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ABSTRACT
Coalescing compact binaries emitting gravitational wave (GW) signals, as recently detected
by the Advanced LIGO–Virgo network, constitute a population over the multidimensional
space of component masses and spins, redshift, and other parameters. Characterizing this
population is a major goal of GW observations and may be approached via parametric models.
We demonstrate hierarchical inference for such models with a method that accounts for
uncertainties in each binary merger’s individual parameters, for mass-dependent selection
effects, and also for the presence of a second population of candidate events caused by
detector noise. Thus, the method is robust to potential biases from a contaminated sample
and allows us to extract information from events that have a relatively small probability of
astrophysical origin.
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1 IN T RO D U C T I O N

Since the first detection of gravitational waves (GWs) in 2015
(Abbott et al. 2016c), the Advanced LIGO and Advanced Virgo
detectors have observed the coalescence of multiple compact binary
systems, and have begun to reveal the population of coalescing
compact objects (Abbott et al. 2016a). This population is enabling
studies in fields from probing alternative theories of gravity to
constraining models of stellar evolution. These tend to be interested
either in individual, preferably loud, signals or in the population of
sources as a whole. The latter type of population analysis tries to
estimate the parameters governing the distribution of sources in the
Universe; their masses and spins and the value of the astrophysical
merger rate (Abbott et al. 2016g) are of particular interest. As
the sensitivity of detectors improves over the coming years, the
detected number of sources is expected to grow at an accelerated
pace, rapidly increasing the amount of information available for
population studies (Abbott et al. 2018).

When undertaking population analyses, one has to consider that
real detectors may produce noise transients that cannot in all cases be
distinguished from astrophysical GW sources. To avoid population
inferences being biased by noise events, one might consider only
events with a much higher probability to be of astrophysical origin
than to be caused by noise artefacts. In templated searches for
compact binaries, the relative probability of astrophysical versus
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noise origin for a candidate event is a function of a detection statistic
calculated for each event by a search analysis pipeline (see e.g.
Abbott et al. 2016h; Usman et al. 2016; Cannon et al. 2012; Cannon,
Hanna & Peoples 2015; Messick et al. 2017; Nitz et al. 2017).
Typically, a candidate event is generated as a local maximum in
matched filter signal-to-noise ratio (SNR) above a search threshold;
the detection statistic value then incorporates the matched filter
SNR, as well as other goodness-of-fit tests to reject non-Gaussian
instrumental noise transients (Allen 2005; Nitz 2018).

At low SNR, the population of events is dominated by the
noise ‘background’, whereas at high SNR (or in general for
events assigned high-statistic values) the astrophysical ‘foreground’
dominates.1 To limit possible pollution of the sample used for
population inference, one may place a minimum threshold on the
detection statistic; any event above threshold is then assumed to be
astrophysical, whereas all other events are discarded as potential
noise transients. Note that the choice of threshold value requires an
empirical estimate of the rate and distribution of background events
(Capano et al. 2017) since the rate, strength, and morphologies of
detector noise artefacts are not known a priori (Abbott et al. 2016b).

A simple strategy of thresholding is sub-optimal for two reasons.
First, discarding events below the threshold will almost certainly
discard information from some number of quiet but still identifiable
signals (Kovetz et al. 2017); secondly, there is still a finite chance

1We will loosely refer to the detection statistic as ‘SNR’ when discussing
the distinction between instrumental noise events and astrophysical events.
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that the resulting ‘signal’ set is nevertheless contaminated by noise,
leading to potentially biased inferences. SNR threshold requires
a trade-off between these two considerations and depends on the
intended use. One also has to take into consideration any bias in the
observed population produced by the effect of source parameters on
the loudness of a signal, and thus its chance of exceeding an SNR
threshold (Fairhurst & Brady 2008); we expect potentially major
observation selection effects for binary mass(es) (Tiwari 2017) and
component spins (Ng et al. 2018).

Here, we propose a method that alleviates the issues associ-
ated with simple thresholding by applying a hierarchical mixture
model under which each event is considered to originate from
either a foreground (astrophysical) or a background (noise) pop-
ulation. For each event, the probability of either case naturally
defines a weight for its contribution to inferences on population
parameters.

This method combines the processes of estimating the expected
number of events in either class (Farr et al. 2015; the number of
foreground events being a proxy for the astrophysical merger rate
density) and estimating parameters of the underlying populations,
which have previously been performed separately. It avoids being
biased through the inclusion of background events, while being
able to use events with a non-negligible probability of noise origin,
which would be discarded by thresholding. In theory, this method
allows the SNR threshold to be reduced to an arbitrarily low value,
though in practice we are still limited by the computational resources
required to extract the source parameters from each event under
consideration.2

Our method is applicable to any hierarchical model of a source
population, examples of which have been explored in the literature.
This includes analyses that combine information from multiple
events to infer a parameter common to all, such as deviations from
general relativity (Li et al. 2012) or a parametrized neutron star
equation of state (Del Pozzo et al. 2013). The use of a mixture model
with astrophysical and noise populations is particularly useful
when the model of interest has a strong effect on the detectability
of sources, i.e. the detected events are unrepresentative of the
underlying population. A good example is the mass distribution
of sources, which we consider next.

For a compact binary in its inspiral phase, the frequency-
domain amplitude of the GW in the stationary phase approximation
is proportional to M5/6, where M = (m1m2)3/5(m1 + m2)−1/5 is
the chirp mass of the signal (Cutler & Flanagan 1994). Since
the GW detectors are sensitive to the signal amplitude, more
massive sources will produce a larger SNR for a fixed position
relative to the detectors. For a search that counts signals above a
particular threshold, more massive signals will be overrepresented
in the selected events by a factor ≈M5/2, neglecting cosmological
redshifting of the source and assuming a constant source rate per
unit volume at all distances.

Messenger & Veitch (2013) considered the problem of selection
effects in mass distribution inference by dividing the observing
time into discrete chunks, which each contain zero or one sources,
and computing population likelihoods while accounting for false
alarms and false dismissals from an idealized noise distribution.

2An analysis that effectively removes all SNR thresholds, applying Bayesian
analysis to the entirety of the GW data set rather than restricting to data close
to events triggered on SNR maxima, is proposed in Smith & Thrane (2018);
its application appears at present to be still more limited by computational
cost.

Farr et al. (2015) derived an equivalent formalism for rate inference
that allows a population shape function to be estimated alongside.
Our derivation in Section 2 follows similar lines.

The selection function for masses was important in estimating the
astrophysical event rates in the first Advanced LIGO observing run
(O1), which inferred rates using a mixture model, for fixed choices
of population shape (i.e. mass distribution; Abbott et al. 2016d,g).
A separate analysis also estimated the slope of a power-law model
of the mass distribution function considering the detected events,
described in Abbott et al. (2016a; and updated in Abbott et al.
2017).

The selection function in the form of a sensitivity-weighted
measure of the space–time volume VT surveyed for signals above a
certain SNR threshold is also important when considering searches
that do not make a clear detection. There, the loudest background
event, or a nominal detection threshold, is used to set an upper
limit on the astrophysical rate of a fiducial source population, for
example, limits on the rate of mergers of binary neutron stars and
neutron star–black hole binaries in O1 (Abbott et al. 2016f). The
sensitive-volume approach has been in use since the initial detector
era (Biswas et al. 2009; Abadie et al. 2011), and continues to be
refined to incorporate mass- and spin-dependent selection effects
(O’Shaughnessy et al. 2010; Dominik et al. 2015; Ng et al. 2018)
and cosmological effects, as well as to improve the accuracy of
measurement (Tiwari 2017).

As the number of detections increases, determination of the
population of coalescing compact binaries is expected to provide
insight into the astrophysics of black hole and neutron star binary
formation (Kalogera et al. 2007; Abbott et al. 2016e; Mandel &
Farmer 2018). Population synthesis models can describe the masses
and spins of coalescing compact binaries under a variety of forma-
tion scenarios (see e.g. Belczynski et al. 2016b; Belczynski et al.
2016a; 2017; Spera, Mapelli & Bressan 2015). Comparison of these
predictions to the observed distribution can be used to constrain the
uncertainties in parametrized models of source populations (Barrett
et al. 2017; Zevin et al. 2017). This has motivated the development
of methods to determine the mass-dependent coalescence rate in the
absence of false alarms, using both specific parametrized models
(Talbot & Thrane 2018; Taylor & Gerosa 2018; Wysocki, Lange &
O’Shaughnessy 2018a; Wysocki et al. 2018b) and non-parametric
methods (Mandel et al. 2017). The alignment of black hole spins is
expected to be a key distinguishing feature between binaries formed
in the field or through dynamical interactions (see e.g. Mandel
& O’Shaughnessy 2010; Gerosa et al. 2013; Stevenson, Ohme &
Fairhurst 2015; Farr et al. 2017; Fishbach, Holz & Farr 2017; Gerosa
& Berti 2017; O’Shaughnessy, Gerosa & Wysocki 2017; Stevenson,
Berry & Mandel 2017; Talbot & Thrane 2017; Vitale et al. 2017),
which also requires an understanding of the spin-selection function
(O’Shaughnessy et al. 2010; Dominik et al. 2015; Ng et al. 2018;
Tiwari, Fairhurst & Hannam 2018). This is caused by the ‘orbital
hang-up’ effect (Campanelli, Lousto & Zlochower 2006), where
binaries with component spins aligned with the total orbital angular
momentum tend to inspiral (i.e. reduce orbital radius) more slowly
than those with anti-aligned spins. This leads to an increase in the
radiation emitted at specific frequencies in the sensitive band of
ground-based detectors, thus increasing the detectability of these
sources.

The work presented here is complementary to these studies,
as it aims to incorporate an astrophysical distribution model as
part of a mixture with a noise component. As the observed
population is limited by the sensitivity of Advanced ground-
based detectors, the population of candidate sources at the greatest
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distances (lowest detection significance) will be contaminated with
background events. We expect our method, using information
from such sources, to improve both the precision and accuracy
of merger rate and population parameter estimates; though as we
will see, the degree of improvement depends on how easily the fore-
ground and background populations can be separated by existing
analyses.

We start by defining our notation and deriving the general form
of the model in Section 2. Section 3 describes its application to
a toy model of mass distribution inference in the presence of
noise, and shows its application to a range of simple analytic
population models. In Section 5, we consider a more realistic
simulated data set derived from an engineering run prior to the
start of Advanced LIGO observations in 2015. We conclude in
Section 6.

2 D E R I VAT I O N O F TH E G E N E R I C MO D E L

We consider a mixture of two populations, the astrophysical
‘foreground’ and terrestrial noise ‘background’: quantities defined
analogously for both populations will be distinguished by the
subscripts F or B, respectively. Quantities without subscript then
refer to the total population that is the union of foreground and
background.

The model is also hierarchical: each event, if assumed astrophys-
ical, has a set of intrinsic properties such as component masses
and spins, which we collectively denote γ . The distribution of these
properties over each population is assumed to have a form described
by a set of hyper-parameters. We do not have access to the ‘true’
values of properties for each event, only to a set of samples from
an (typically Bayesian) estimate based on data around the event.
These samples are derived under the assumption that the event is
astrophysical, thus events that are in fact background will also be
assigned parameter estimates.3

We then define the core quantities used in the following derivation
as

(i) ρ i, {ρ} : ranking statistic for one, respectively, for all events
in a given data set,

(ii) Nobs, NF,obs, NB,obs : observed number of events above a
threshold ρ i > ρ thr,

(iii) Nexp, NF, exp, NB, exp : expected number of events with ρ i >

ρ thr, when modelling these as a Poisson process,
(iv) θF, θB : hyper-parameters that describe the shape of the

foreground and background populations,
(v) ηi, {η} : indicator variable showing whether any given event,

respectively all events, belong(s) to the astrophysical (η = F) or to
the noise population (η = B), and

(vi) �γi , { �γ } : vector of samples representing the parameter esti-
mates (masses, spins, etc.) of one, respectively all events, under the
assumption that events are astrophysical.

We wish to infer the joint posterior probability distribution of
rates and population parameters for the two populations, given some
events for which {ρ} and { �γ } have been determined by the search
and parameter-estimation stages of data analysis:

p(NF,exp, NB,exp, θF, θB|{ρ}, { �γ }, Nobs). (1)

3We do not, of course, know with certainty that any given event is
background.

Using Bayes’ theorem, we can express the posterior distribu-
tion (1) in terms of prior and likelihood functions:

p(NF,exp, NB,exp, θF, θB|{ρ}, { �γ }, Nobs)

= p({ρ}, { �γ }, Nobs|NF,exp, NB,exp, θF, θB)p(NF,exp, NB,exp, θF, θB)

p({ρ}, { �γ }, Nobs)
.

(2)

We drop the normalization constant p({ρ}, { �γ }, Nobs) and factor
out the likelihood for Nobs as being independent of the population
hyper-parameters θF and θB:

p({ρ}, { �γ }, Nobs|NF,exp, NB,exp, θF, θB)

= p(Nobs|NF,exp, NB,exp)p({ρ}, { �γ }|NF,exp, NB,exp, θF, θB)

= NNobs
exp e−Nexp

Nobs!
p({ρ}, { �γ }|NF,exp, NB,exp, θF, θB), (3)

where we use a Poisson likelihood for Nobs with a total expected
number of events Nexp = NF, exp + NB, exp. The second term,
p({ρ}, { �γ }|NF,exp, NB,exp, θF, θB), is the likelihood for the observed
SNRs and parameter estimates, for the mixture model. We assume
each event is conditionally independent given the population param-
eters, and so the joint likelihood is just the product of the likelihood
for each one:

p({ρ}, { �γ }|NF,exp, NB,exp, θF, θB)

=
∏

i

p(ρi, �γi |NF,exp, NB,exp, θF, θB). (4)

Now, we can split each of these into terms for the astrophysical
and noise sub-models by introducing an indicator variable ηi ∈ {F,
B}, whose probability will depend on the rate parameters NF,exp and
NB,exp:

p(ρi, �γi |NF,exp, NB,exp, θF, θB)

= p(ρi, �γi |θF, ηi =F)p(ηi =F|NF,exp, NB,exp)

+p(ρi, �γi |θB, ηi =B)p(ηi =B|NF,exp, NB,exp)

= p(ρi, �γi |θF, ηi =F)
NF,exp

Nexp
+ p(ρi, �γi |θB, ηi =B)

NB,exp

Nexp
, (5)

where the probability of each class is just the expected fraction of
the total number. Since this is a sum of probability densities, special
care must be taken to ensure all terms are properly normalized, such
that∫ ∞

ρthr

dρ

∫
d �γ p(ρ, �γ |θη, ηi) = 1, (6)

for η = F and η = B, where ρ thr is a minimum SNR value for which
events are considered, either as a result of the event generation
method or as a choice to limit computational costs. Neglecting
this normalization would introduce an artificial preference for one
component over the other. An extension to further sub-populations
is simply achieved by including additional classes with their own
rate and hyper-parameters.

Recombining the pieces, we can write the desired posterior in
equation (1) as

p(NF,exp, NB,exp, θF, θB|{ρ}, { �γ }, Nobs)

∝ p(NF,exp, NB,exp, θF, θB)e−Nexp

×
∏

i

[
p(ρi, �γi |θF, ηi =F)NF,exp + p(ρi, �γi |θB, ηi =B)NB,exp

]
.

(7)

This expression is similar to equation (21) from Farr et al. (2015)
with an explicitly added dependence on source parameter estimates.
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This implies that our formalism reduces to the Farr et al. (2015)
result as used by the LIGO–Virgo Collaboration to estimate binary
black hole merger rates (Abbott et al. 2016a,g), if the event
distribution over mass or similar parameters is not free to vary.

The dependence on event parameters arises through the use of
samples �γi , i = 1. . . n, drawn from the likelihood function of the
data d for a given point in parameter space p(d| �γ ). These allow us
to evaluate the population likelihood function via marginalization
over the unknown true parameters, using the n samples to perform
a Monte Carlo integral as in Mandel (2010):

p(d|θF) =
∫

p(d| �γ )p( �γ |θF)d �γ
= 〈p( �γi |θF)〉p(d| �γi )

≈ n−1
∑

j

p( �γj |θF). (8)

Samples from the likelihood therefore serve as a useful intermediate
representation of the raw interferometer data d. To obtain a quantity
directly relevant for an astrophysical interpretation, the expected
number can be transformed into the local merger rate R using the
observing time T and the sensitive volume V(γ ):

R = NF,exp

T
∫

d �γ V ( �γ )p( �γ |θF)
, (9)

where the integral marginalizes over the space of source parameters
�γ . In practice, V ( �γ ) is estimated for a particular data set by a Monte
Carlo campaign, adding (‘injecting’) a large number of simulated
signals to the data and counting the resulting number of events
above threshold.4

An additional quantity, which is not directly used in the derivation
of our model but is important for an astrophysical interpretation, is
the probability of any given event originating from the astrophysical
foreground, pastro:

p(ηi = F, NF,exp, NB,exp, θF, θB|ρi, �γi)

= p(ρi, �γi |θF, ηi =F)NF,exp × p(NF,exp, NB,exp, θF, θB)

p(ρi, �γi |θF, ηi =F)NF,exp + p(ρi, �γi |θB, ηi =B)NB,exp
,(10)

pastro,i =
∫∫∫∫

p(ηi =F, NF,exp, NB,exp, θF, θB|ρi, �γi)

dNF,exp dNB,exp dθF dθB , (11)

where we marginalized over the population parameters. The integra-
tion range for both NF,exp and NB,exp is (0,∞), while the population
parameters θF and θB are integrated over their respective domains.

3 TOY M O D EL

We construct a simple toy model of the Universe to test our inference
framework in various ways. The toy model allows us to generate a
large number of realizations from the same underlying parameters,
and to be certain that we use the correct model when analysing
these realizations. For simplicity, we consider a static, flat, and
finite universe. Events are characterized completely by the distance
r to the source and a single mass parameter m, which takes the place

4If the data set already contains a number of detectable astrophysical signals,
then the expected number of such GW events above threshold should be
subtracted from the simulated event count. Alternatively, a data set that is,
to a good approximation, empty of astrophysical signals may be used for
the sensitivity estimate.

of the γ used in the previously derived expressions. This mass
parameter can be thought of as similar to the chirp mass. Additional
effects such as inclination, spins, mass ratio, or antenna patterns are
ignored.

For our detection statistic ρ, we simply use (a simplified proxy
for) the SNR, whose expected value ρ true is determined by r and m
as

ρtrue = K
m

r
, (12)

where K is an arbitrary constant that quantifies the detector sensi-
tivity. We also model the uncertainty in the estimation of the mass
parameter as

σPE ∝ m

ρ
, (13)

which is a simplification of the relation given in Cutler & Flanagan
(1994).

To apply the generic form found in equation (7) to a specific
problem, we need to evaluate the terms p(ρi, �mi |θF, ηi =F) and
p(ρi, �mi |θB, ηi =B). This involves finding a functional form for the
selection effects. For sources distributed uniformly in our static uni-
verse, we can derive the needed expression directly by manipulating
the joint distribution of masses and observed (detection) SNRs ρobs.
We use the SNR relation defined above in equation (12), which
defines a mass-dependent lower cut-off ρcut−off (m) = K m r−1

U to
the ρ true possible in our toy universe with radius rU. Additionally,
we use the fact that the euclidean distances r of sources distributed
uniformly in volume follow a r2-distribution. Therefore ,

p(ρobs, m)

= 1

VU

∫ rU

0
dr 4πr2p(ρobs, m|r)

= 1

VU

∫ rU

0
dr

∫ ∞

ρcutoff (m)
dρtrue 4πr2p(ρobs|ρtrue)

×p(ρtrue|m, r)p(m)

= 4πp(m)

VU

∫ ∞

ρcutoff (m)
dρ̂

∫ ∞

ρcutoff (m)
dρtrue p(ρobs|ρtrue)

× (Km)3

ρ̂4
δ(ρ̂ − ρtrue)

= 4πK3m3p(m)

VU

∫ ∞

ρcutoff (m)
dρtrue ρ−4

true p(ρobs|ρtrue)

∝ m3p(m)
∫ ∞

ρcutoff (m)
dρtrue ρ−4

true p(ρobs|ρtrue), (14)

where VU is the volume of our universe, and ρcut−off (m) = Km
rU

is
the lower SNR cut-off defined by a source of mass m being placed
at the maximum allowed distance rU. Thus, the SNR distribution
for astrophysical sources is p(ρ)∝ρ−4, and we expect the observed
mass distribution to be biased by a factor of m3. The mass and SNR
components of equation (14) are generally connected via the mass-
dependent SNR cut-off. The term p(ρobs|ρ true) accounts for the shift
in search SNR relative to the expected value due to detector noise:

p(ρobs|ρtrue) = χNC(ρobs; λ = ρtrue, k = 2), (15)

where χNC is the non-central chi distribution with a non-centrality
of λ = ρ true and k = 2 degrees of freedom.

For real binary merger events, we can pursue an analogous
derivation, though the resulting relation differs as the SNR is a
more complex function of event parameters than equation (12).
Additional complications arise if the detector is sensitive to events
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at cosmological distances, causing the observed masses to be
redshifted by a distance-dependent amount.

The search and parameter-estimation analyses that produce our
events can only cover a finite range of masses, of which we denote
the limits as mmin, mmax. We will assume that all astrophysical fore-
ground events have masses lying within these limits; in practice one
should take sufficiently wide limits that the density of foreground
events at these limits becomes vanishingly small.

For the mass distribution of the astrophysical foreground, we
consider two types of population distribution: a truncated power
law

p(m|θF) ≡ p(m|α,mlow, mhigh) ∝
{

mα if mlow < m < mhigh

0 else
(16)

with three free parameters, the slope α, lower mass cut-off mlow,
and high-mass cut-off mhigh. The two mass cut-offs are constrained
by the mass range considered as mmin ≤ mlow < mhigh ≤ mmax. The
second population is a Gaussian

p(m|θF) = p(m|μ, σ ) ∝
{
N(m; μ, σ ) if mmin < m < mmax

0 else
(17)

with two free parameters, the mean μ and standard deviation
σ . Strictly, this distribution is a truncated Gaussian, however, in
practice we consider parameter ranges such that p(m|θF) � 1 at the
boundaries. In contrast to the explicit differentiation between the
true and observed SNR, Bayesian parameter estimation provides us
with samples from the probability distribution of the true mass that
are used directly as in equation (8), which eliminates the need to
introduce a variable representing an observed mass.

In the background case, there are no selection effects, and we
assume the noise characteristics are such that there is no correlation
between the mass distribution and the SNR distribution. As a result,
p(ρi, �mi |θB, ηi =B) decomposes as

p(ρi, �mi |θB, ηi =B) = p(ρi |θB, ηi =B)p( �mi |θB, ηi =B). (18)

Note that in realistic data the SNR distribution of background
events may be strongly dependent on the mass (and other template
parameters; Abbott et al. 2016h), so this decomposition is not
necessarily valid.

The expected rate and distribution of background events caused
by instrumental noise can, in practice, be measured to high precision
using techniques such as time-shifted analyses (Usman et al. 2016;
Capano et al. 2017; see also Cannon, Hanna & Keppel 2013). For
our artificial universe, we have the freedom to choose the SNR and
mass distributions, though this choice was informed by observed
distributions in real data. We choose a power law with slope −12
in SNR; the mass posteriors are of constant width with their central
values distributed uniformly between mmin and mmax:

p(ρ|η=B) ∝ ρ−12, (19)

p(m|η=B) ∝ 1. (20)

More realistic choices would include the effect of template bank
density (Dent & Veitch 2014) and transient noise glitches (Nitz
et al. 2017; Nitz 2018) on the distribution of noise triggers over
mass space. Note that our inference of the foreground mass
distribution is expected to become more precise the more distinct the
foreground and background are, especially in SNR. Here, both SNR
distributions are falling power laws, however, background drops off
much more rapidly than foreground.

Finally, we combine the mass distribution with equations (14)–
(15). Using (16) for the truncated power law, we obtain

p(ρ,m|α, mlow,mhigh, η=F)

∝
∫ ∞

ρcutoff (m)
dρtrue ρ−4

true χNC(ρ; λ=ρtrue, k=2)

×
{

mα+3 if mlow < m < mhigh

0 else
. (21)

Using (17) for the Gaussian,

p(ρ,m|μ, σ, η = F)

∝
∫ ∞

ρcutoff (m)
dρtrue ρ−4

true χNC(ρ; λ=ρtrue, k=2)

×
{

m3N(m; μ, σ ) if mmin < m < mmax

0 else
.

The background model does not involve selection effects and yields

p(ρ,m|η=B) ∝ ρ−12. (23)

In general, normalizing these expressions requires an integral over
ρ and m, which can be difficult or computationally expensive. In our
model, this simplifies somewhat as the integrand ρ−4

true χNC(ρ; λ=
ρtrue, k=2) happens to assume values very close to zero for the
ρcut-off values of [0.25,4] allowed by our prior mass range of [5,80]
therefore we are able to approximate ρcut-off = 1.

To generate the artificial data sets, we draw a total number of
foreground and background events from a Poisson distribution
around the true values determined by the intrinsic rate. Each of
those events corresponds necessarily to a local maximum of signal
likelihood over time, mass, and, in general, other parameters –
we generally approximate this local maximum as a multivariate
Gaussian distribution. For each foreground event, we then draw
the true mass and distance, from which we can uniquely determine
the intrinsic SNR. We then simulate the impact of noise on the
measurement of both SNR and mass by drawing a value from a non-
central chi distribution around the true SNR to obtain the observed
SNR, and drawing the maximum likelihood value from a normal
distribution around the true mass with a width as determined by
equation (13). We use a uniform in mass prior therefore the posterior
samples for the mass estimate are drawn from a Gaussian with the
same width around the maximum likelihood value. For background
events, the observed SNR is drawn directly from a power law as
the background SNR distribution is determined empirically from
the observed SNR values, while the posterior samples for the mass
are drawn from a constant-width Gaussian around a central value
drawn from a uniform distribution between mmin and mmax for each
event.

Our method does not require us to make strong assumptions about
the shape or width of the mass likelihood, however, it is important
to generate these artificial results carefully as negligence can have
unexpected consequences. In practice, we have found the scaling
and width of the posteriors to have little effect on our results when
the posteriors are of smaller scale than the population.

4 TOY MODEL R ESULTS

We applied our method to a large number of realizations for
each choice of foreground distribution, though the figures in
the following section only show results for a single realization.
The results across realizations will be given in text only. The

MNRAS 484, 4008–4023 (2019)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article-abstract/484/3/4008/5298902 by U
niversity of G

lasgow
 user on 13 August 2019



Digging populations out of the noise 4013

mass limits chosen for all toy model results5 were mmin = 5,
mmax = 80. The total expected number of events above an SNR
of 8, the lowest threshold considered, is 1600, with 95 per cent
contamination due to background events. The chosen slope of −12
for the background SNR distribution is less steep than in typical
LIGO–Virgo analyses for stellar mass compact binary mergers;
our choice exaggerates the transition region in which the chances
of an event belonging to either foreground or background are
comparable.

To simulate the limitations due to the computational costs of
the analysis, we impose an SNR threshold on events, assessing its
influence on our inferences by varying its value between 8 and 30.
Most of these SNR values would typically be considered as sub-
threshold since an SNR of ≈13.7 is required for an event to have a
pastro value of 50 per cent, and to reach pastro = 99 per cent an SNR
of ≈24 is needed. These numbers are meaningful only in relation
to this simulation. The actual relationship between SNR and pastro

varies between detection pipelines as they typically use additional
information in their detection statistics to reduce the significance of
background events. The number of detectors used in the network,
as well as their sensitivities and the actual characteristics of the
foreground and background distributions will also have an effect.
A more realistic application is given in Section 5. Lastly, the free
parameters in equation (12) and equation (13) are chosen such
that an event of true mass m = 30 at a notional distance of
400 Mpc has a mass posterior with width σ PE ≈ 1, and has an
SNR of ρ ≈ 50. The width of the mass posteriors of background
events is set to the constant value of 3.2, typical of foreground
events at the lowest SNR considered. In reality, the mass posterior
distributions for background events are mass dependent and often
irregular.

The priors chosen are flat in all hyper-parameters, with two
exceptions: the width of Gaussian populations, where the prior was
flat-in-log, and the expected number of astrophysical foreground
events, where we used a Jeffreys prior:

prior(σ ) ∝ 1
σ
, (24)

prior(NF,exp) ∝ 1√
NF,exp

. (25)

Parameter estimation was performed using the emcee (Foreman-
Mackey et al. 2013) implementation of an Affine Invariant Markov
chain Monte Carlo Ensemble sampler (Goodman & Weare 2010).

4.1 Power-law distribution

The first population considered was the truncated power law, which
was inspired by the idea that black hole masses may be distributed
analogously to the initial mass function of their progenitor stars.
We add parameters mmin and mmax to define the lower and upper
limits of the power-law distribution. This is motivated by the desire
to determine whether there are gaps in the astrophysical black hole
mass distribution: at the low end to compare with the apparent lower
limit of black hole mass in X-ray binaries (Farr et al. 2011), and at
the high end to determine the maximum mass above which a pair-
instability supernova completely disrupts the star (Barkat, Rakavy
& Sack 1967). In our simulation, we chose the power-law slope to
be −2.4, and the cut-off values to be 12 and 64.

5Since we do not claim a specific link to astrophysics in the toy model, the
mass units are arbitrary.

Our primary results, the estimates of model parameters and their
correlations, are shown in Fig. 1. These results use an SNR threshold
8, the lowest value for which we run our analysis, as we would expect
this to yield the best possible parameter estimates. Notable features
are the large spread of possible merger rate densities (abbreviated
as ‘Rate’) and their correlation with the lower mass cut-off. This
is a consequence of the fact that the power-law slope is effectively
increased by 3 due to selection effects, thus detected events are
described by a positive slope. The detection bias towards high mass
means that fewer events are available to constrain the lower cut-off
value, and low-mass events that are observed tend to have lower
SNR values. As the total rate is still dominated by low-mass (and
low-amplitude) events, the large uncertainty of the low-mass cut-
off yields a high uncertainty on the rate. The estimated fraction of
foreground events in the sample of observed events couples linearly
to the merger rate density, but is less significant than the lower mass
cut-off.

To assess our method in the light of its main goal of avoiding
bias while lowering the SNR threshold, a single analysis result
is insufficient. Therefore, we analyse the same data with a range
of different SNR thresholds to observe the change in the hyper-
parameter estimates. Fig. 2 shows the marginalized posteriors for
the rate and the three population parameters as a function of SNR
threshold. We can observe the posteriors growing wider as the
SNR threshold is increased and information from fewer events is
considered. The result from one single realization is, however, not
necessarily representative of the general behaviour. Combining the
results from multiple realization shows there is no noticeable bias
regardless of the threshold chosen, and estimates improve as the
threshold is lowered. Between SNR thresholds of 8 and 24, the
width of the 90 per cent credible intervals decreases on average by
factors of 2.4 for the power-law slope, 1.3 and 1.6 for the lower and
upper mass cut-offs, respectively, and 1.7 for the log of the inferred
merger rate density.

Given the estimates of population parameters, we can also
compute an estimate of the underlying mass distribution, which
we show in Fig. 3. Here, we show the 50 per cent and 90 per cent
confidence bands, as defined by computing the percentiles of p(m|θ )
across all samples θ from the posterior for any given mass m.
We observe that the true distribution is contained well within
the credible interval and deviations are generally caused by an
underestimated lower cut-off. In general, there is a trade-off between
expanding the bounds of the mass distribution to include additional
events, and shrinking it to increase the value of the probability
density function (PDF) for highly significant events. The lower cut-
off tends to have more freedom of movement as there are fewer
high-SNR events at low mass to constrain it.

As a final result for this population, Fig. 4 shows the estimated
probability of any given event to have an astrophysical origin pastro,
and how it compares to an SNR-only estimate indicated by the
black dash–dotted line. While this figure does not show quantitative
results, we do observe that foreground events are largely located
above the dash–dotted black line, indicating that our confidence in
them being real has increased, while background events tend to be
located below and are often on the pastro = 0 line when their masses
are outside the hard cut-offs of the truncated power-law population.
Thus, we find, as expected, that the discrimination between signal
and noise populations is improved with the incorporation of infor-
mation about their mass distributions (Dent & Veitch 2014). We
determine that the percentage point difference between pastro using
our method and the SNR-only approach to be ≈2 per cent, although
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4014 S. M. Gaebel et al.

Figure 1. Parameter estimates for a single realization of the toy model described in Section 4.1. The foreground population model is a truncated power law
with slope α, and cut-offs mmin and mmax. The expected number of events above the SNR threshold of 8 are 1600, 5 per cent of which are expected to be
foreground events. The black lines show the kernel density estimate of the posterior (solid) and its median value (dashed). The red dash–dotted line indicates
the true value for the underlying population.

this includes events with tiny absolute shifts due to them being very
close to either 0 per cent or 100 per cent in the first place.

4.2 Gaussian distribution

The second core population considered is a simple Gaussian with a
very small width. This population was chosen to test the inference
on hard-to-infer parameters and to see the effect a very distinctive
distribution has on the discriminating power of our method. We
chose the width to be very narrow with a standard deviation of
1.6 around a mean mass of 27. The population is narrower than
the individual posteriors, which have a typical width of ≈2−3.
Therefore, we expect the population to require a relatively large
number of events to resolve. How many events are needed to resolve
these features generally depends on the population, in our case
we find that ≈10−20 events are needed to consistently constrain
the population width to be smaller than individual posteriors. On
the other hand, the discriminating power of using information
from the mass estimates should be much greater than for a wide

distribution, such as the truncated power law used in the previous
section.

The parameter estimates for a single realization are shown in
Fig. 5. We observe that true width of the population σ is contained
comfortably within the inferred posterior, though the uncertainty
is rather large. It is generally overestimated slightly. Similarly, the
mean of the population is found well with an uncertainty comparable
to the population width. The rate is constrained much better than in
case of the truncated power law as this model lacks the degeneracy
between the rate and a poorly constrained population parameter.
The lack of a strong correlation between a population parameter
and the merger rate density also highlights its linear relation to
the estimated number of foreground events contained within the
sample.

When lowering the SNR threshold from 24 down to 8, the sizes
of the 90 per cent confidence intervals of the population parameters
and merger rate density decrease by factors of 4.9, 2.0, 3.4 for the
mean, the log of the width, and the log of the merger rate density,
respectively. This is illustrated in Fig. 6 for one specific realization.
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Digging populations out of the noise 4015

Figure 2. Confidence intervals for individual parameters of one realization of the truncated power-law model (see Section 4.1), as a function of SNR threshold.
The parameters shown are the inferred astrophysical merger rate (upper left) and power-law slope (upper right), as well as the low (lower left) and high (lower
right) mass cut-offs. The red dash–dotted line indicates the true value for the underlying population. The dashed grey lines indicate the expected number of
foreground events at the given SNR threshold.

Figure 3. The inferred mass distribution of the foreground population using the truncated power-law model and simulated data (see Section 4.1). The bands
indicate the given percentiles in the probability density at any given mass across all posterior samples.

The uncertainty on inferred population parameters grows rapidly
as the number of events decreases. The most noticeable change is
observed at SNR thresholds of 19, 20, and 21. This is caused by
two events with SNRs between 19 and 20 whose removal decreases
the number of events to 5, one of which is a low-mass outlier. This
outlier has an SNR slightly above 20, and is therefore removed
when the SNR threshold is set to 21.The true mass distribution
is well within the confidence interval shown in Fig. 7, though the

true distribution is somewhat more narrow than inferred as seen
previously in Fig. 5.

The comparison of the estimated pastro as shown in Fig. 8 shows
how important the inclusion of masses is for this population. We
can clearly identify the band of foreground events for which 1
− pastro is smaller by factors of a few up to 10 compared to
the SNR-based estimate. In this specific realization, only 6 of 76
foreground events lost any pastro, across multiple simulations on
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4016 S. M. Gaebel et al.

Figure 4. The probability that an event is caused by detector noise rather than being of astrophysical origin, 1 − pastro, versus SNR. The foreground population
model is a truncated power-law distribution. The blue and red dots represent foreground and background events, respectively. The dash–dotted line shows the
probability that would be inferred by an SNR-based estimate, assuming the relative number of expected foreground and background events is known perfectly.
The inset focuses on the region with background events and emphasizes events that are unlikely to be astrophysical using a linear scale.

average 97 per cent of foreground events saw an increase in pastro.
In the case of background events, ≈20 per cent saw an increase in
their pastro of up to 10 per cent, though most are demoted and often
down to effectively 0.

4.3 Incorrect models – No background component

Previous analyses of GW populations (such as the power-law model
used in Abbott et al. 2017) use a high threshold to ensure a high
probability that the events used are of astrophysical origin, in
effect neglecting the possibility of background. Here, we investigate
the behaviour of our toy model with the background component
disabled, corresponding to such a scenario. This shows the results
one would obtain if simply fitting the foreground model to a
contaminated data set. The underlying population is a truncated
power law identical to the one used in the first set of results presented
in Section 4.1.

The results are shown in Fig. 9, where we observe the inferred
distribution to be very different from the true one when the lowest
SNR threshold of 8 is used and the data set is 95 per cent polluted
(left-hand panel). The mass cut-offs are extended to the edges of
the prior ranges to incorporate noise events at those values. The
confidence interval includes the true value as long as the SNR
threshold is sufficiently high since the number of background events
is negligible, but trends towards −3 as the threshold is lowered. This
is expected since the background dominates the low-SNR region
and has a power-law slope of 0 in mass. This slope corresponds
to an actual slope of −3 when selection effects are considered. In
the right-hand panel, we see the effect on the estimation of the
power-law slope as the threshold is varied. Once the SNR threshold
reaches ≈12, the statistical uncertainty of the slope becomes large
enough that the systematic bias is not noticeable.

4.4 Incorrect models – Neglected selection effects

The second kind of error we considered was the neglect to properly
account for the mass dependence of selection effects. In case of a

power-law distribution this is trivial, as it simply adds +3 to the
inferred value of the slope. Therefore, we chose a Gaussian as the
population, and we increased the width to 9 to highlight the impact
of selection effects on the inferred population. Fig. 10 shows that
the selection effects effectively shift the distribution towards higher
masses. This is a general feature as the m3 term strongly favours
high-mass events in the observed set of events. Depending on the
population, this may also affect the width of the population, which
happened to be a very minor effect in this case.

Together with the previous Section 4.3, this illustrates that
population inference can be made impossible even when the model
matches the underlying distribution. Accounting for the presence of
noise and selection effects is essential for correct inference and to
avoid bias when attempting to lower the SNR threshold.

5 A DVA N C E D L I G O EN G I N E E R I N G DATA
SI MULATI ON

After the successful tests using the simple toy model, we also
applied this method in a more realistic context, within an end-
to-end analysis of simulated GW strain data where event candidates
are identified by one of the compact binary detection pipelines
currently used to search LIGO–Virgo data, PyCBC (Dal Canton
et al. 2014; Abbott et al. 2016h; Usman et al. 2016; Nitz et al.
2018). We searched semirealistic simulated data from the fourth
advanced LIGO engineering run (ER4): LIGO Hanford Observatory
(LHO) noise data were simulated as Gaussian noise using the
LIGO design sensitivity noise spectrum with an angle-averaged
range of ∼1600 Mpc for a 30 + 30 M� black hole coalescence
signal (Abbott et al. 2018), while LIGO Livingston (LLO) data
were derived from an instrumental channel monitoring the input
laser power, recoloured to the same average target spectrum. The
ER4 data contained a non-trivial population of high-amplitude
noise transients, mostly arising from the LLO laser channel (LHO
simulated data were also not entirely free of artefacts from data
generation and transmission). However, these ‘glitches’ generally
did not have similar morphology to binary merger signals, and
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Digging populations out of the noise 4017

Figure 5. Parameter estimates for a single realization of the Gaussian mass distribution described in Section 4.2. The foreground population model is a
Gaussian with two free parameters, the mean μ and width σ . The true expected number of events above an SNR threshold 8 is 1600, 5 per cent of which are
expected to be foreground events. The black lines show the kernel density estimate of the posterior (solid) and its median value (dashed). The red dash–dotted
lines indicate the true values for the underlying population.

Figure 6. Confidence intervals for individual parameters of one realization of the Gaussian population (see Section 4.2), as a function of SNR threshold. The
parameters shown are the inferred mean (left) and the width of the distribution (right). The red dash–dotted line indicates the true value for the underlying
population. The dashed grey lines indicate the expected number of foreground events at the given SNR threshold. The plot terminates at an SNR threshold of
29 as there are no events with SNR 30 or higher in this realization.
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4018 S. M. Gaebel et al.

Figure 7. The inferred mass distribution of the foreground population using the Gaussian model and simulated data set (see Section 4.2). The bands indicate
the given percentiles in the probability density at any given mass across all posterior samples.

Figure 8. The probability of an event being caused by detector noise rather than being of astrophysical origin, 1 − pastro, versus SNR. The foreground
population model is a narrow Gaussian distribution (see Section 4.2). The blue and red dots represent foreground and background events, respectively. The
dash–dotted line shows the probability that would be inferred by an SNR-based estimate, assuming the relative number of expected foreground and background
events is known perfectly. The inset focuses on the region with background events and emphasizes events that are unlikely to be astrophysical using a linear
scale.

Figure 9. Results for the power-law model when we neglect to account for contamination due to noise, as described in Section 4.3. Left: Inferred mass
distribution at the lowest SNR threshold of 8, the PDF percentiles are calculated across the population posterior at any given mass. Right: Inferred power-law
slope as a function of SNR threshold. The vertical dashed lines indicate the expected number of true events above a particular SNR.
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Digging populations out of the noise 4019

Figure 10. The inferred mass distribution for the Gaussian model without compensating for the mass dependence of selection effects (see Section 4.4), using
the lowest SNR threshold of 8. The PDF percentiles are calculated across the population posterior at any given mass.

Figure 11. Cumulative number of (simulated) events detected in ≈37 d of LIGO ER4 engineering run data recolored to the ‘ZDHP’ design spectrum, versus
threshold search-detection statistic ρc. The black steps indicate the search results, with ±√

N bands indicating expected counting fluctuations. The dark red
and light blue lines indicate power-law models of signal and noise distributions, respectively. The dotted light blue lines indicate empirical estimates of the
noise distribution from each of three disjoint analysis periods, showing that the background model p(ρc|ηi =B) ∝ ρ−54.8

c is sufficiently accurate in the range
of interest. The dark green dashed lines show the total expected number of events (signal+noise) as a 90 per cent credible band.

did not give rise to a long-tailed background distribution, such as
those occurring for some ranges of candidate parameters in recent
Advanced detector data (Abbott et al. 2016b,h; Nuttall 2018).

Simulated GW signals were added (‘injected’) to the noise data
streams before they were stored and broadcast to the collaboration’s
computing grid. The injected population of binary black hole merg-
ers was chosen to be uniform in both component masses between
limits of 5 and 20 M�, and uniform in volume, with no cosmological
(redshift) effects included. The EOBNRv2HM approximant tuned to
numerical relativity (Pan et al. 2011) was used to simulate binary
black hole mergers including non-dominant GW emission modes,
for non-spinning binary components. The intended astrophysical
rate corresponding to the injected merger signals was 5 Gpc−3yr−1.6

6Due to a software error the amplitude of injected signals was a factor
2 higher than intended, effectively simulating a true merger rate of

Our PyCBC search covered binary mergers of non-spinning
components with masses between 3 and 50 M�; this range also
defined the prior for parameter estimation performed on each
event using LALinference (Veitch et al. 2015). The search-
detection statistic for candidate events, ρc, is the quadrature sum
of χ2-reweighted SNRs ρ̂H,L over single-detector events having
consistent component masses and times of arrival between the two
detectors (Abadie et al. 2011; Babak et al. 2013). The number of
events we chose to analyse is limited by computational cost; we
impose a threshold ρc > 8 leaving us with 100 events in ≈37 d
of LHO–LLO coincident observing time; 51 of these events corre-

40 Gpc−3yr−1; however, in the results presented here, we rescale our rate
estimates to compensate for this error.
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4020 S. M. Gaebel et al.

Figure 12. Parameter estimates for the ER4 data set as summarized in Fig. 11 and Section 5. The foreground population model is power law in both component
masses with separate slopes α and β and shared cut-offs mlow and mhigh. The cut-off masses and merger rate density are given in units of M� and Gpc−3yr−1,
respectively. The black lines show the kernel density estimate of the posterior (solid) and its median value (dashed). The red dash–dotted line indicates the true
value.

spond to known injected signals, with the remainder due to noise
fluctuations.7

We first determine the rates of signal and noise events and the
relative probabilities of signal versus noise origin for each event
(Farr et al. 2015; Abbott et al. 2016a,g), given only the ρc value
of each event, models of the signal, and noise event distributions
over ρc, and an estimate of the total rate of noise events derived
from time-shifted analyses (Babak et al. 2013; Nitz et al. 2018).
The result of this estimate is summarized in Fig. 11.

We find 53 events with a signal probability pastro above 50 per cent,
of which 47 have pastro > 90 per cent. This analysis is comparable
to those used to estimate the rate and pastro for binary black hole
mergers in the first Advanced LIGO Observing period (Abbott et al.
2016a), and does not use information about the mass distributions
of signal or noise events, besides the assumption that the signal
population is contained within the analysis mass limits.

7In reality, we will not have access to an independent record listing all true
signals!

We now turn to our analysis, which estimates the rate and
population model parameters simultaneously. The population model
used here is a power law in each component mass, of the form

p(m1,m2|θF, ηi = F) ∝
{

mα
1 m

β
2 if mlow < m2 ≤ m1 < mhigh

0 else
, (26)

where α and β are the two power-law slopes, both with true values
equal to 0. The mass cut-offs mlow and mhigh are shared between
both power laws, resulting in four free parameters in our population
model. The selection effects were simulated numerically using
the LALsimulation implementation of the IMRPhenomPv2
waveform (Hannam et al. 2014; Khan et al. 2016) to implement
the method described by Finn & Chernoff (1993).

As the background model, we used a power-law fit to the
distribution of ρc values from the PyCBC time-shifted analysis,
giving a slope of ≈−54.8 for ρc > 8. In a separate step, we
constructed 2D fit to the distribution of component masses in the
search results. We find empirically that the background distribution
can be approximated as the product of a power law in chirp mass
and an exponential distribution in mass ratio. Using the masses
as determined by the search is not strictly the correct approach,
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Digging populations out of the noise 4021

Figure 13. The probability of an event recovered from the ER4 data being caused by noise instead of corresponding to an astrophysical event, which is 1 −
pastro. The blue and red dots represent foreground and background events, respectively. The dash–dotted line shows the probability that would be inferred by an
SNR-based estimate. The inset focuses on the region with background events and emphasizes events that are unlikely to be astrophysical using a linear scale.

which would be to run the time-shifted data through the same
LALInference analysis as used for the zero-lag events: this was
computationally infeasible. Therefore, the search results serve as a
proxy for the optimal analysis.

We have found empirically that small changes to the back-
ground mass distribution do not have a strong effect on the
result, which is expected given the dissimilarity of foreground
and background distributions. (Note that real interferometer data
containing chirp-like and blip-like features may be less forgiving
in terms of the separability of foreground and background, as
illustrated in Abbott et al. 2016b,h). We do not include any
additional uncertainty on the background model rate or mass
distribution.

The results of estimating the population parameters as displayed
in Fig. 12 show that we successfully recover the true population
parameters. The slopes are underestimated slightly that causes the
inferred merger rate density to be elevated, although the true value
is still encompassed. The mass cut-offs are found well with some
tails to lower or higher masses for mlow and mhigh, respectively, since
the uniform distribution of injections covers all regions of the mass
range without major gaps, and the cut-offs are shared between both
component masses.

Since the slope of the background SNR distribution is much larger
than the slope of the astrophysical foreground, the transition region
where events may belong to either source category with comparable
probabilities is quite small. This means there are few events that fall
in between the region of certain background and certain foreground,
limiting the gains that can be made by our method in this case.
Nevertheless, the fact that the foreground mass distribution is quite
distinct from the background causes a significant increase in pastro

relative to the ρc-based approach, as can be seen in Fig. 13.
As with the previous ranking statistic based analysis, we can count

the events found with a pastro value above some given threshold. We
find 56 events above a threshold of 50 per cent, which is three
events more than before. The number of included events that we
later identified as noise triggers rises from 4 to 5. When the threshold
is set to pastro > 90 per cent, the number of events increases from
5 to 52, though it now includes one noise trigger. Thus, we find that

applying our new method to realistic data not only reproduces the
results obtained using established methods, but identifies additional
foreground events. Since, in real Advanced detector data, the
background distributions tend to be less steeply falling than those
obtained here, we expect that the average (fractional) increase in
number of signals found with high pastro may be larger in the real-
data case.

6 O U T L O O K

In this work, we have derived a new technique for simultaneous
estimation of parameters defining the shape of two or more sub-
populations and their expected contribution to the overall number
of events. This technique allows us to extract information from
formerly sub-threshold events without biasing the result due to
uncertainties in classifying their origin. The method is agnostic
to the specific choice of threshold, and lowering the threshold
will improve the result by allowing information from events of
an uncertain nature to be included.

Such improvements will eventually diminish in the regime
where events have a high probability of background (noise) origin,
though the point where further improvements become negligible
depends on the specific characteristics of the two components.
Fig. 1 of Farr et al. (2015) shows a simple example, using
events for which only a single data value is measured, where
improvements in foreground rate measurement become negligible
in the background-dominated regime. In any case, digging deep into
the background will not be detrimental; doing so can be especially
worthwhile when the background model has some uncertainty,
for instance following a specific functional form with partially
unknown parameters. Additional events with low probability of
astrophysical origin will reduce uncertainty on the background
parameters, which in turn reduces the uncertainty on the foreground
model.

The greatest gains over existing methods are found when there
is a large number of events for which the source classification
gives comparable probabilities for at least two categories, while
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4022 S. M. Gaebel et al.

the distributions in secondary parameters are very distinct. This
behaviour near the transition between populations is likely to be
especially useful in the characterization of weak event populations,
such as unresolvable binary mergers at cosmological distances.
This is of particular interest when determining whether the source
population evolves with redshift. Conversely, gains are expected to
be small when the primary source classification is very potent and
population models are uncertain; in this case our method converges
to that with a single population.

While such thresholded analyses that ignore the possible presence
of background cannot be guaranteed free of systematic bias, the
expected size of bias can be bounded by considering the rate
of background events above threshold, as well as the degree of
divergence between foreground and background distributions over
the parameters of interest. Controlling the bias of a thresholded
analysis thus still requires accurate background estimation. In
particular, for the small number of high-significance events thus far
detected by LIGO–Virgo, possible biases on population inference
due to neglecting background contamination are expected to be well
below statistical errors.

Furthermore, we find that selection effects must be included
in the analysis to avoid systematic error of the population
parameters. Our example study illustrates that this is particu-
larly important for the mass distribution of binary black hole
mergers.

We have successfully tested this new model on different binary
merger mass distributions in an artificial universe, as well as to
synthetic LIGO data from an engineering run. This demonstrates
the feasibility of applying this method to existing and future
LIGO–Virgo observing runs, which should allow a better joint
determination of source event rates and distributions. Challenges in
application to real data over a broad signal parameter space include
adequately modelling the complex distribution of noise events over
binary masses and spins (Abbott et al. 2016b,h; Nitz et al. 2017).
The method itself is, however, not limited to the realm of GW
astronomy, and can be useful whenever a set of data points contains
multiple populations.
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