulations in Cooja (see Figure 7, we

observe similar results for µ = 20 and µ = 120. The average b∗ is 0.33 for µ = 20

and 0.40 for µ = 120. The median values are 0.21 and 0.37, respectively.
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Figure 5: PDE of b∗ adopting the Uniform distribution.
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Figure 6: PDE of b∗ adopting the Exponential distribution.

Figure 7: PDE of b∗ as delivered by the Cooja simulator.

Our results related to l∗ are presented in Figures 8 & 9. We observe similar

results as in the experimental outcomes for b∗. Figure 8 shows our results when

the Uniform distribution is adopted while Figure 9 depicts our results for the

Exponential distribution. In the case of the Exponential distribution (Figure

9), we observe that λ1 and λ2 do not significantly affect the performance of the

OSS as already discussed for the b∗ outcomes. In the Cooja simulations, we get

an average l∗ equal to 0.61 and 0.79 for µ = 20 and µ = 120, respectively. The

medians are 0.71 and 0.88. We observe that the availability of nodes is high,

thus, they could be able to support P.
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Figure 8: PDE of l∗ adopting the Uniform distribution.
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Figure 9: PDE of l∗ adopting the Exponential distribution.
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Figure 10: PDE of l∗ as delivered by the Cooja simulator.
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γ and δ results are presented in Figures 11 & 12. When the Uniform distri-

bution is adopted (Figure 11), any increment in β will slightly increase γ and

δ. In any case, γ and δ, are kept above 0.70 for β ∈ {0.2, 0.5, 0.95}. Each

node enjoys high b∗ and l∗ when it decides to stop the monitoring process and

conclude P. When the Exponential is the distribution that b and l follow, we

observe that γ and δ are below 0.60. γ and δ get low values compared to the

results related to the Uniform distribution. Our model exhibits better perfor-

mance when the monitored data are characterized by many fluctuations due to

the randomness of the observations. Recall that the Exponential distribution

exhibits an attitude to low or high values depending on the λ we choose.
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Figure 11: Results for γ, δ adopting the Uniform distribution.
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Figure 12: Results for γ, δ adopting the Exponential distribution.

Let us now report on the comparison of the OSS with the DM , MAE

and EWMA. In Table 2, we present the comparison between OSS and DM .

Recall that the DM stops just after the reception of the message indicating

the presence of an update in S and only when b and l are over the pre-defined

thresholds. We observe that the OSS outperforms the DM concerning τD which

means that it requires less time to conclude P. However, this is realized in the

burden of γ and δ. The OSS outcomes are less qualitative except when β = 0.5

and the metric under consideration is γ. The aforementioned results stand for

the scenario where the Uniform distribution is adopted. In Table 3, we present

our results delivered when the Exponential distribution is adopted. The OSS

outperforms the DM for the entire set of the examined metrics. The reason

is that the Exponential distribution leads b and l to have limited fluctuations,

thus, the DM hardly finds both parameters over the pre-defined thresholds.

The comparison OSS vs MAE is presented in Tables 4 & 5. We observe that

the OSS outperforms the MAE for the entire set of metrics. The difference is

high when the Exponential distribution is adopted. The increased performance

related to γ and δ metrics is accompanied by the limited time required to con-
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Table 2: OSS - DM comparison adopting the Uniform distribution.

β γD (%) δD (%) τD (%)

0.2 -8.75 -8.75 -40.00

0.5 8.75 -7.50 -50.00

0.95 -7.59 -8.64 -40.00

Table 3: OSS - DM comparison adopting the Exponential distribution.

λ1 λ2 γD (%) δD (%) τD (%)

1 1 3.92 4.00 -71.15

5 5 10.00 2.00 -69.81

5 1 12.24 4.08 -70.91

1 5 12.50 6.25 -69.09

clude P. In addition, MAE requires more time than the OSS to reach the final

decision no matter the cost of observations. MAE is affected by the adopted

averaging scheme on top of the most recent observations for b and l. The averag-

ing mechanism leads to a faulty future estimations for the examined parameters.

Recall that the OSS is not taking into consideration the past observations as

nodes and network performance are not characterized by stability. We assume

a very dynamic environment where the performance of the network and nodes

are updated in a continuous manner. The aforementioned observations become

more intense in the scenario where the Exponential distribution is adopted. By

selecting a λ to derive e.g., low values (λ → 0.0) the difference between the

two models (i.e, OSS - MAE) becomes high. In such cases, MAE cannot eas-

ily conclude a high average for b and l based on the most recent observations,

thus, it exhibits limited performance. The OSS incorporates into the decision

mechanism the estimation about the future reward based on the estimation of

the future b and l values. When the Exponential distribution results high b and

l (the second row of the Table 5), the difference is reduced (compared to the

remaining scenarios).
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Table 4: OSS - MAE comparison adopting the Uniform distribution.

β γD (%) δD (%) τD (%)

0.2 32.73 32.73 -99.66

0.5 32.73 37.04 -99.66

0.95 35.19 37.04 -99.67

Table 5: OSS - MAE comparison adopting the Exponential distribution.

λ1 λ2 γD (%) δD (%) τD (%)

1 1 120.83 136.36 -28.57

5 5 120.00 112.50 -83.51

5 1 129.17 121.74 -83.67

1 5 125.00 121.74 -82.65

In Tables 6 & 7, we present our results concerning the comparison between

OSS and EWMA. In these results, we observe that the OSS also outperforms

the EWMA. The average difference is 33.55% and 35.06% for γ and δ, respec-

tively (the Uniform distribution is adopted for b and l). For the Exponential

distribution, the average difference is 123.75% and 123.09% for γ and δ, respec-

tively. The highest difference is observed for β = 0.2 (γ metric) and β = 0.5 for

the δ metric when the Uniform distribution is adopted. The scenario involving

λ1 = 5 and λ2 = 1 leads the OSS to exhibit the highest difference with the

EWMA concerning γ. The scenario involving λ1 = λ2 = 1 leads to the highest

difference concerning δ.

Table 6: OSS - EWMA comparison adopting the Uniform distribution.

β γD (%) δD (%) τD (%)

0.2 48.98 48.98 -99.70

0.5 43.14 51.02 -99.70

0.95 43.14 48.00 -99.70

In Figures 13 & 14, we see our results related to the ω metric. In these
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Table 7: OSS - EWMA comparison adopting the Exponential distribution.

λ1 λ2 γD (%) δD (%) τD (%)

1 1 140.91 147.62 -85.00

5 5 129.17 131.82 -84.00

5 1 150.00 142.86 -84.00

1 5 145.45 131.82 -83.00

experiments, we instruct 100 nodes to take a decision in 100 time steps. We get

similar results, when the Uniform distribution is adopted (see Figure 13). The

use of the Uniform distribution ‘allocates’ the nodes to the first decision rounds

aligned with the results delivered for the optimal stopping time. Nodes are

forced to conclude the process as already explained in the provided experimental

results. In this set of experiments, the maximum number of nodes deciding to

conclude P at the same t is 32. We also observe that the use of the Exponential,

distributes the stopping time in the available interval. Except from the last

decision round (i.e., t = 100), in the remaining rounds only a limited number

of nodes decide to initiate P. In all the experimental scenarios, the maximum

number of nodes taking their decision at the same time is 36 out of 100 nodes.

Even in this case, the proposed model saves resources for the conclusion of P

compared to a broadcasting scenario.
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Figure 13: ω results when adopting the Uniform distribution.
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Figure 14: ω results when adopting the Exponential distribution.

Finally, we compare the OSS with the centralized system Deluge concerning

the number of the required messages and time to conclude P. Our results for

OSS are retrieved through the use of the Cooja simulator. We adopt the same

experimental scenario described in [27] and compare our model with the basic

form of Deluge. Deluge’s basic form involves every node occasionally advertising

the most recent version of the data object it has available to whatever nodes

that can hear its local broadcast. Nodes identifying a difference between the

advertised data object and their local copy, they may request it from their

neighbours. Nodes receiving requests then broadcast the requested data. Nodes

receiving the new data objects, advertise the newly received data in order to

propagate it further. Additionally, if a node has not completely received its

data after making a number of requests, it searches for a new neighbour to

request data. Compared to Deluge, we have to notice that the proposed model

is not affected by the communication model and topology of the network. Every
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message has 1,104 bytes per page and each data packet has a payload of 23 bytes.

In Deluge, the required number of messages for the distribution of 20 pages in

75 nodes is equal to 9,966. In the OSS, we need one advertisement message

(1,023 in Deluge), 75 request messages (789 in Deluge) and 75 times the size of

each update. The total number of messages in the proposed scheme is 3,226. In

addition, Deluge requires an average number 10.52 of requests while the OSS

requires a single packet just to inform the S and start the downloading of P. The

next set of experiments concerns the time required to conclude P. In Deluge,

the average completion time is equal to 18.60 with a deviation of 2.60 seconds.

The OSS requires an average time of 1.26 and 0.39 seconds for µ = 20 and

µ = 120, respectively. The deviation in OSS is 2.32 and 0.57 while the medians

are 0.40 and 0.24. The theoretical limit for sending the aforementioned packets

is 0.09 seconds adopting the default bandwidth of the Cooja simulator. For

75 nodes, Deluge requires less than 275 seconds while OSS needs (in average)

94.50 and 28.89 seconds for µ = 20 and µ = 120, respectively. The interesting

is that in the case of the OSS, the deviation is 174 and 42.45, respectively. The

medians are 30.10 and 17.90. We observe that due to the increased traffic in

the network, the OSS could require an increased time to conclude P.

6. Conclusions & Future Work

IoT and pervasive computing demand novel applications on top of the au-

tonomous nature of independent nodes. In this paper, we propose a distributed,

time-optimized, performance aware model that aims to assist the autonomous

nodes to initiate and conclude an update processes. The proposed scheme al-

leviates the central servers from the burden of supporting complex protocols

for the distribution of the updates while being aware of nodes’ specific charac-

teristics. Each node, independently, decides when it will conclude the update

process according to the result of a monitoring process. The monitoring pro-

cess aims to provide a view on the performance of the network and the node

itself. When the performance is of high quality, there is a room for applying
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the updates without disturbing the node from the assigned tasks. The decision

will be to realize the communication with the central server and conclude the

update process. In contrast to centralized systems, the network is not flooded

by update messages and nodes’ performance remains at high levels. We adopt

an infinite horizon time-optimized model applied on top of multiple performance

metrics. The model results the time when the update process should be con-

cluded taking into consideration the dynamic nature of nodes. The proposed

mechanism is fully adapted on the performance of the network securing the un-

interrupted application of the updates. Future extensions of our work involve

the implication of an adaptive model fully aligned with the nodes needs. The

adaptive model will try to handle the uncertainty related to the state of the

environment and nodes behaviour. With this approach, we will offer a complete

model for concluding updates either in short- or in long-term.

Acknowledgment

This work is funded by the EU/H2020 Marie Sklodowska-Curie (MSCA-IF-

2016) under the INNOVATE project; Grant#745829.

References

[1] Abdulah, P., Waseem, S., Bai, R., Mohsin, I., ’Development of New Water

Quality Model Using Fuzzy Logic System for Maysia’, Open Environmental

Sciences, 2, 2008, pp. 101-106.

[2] Akyildiz, I. F., Su, W., Sankarasubramaniam, Y., Cayirci, E., ’Wireless

sensor networks: a survey’, Computer Networks, vol. 38, 2002, pp. 393422.

[3] Akkouchi, M., ’On the Convolution of Exponential Distributions’, Journal

of the Chungcheong mathematical Society, vol. 21(4), 2008.

[4] Al-Sakran, H. O., ’Intelligent traffic information system based on integration

of Internet of Things and Agent technology’, IJACSA, vol 6, 2015.

40



[5] Atzori, L., Iera, A., Morabito, G., ’The internet of things: A survey’, Com-

puter Networks, May 2010, pp. 2787-2805.

[6] Brown, S., Sreenan, C., ’Software Updating in Wireless Sensor Networks:

A Survey and Lacunae’, Journal of Sensor and Actuators, vol. 2, 2013, pp.

717-760.

[7] Buyya, R., Yeo, C.S.,Venugopal, S., Broberg, J., Brandic, I., ’Cloud com-

puting and emerging IT platforms: vision, hype, and reality for delivering

computing as the 5th utility’, Future Generation Computer Systems, vol.

25, 2009, 599616.

[8] Cha, H., Choi, S., Jung, I., Kim, H., Shin, H., Yoo, J., Yoon, C., ’RETOS:

resilient, expandable, and threaded operating system for wireless sensor net-

works’, in Proceedings of the 6th International Conference on Information

processing in sensor networks, IPSN ’07, 2007.

[9] Cao, Q., Abdelzaher, T., Stankovic, J., He, T., ’The LiteOs operating sys-

tem: Towards unix-like abstractions for wireless sensor networks’, in Pro-

ceedings of the 7th International Conference on Information processing in

sensor networks, IPSN ’08, 2008.

[10] Chepuru, A., Rao, K. V., ’A study on security of IoT in Intelligent Trans-

port Systems Applications’, IJARCSEE, vol 5, 2015.

[11] Choi, J., ’On the Energy Efficiency and Total Bandwidth in Channel-Aware

Random Access for WSNs’, in Proceedings of the IEEE Signal Processing

for Communications Symposium, 2015.

[12] Dang, T., Bulusu, N., Feng, W., Park, S., ’DHV: A Code Consistency

Maintenance Protocol for Wireless Sensor Networks’, In Proceedings of the

6th European Conference on Wireless Sensor Networks (EWSN 2009), Cork,

Ireland, 2009.

41



[13] Dunkels, A., Grnvall, B., Voigt, T., ’Contiki - a lightweight and flexible

operating system for tiny networked sensors’, in Proceedings of the IEEE

Workshop on Embedded Networked Sensors (Emnets-I), 2004.

[14] Erol-Kantarci, M., Mouftah, H. T., ’Wireless sensor networks for domestic

energy management in smart grids’, in Proceedings of the 25th Biennial

Symposium on Communications (QBSC), 2010 , pp. 6366.

[15] Ferguson, T. S., ’Optimal Stopping and Applica-

tions’, Mathematics Department, UCLA, Available online

https://www.math.ucla.edu/ tom/Stopping/Contents.html, accessed

November, 2016.

[16] Garcia-Saavedra, A., Serrano, P., Banchs, A., ’Energy-Efficient Optimiza-

tion for Distributed Opportunistic Scheduling’, IEEE Communications Let-

ters, 18(6), 2014, pp. 1083–1086.

[17] Gao, J., Xiao, Y., Liu, J., Liang, W., Chen, C., ’A survey of communica-

tion/networking in smart grids’, Future Generation Computer Systems, vol.

28(2), pp. 391404, 2012.

[18] Ghosh, A., Das, S. K., ’Coverage and connectivity issues in wireless sensor

networks: a survey’, Pervasive and Mobile Computing, vol. 4, 2008, pp.

303334.

[19] Gluhak, A., Krco, S., Nati, M., Pfisterer, D., Mitton, N., Razafindralambo,

T., ’A survey on facilities for experimental Internet of Things research’,

IEEE Communications Magazine, vol. 49, 2011, pp. 5867.

[20] Gouveia, C., Fonseca, A., ’New Approaches to Environmental Monitoring:

the Use of ICT to Explore Volunteered Geographic Information’, GoeJour-

nal, 72, 2008, pp. 185-197.

[21] Gubbi, J., Buyya, R., Marusic, S., Palaniswami, M., ’Internet of Things

(IoT): A Vision, Architectural Elements, and Future Directions’, Elsevier

FUture Generation Computer Systems, vol. 29, 2013, pp. 1645-1660.

42



[22] Hanemann, A., Liakopoulos, A., Molina, M., Swany, D. M., ’A study on

network performance metrics and their composition’, Campus-Wide Infor-

mation Systems, vol. 23(4), 2006, pp. 268 - 282.

[23] Hardas, B. M., Asutkar, G. M., Kulat, K. D., ’Environmental Monitoring

Using Wireless Sensors: A Simulation Approach’, In Proc. of the 1st In-

ternational Conference on Emerging Trends in Engineering and Technology,

2008, pp. 255-257.

[24] Hatzikos, E., Bassiliades, N., Asmanis, L., Vlahavas, I., ’Monitoring Water

Quality through a Telematic Sensor Network and a Fuzzy Expert System’,

Expert Systems, 24(3), Blackwell, 2007, pp. 143-161.

[25] Hava, A., Ghamri-Doudane, Y., Murphy, J., ’A Study On Monitoring Over-

head Impact on Wireless Mesh Networks’, in Proceedings of the 8th In-

ternational Wireless Communications and Mobile Computing Conference,

IWCMC12, 2012, Limassol, Cyprus, pp.487–492.

[26] Henricksen, K., Robinson, R., ’A Survey of Middleware for Sensor Net-

works: State-of-the-Art and Future Directions’, in Proceedings of the Inter-

national Workshop on Middleware for Sensor Networks, 2006, pp. 60-65.

[27] Hui, J. W., Culler, D., ’The dynamic behavior of a data dissemination

protocol for network programming at scale’, in Procedings of the Interna-

tional Conference on Embedded networked sensor systems, SenSys, 2004,

pp. 81-94.

[28] Hou, I. H., Tsai, Y. E., Abdelzaher, T. F., Gupta, I., ’AdapCode: Adap-

tive Network Coding for Code Updates in Wireless Sensor Networks’, in

Proceedings of the IEEE 27th Conference on Computer Communications,

2008.

[29] Ibrahim, M. F., Jamal, M., Yahya, S., Taib. N., ’Available Bandwidth

Estimation in Network-Aware Applications for Wireless Campus e-Learning

43



System’, Journal of Computer Networks and Communications, 2012 (art. ID

380959), 2011.

[30] Intangonwiwat, C.; Govindan, R.; Estrin, D. Directed Diffusion: A Scal-

able and Robust Communication Paradigm for Sensor Networks. In Proceed-

ings of the 6th Annual Conference on Mobile Computing and Networking,

Boston, MA, USA, 611 August 2000; pp. 5667.

[31] Juels, A., ’RFID security and privacy: a research survey’, IEEE Journal

on Selected Areas in Communications, vol. 24, 2006, pp. 381394.

[32] Katiyar, V., Kumar, P., Chand, N., ’An Intelligent Transportation System

Architecture using Wireless Sensor Network’, International Journal Com-

puter Applications, vol. 14, 2011.

[33] Kjaer, K., E., ’A Survey of Context-Aware Middleware’, in Proceedings of

the 25th conference on IASTED International Multi-Conference: Software

Engineering, 2007, pp. 148-155.

[34] Kolomvatsos, K., ’Time-Optimized Management of IoT Nodes’, Elsevier

Ad Hoc Networks, vol. 69, 2018, pp. 1–14.

[35] Kolomvatsos, K., Anagnostopoulos, C., Hadjiefthymiades, S., ’An Efficient

Environmental Monitoring System adopting Data Fusion, Prediction and

Fuzzy Logic’, in Proceedings of the 6th International Conference on Infor-

mation, Intelligence, Systems and Applications, Corfu, Greece, 2015.

[36] Kolomvatsos, K., Anagnostopoulos, C., Hadjiefthymiades, S., ’Intelligent

Contextual Data Stream Monitoring’, in Proceedings of the 8th International

Conference on Pervasive Technologies Related to Assistive Environments,

Corfu, Greece, 2015.

[37] Kulkarni, S., Wang, L., ’Mnp: Multihop network reprogramming service

for sensor networks’, in Distributed Computing Systems, 2005, pp. 7-16.

44



[38] Kulkarni, S.S.; Arumugam, M. Infuse: A TDMA Based Data Dissemination

Protocol for Sensor Networks; Technical Report MSU-CSE-04-46 for the De-

partment of Computer Science and Engineering, Michigan State University:

East Lansing, MI, USA, 2004.

[39] Kumar, R., Paul, A., Ramachandran, U., Kotz, D., On Improving Wireless

Broadcast Reliability of Sensor Networks Using Erasure Codes, Mobile Ad-

hoc and Sensor Networks. 2006, Lecture Notes in Computer Science, vol

4325, Springer, Berlin, Heidelberg.

[40] Leligou, H., Massouros, C., Tsampasis, E., Zahariadis, T., Bargiotas, D.,

Papadopoulos, K., Voliotis, S., ’Reprogramming Wireless Sensor Nodes’,

International Journal of Computer Trends and Technology, 2011.

[41] Levis, P., Madden, S., Polastre, J., Szewczyk, R., Woo, A., Gay, D., Hill,

J., Welsh, M., Brewer, E., Culler, D., ’TinyOS: An operating system for

sensor networks’, Ambient Intelligence, Springer Verlag, 2004.

[42] Levis, P, Patel, N., Culler, D., Shenker, S., ’Trickle: a self-regulating al-

gorithm for code propagation and maintenance in wireless sensor networks’,

in Proceedings of the Symposium on Networked Systems Design and Imple-

mentation, vol. 1, 2004.

[43] Li, Y., Li, B., Zhang, Y., ’A Channel State Information Feedback and Pre-

diction Scheme for Time-Varying Underwater Acoustic Channels’, in Pro-

ceedings of the International Conference on Intelligent Transportation Big

Data & Smart City, 2018, pp. 141–144.

[44] Li, X., Lu, R., Liang, X., Shen, X., Chen, J., Lin, X., ’Smart community:

an Internet of Things application’, IEEE Communications Magazine, vol.

49, 2011, pp. 6875.

[45] Li, W., Zhang, Y., Childers, B., ’MCP: an Energy-Efficient Code Distri-

bution Protocol for Multi-Application WSNs’, in Proceedings of the 5th

45



IEEE International Conference on Distributed Computing in Sensor Sys-

tems, 2009.

[46] Lin, K., Levis, P., ’Data discovery and dissemination with dip’, in Proceed-

ings of the International Conference on Information Processing in Sensor

Networks (IPSN 2008), Washington, DC, USA, 2008, pp. 433444.

[47] Lujano-Rojas, J. M., Monteiro, M., Dufo-Lopez, D., Bernal - Agustin, J.

L., ’Optimum residential load management strategy for real time pricing

(rtp) demand response programs’, Energy Policy, 2012.

[48] Maier, K., Hessler, A., Ugus, O., Keller, J., Westhoff, D., ’Multi-Hop Over-

The-Air Reprogramming of Wireless Sensor Networks using Fuzzy Control

and Fountain Codes’, in Self-Organising Wireless Sensor and Communica-

tion Networks, 2009.

[49] Miller, C., Poellabauer, C., ’Reliable and efficient reprogramming in sensor

networks’, ACM Transactions on Sensor Networks, vol. 7, 2010, pp. 1-32.

[50] Miraoui, M., Tadj C., Amar, C. B., ’Architectural Survey of Context-Aware

Systems in Pervasive Computing Environment’, Ubiquitous Computing and

Communication Journal, vol. 3(3), 2008.

[51] Moraleda-Soler, A., Coll-Perales, B., Gozalvez, J., ’Link-Aware Oppor-

tunistic D2D Communications: Open Source Test-bed and Experimental

Insights into their Energy, Capacity and QoS’, 11th International Sympo-

sium on Wireless Communications Systems (ISWCS), 2014.

[52] Naik, V.; Arora, A.; Sinha, P.; Zhang, H. Sprinkler: A Reliable and Energy

Efficient Data Dissemination Service for Wireless Embedded Devices. In

Proceedings of the 26th IEEE International Real-Time Systems Symposium,

Miami, FL, USA, 58 December 2005; pp. 286296.

[53] Panta, R., Khalil, I., Bagchi, S., ’Stream: Low overhead wireless reprogram-

ming for sensor networks’, in Proceedings of the International Conference

on Computer Communications, INFOCOM, 2007, pp. 928-936.

46



[54] Park, H. U., jeong, J., mah, P., ’Non-Invasive Rapid and Efficient Firmware

Update for Wireless Sensor Networks’, in Proceedings of the UBICOMP,

2014, Seattle, WA, USA.

[55] Pedrasa, M. A., Spooner, T., MacGill, I. F., ’Coordinated scheduling of

residential distributed energy resources to optimize smart home energy ser-

vices’, IEEE Transactions on Smart Grid, vol. 1(2), pp. 134143, 2010.

[56] Peskir, G., Shiryaev, A., ’Optimal Stopping and Free Boundary Problems’,

ETH Zuerich, Birkhauser, 2006.

[57] Poulakis, M. I., Panagopoulos, A. D., Constantinou, P., ’Channel-Aware

Opportunistic Transmission Scheduling for Energy-Efficient Wireless Links’,

IEEE Transactions on Vehicular Technology, 62(1), 2013, pp. 192–204.

[58] Sang, Y., Shen, H., Inoguchi, Y., Tan, Y., Xiong, N., ’Secure Data Aggre-

gation in Wireless Sensor Networks: A Survey’, 7th International Confer-

ence on Parallel and Distributed Computing, Applications and Technologies,

2006, pp. 315320.

[59] Sen, A., Balakrishnan, N., ’Convolution of Geometrics and a Reliability

Problem’, Statistics and Probability Letters, vol. 43, 1999, pp. 421-426.

[60] Stann, F.; Heidemann, J. RMST: Reliable Data Transport in Sensor Net-

works. In Proceedings of the 1st IEEE International Workshop on Sensor

Network Applications and Protocols, Anchorage, AK, USA, 11 May 2003;

pp. 102112.

[61] Stathopoulos, T., Heidemann, J., Estrin, D., ’A remote code update mech-

anism for wireless sensor networks’, Technical Report, Center for Embedded

Networked Sensing, 2003.

[62] Stolikj, M., Cuijpers, P.,. Lukkien, J., ’Efficient Reprogramming of Wire-

less Sensor Networks Using Incremental Updates and Data Compression’, in

Proceedings of the IEEE International Conference on Pervasive Computing

and Communications Workshops, 2013, pp. 584-589.

47



[63] Tilak, S., Abu-Ghazaleh, N., Heinzelman, W., ’A taxonomy of wireless

microsensor network models’, ACM Mobile Computing and Communications

Review, vol. 6, 2002, pp. 2836.

[64] Tory, M., Moller, T., ’Rethinking visualization: a high-level taxonomy’, in

IEEE Symposium on Information Visualization, INFOVIS 2004, 2004, pp.

151158.

[65] Tseng, Y., Ni, S.-Y., Chen, Y.-S., Sheu, J.-P., The broadcast Storm prob-

lem in a mobile ad hoc network, Wireless Networks, 8(2/3), pp. 153–167,

2002.

[66] Wan, C.Y.; Campbell, A.T.; Krishnamurthy, L. PSFQ: A Reliable Trans-

port Protocol for Wireless Sensor Networks. In Proceedings of the 1st ACM

international workshop on Wireless sensor networks and applications, At-

lanta, Georgia, USA, 28 September 2002; pp. 111.

[67] Wang, Z., Wang, C., Sun, W., ’Adaptive Transmission Scheduling in Time-

Varying Underwater Acoustic Channels’, in Proceedings of the MTS/IEEE

OCEANS, 2015.

[68] Wang, M. M., Cao, J. N., Li, J., Das, S. K., ’Middleware for Wireless

Sensor Networks: A Survey’, Journal of Computer Science and Technology,

vol. 23(3), 2008, pp. 305326.

[69] Welbourne, E., Battle, L., Cole, G., Gould, K., Rector, K., Raymer, S.,

’Building the Internet of Things using RFID The RFID ecosystem experi-

ence’, IEEE Internet Computing, vol. 13, 2009, pp. 4855.

[70] Woo, A. Culler, D., ’Evaluation of efficient link reliability estimators for

low-power wireless networks’, Tech. Rep. UCB/CSD-03-1270, EECS Depart-

ment, University of California, Berkeley, 2003.

[71] Xiao, L., ’Internet of Things: a New Application for Intelligent Traffic

Monitoring System’, Journal of Networks, vol 6, 2011.

48



[72] Yin, Y., Wu, W., ’A Real Time Measurement Algorithm for available Band-

width’, International journal of Communications, Network and System Sci-

ences, 2, 2009, pp. 746–753.

[73] Yu, Y., Rittle, L. J., Bhandari, V., Lebrun, J. B., ’Supporting concurrent

applications in wireless sensor networks’, in Proceedings of the 4th Interna-

tional Conference on Embedded Networked Sensor systems, SenSys, 2006.

49


