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Abstract: This paper presents sufficient conditions for the robust stabilization of discrete-
time polytopic systems subject to control constraints and unknown but bounded perturbations.
The attractive ellipsoid method (AEM) is extended and applied to cope with this problem. To
tackle the stabilization problem, new linear matrix inequality (LMI) conditions for robust state-
feedback control are developed. These conditions ensure the convergence of state trajectories of
the system to a minimal size ellipsoidal set despite the presence of non-vanishing disturbances.
The developed LMI conditions for the AEM are extended to deal with the problem of gain-
scheduled state-feedback control, where the scheduling parameters governing the time-variant
dynamical system are unknown in advance but can be measured in real-time. A feature of the
obtained conditions is that the state-space matrices and Lyapunov matrix are separated. The
desired robust control laws are obtained by convex optimization. Numerical simulations are
given to illustrate the feasibility of the proposed AEM for robust disturbance rejection.

Keywords: Robust control; disturbance rejection; attractive ellipsoid method; gain-scheduling;
linear parameter-varying systems; Lyapunov methods.

1. INTRODUCTION

A prominent problem in robust control is the distur-
bance rejection with the ultimate goal to minimize the
influence of uncertainty (e.g., parametric type, unmod-
eled dynamics, external persistent perturbations) on the
performance of dynamical systems. Many techniques have
been developed, for example, linear quadratic gaussian
control (LQG) and H∞ control (Petersen et al., 2000),
sliding-mode control (Utkin et al., 2009), robust maximum
principle (Boltyanski and Poznyak, 2012), active distur-
bance rejection control (Guo and Zhao, 2016). Among
these techniques, the invariant ellipsoid method (Nazin
et al., 2007; Polyak et al., 2008) for linear systems and the
more recently developed technique, the attractive ellipsoid
method (AEM) for nonlinear systems (Gonzalez-Garcia
et al., 2009; Poznyak et al., 2014a), use the concept of
asymptotically attractive (invariant) ellipsoids. The AEM,
which is based on Lyapunov arguments, is a robust control
design technique that minimizes the effect of non-vanishing
and unmatched perturbations in nonlinear systems. In the
presence of non-vanishing disturbances, it is not possible
to keep the state of a dynamical system at the origin. The
key idea of the AEM is to find a controller and a corre-
sponding asymptotically attractive ellipsoid such that state
trajectories of the system converge to a small (in a given
sense) neighborhood of the origin. These ellipsoidal regions
characterise the effect of the exogenous disturbances on
state trajectories of the dynamical system.

? A companion paper (Garćıa and Ampountolas, 2018) deals with
the robust stabilization of continuous-time systems by the AEM.

In this paper, the AEM is extended to the problem of
robust constrained stabilization of discrete-time polytopic
systems subject to unknown but bounded perturbations.
Newly developed conditions for the robust stabilization
of continuous-time polytopic systems by the AEM are
presented in Garćıa and Ampountolas (2018). To the best
of our knowledge, in the AEM literature there does not
exist LMI synthesis conditions for the robust stabilization
state-feedback control problem of discrete-time systems by
the AEM. Most of the corresponding literature deals with
continuous-time systems (Lozada-Castillo et al. (2013),
Poznyak et al. (2014b), Perez et al. (2015)). Therefore
this work offers in the literature new LMI stability con-
ditions for AEM-based approaches. The main feature of
the obtained conditions is that the state-space matrices
and Lyapunov matrices are decoupled allowing parameter-
dependent Lyapunov functions to be employed for robust
stabilization and performance. The new LMI conditions
allow for the application of the AEM to discrete-time
linear systems with and without structured uncertainty
where the uncertainty is a bounded and convex polytope or
ellipsoid. We extend the developed LMI conditions to the
problem of gain-scheduled state-feedback control, where
the scheduling parameters that govern the time-variant
dynamical system are unknown in advance but can be
measured in real-time (Shamma and Athans, 1991).

To ensure convergence of system state trajectories to a
minimal ellipsoidal set, a semidefinite programming (SDP)
problem is solved, which determines the minimum size
of the corresponding attractive ellipsoid and the required



robust state-feedback control. An important characteristic
of the proposed approach is that a design parameter, which
affects the feasibility of the obtained LMIs, is restricted
in the interval (0, 1]. This significantly reduces the search
space of solutions for the corresponding SDP problem. For
continuous-time systems, this parameter is not restricted
(Garćıa and Ampountolas, 2018). For the specification
of this parameter, an Armijo-like rule which is based
on successive stepsize reduction is proposed. Numerical
examples are given to illustrate the feasibility of the
proposed approach.

2. PRELIMINARIES

Notation. For matrices and vectors (·)T indicates trans-
pose. For matrix elements ? denotes the transposed sym-
metric element and X � 0 indicates that X is negative
semi-definite. For symmetric matrices, X ≺ 0 indicates
that X is negative definite. Sn denotes the space of square
and symmetric real matrices of dimension n. For square
matrices trace(·) denotes the trace of (·).
Problem Formulation. Consider a discrete-time linear
time-invariant system

xk+1 = Axk +Buk + ωk, x0 given, (1)

where the pair (A,B) is controllable, A ∈ Rn×n, B ∈
Rn×m, xk ∈ Rn is the system state, uk ∈ Rm is the control
input, and ωk ∈ Rn is an unknown but bounded (at each
discrete-time instant) perturbation,

ωT
kWωk ≤ 1, ∀ k ≥ 0, (2)

where the matrix W ∈ Sn � 0 is given. No other
constraints are imposed on the perturbation ωk, however
it is not considered to be random.

The objective of this paper is to design a robust state-
feedback controller of the form uk = Kxk, where K ∈
Rm×n is a gain matrix, for the system (1) to compensate
the influence of external perturbations (2) on the system
state such that the closed-loop system trajectories

xk+1 = (A+BK)xk + ωk, (3)

converge asymptotically to a minimal size ellipsoid, which
includes the origin.

The following definition characterizes this minimal region.

Definition 1. (Ellipsoidal set). An ellipsoid E(P, x̄) ⊂ Rn
with center x̄ and shape matrix P is a set of the form,

E (P, x̄) :=
{
x ∈ Rn : (x− x̄)TP−1(x− x̄) ≤ 1

}
, (4)

where P ∈ Sn is a positive definite matrix.

If x̄ = 0 then the ellipsoid can be written as E (P ) :={
x ∈ Rn : xTP−1x ≤ 1

}
, P = PT � 0, and we further

assume it is a controlled invariant set of (1).

Also, consider the following distance metric from a point
x to a set E , ‖x‖E := infy∈E ‖x− y‖ ,∀x ∈ Rn.

Definition 2. (Asymptotically Attractive Ellipsoid). The
set E(P ), is an asymptotically attractive ellipsoid for the
system (1) if ‖x (k, x0)‖E(P ) → 0, as k → ∞, for any

x0 ∈ Rn.

For any initial condition x0, convergence of state trajecto-
ries of system (1) to a minimal size ellipsoid is guaranteed
by the asymptotic attractivity of the set E (P ).

3. MAIN RESULTS

3.1 Attractive Ellipsoid Method for Discrete-time Systems

Consider the quadratic Lyapunov function

V (xk) = xTkP
−1xk, P � 0.

Its total difference along the trajectories of system (3) is,

∆V (xk) = V (xk+1)− V (xk)

= xTkQ
TP−1Qxk + xTkQ

TP−1ωk (5)

+ ωT
kP
−1Qxk + ωT

kP
−1ωk − xTkP−1xk

for all (xk, xk+1, ωk) 6= 0, where Q := (A+BK) and
ωT
kWωk ≤ 1. Define now the augmended vector zTk =[
xTk ωT

k

]
, then ∆V (xk) = zTkΩ1zk < 0 holds for all zk 6= 0

with,

Ω1 :=

[
QTP−1Q− P−1 QTP−1

P−1Q P−1

]
≺ 0.

Adding and subtracting αxTkP
−1xk and αωT

kWωk in (5),
where α ∈ (0, 1], we obtain

∆V (xk) = zTkΩ2zk − αxTkP−1xk + αωT
kWωk

≤ zTkΩ2zk + α (1− V (xk)) ,

with

Ω2 :=

[
QTP−1Q− P−1 + αP−1 QTP−1

? P−1 − αW

]
.

If Ω2 ≺ 0, this implies that zTkΩ2zk < 0 for all zk 6= 0 and
the corresponding Lyapunov function V (xk) satisfies the
inequality zTkΩ2zk + α (1− V (xk)) < α (1− V (xk)). Then
∆V (xk) is upper bounded as

∆V (xk) < α (1− V (xk)) ≤ 0,

and V (xk) > 1 guarantees that E (P ) is an attractive
ellipsoid of the closed-loop system (3).

The following LMI condition establishes that the ellipsoid
E (P ) is an attractive ellipsoid of the closed-loop system
(3) with gain matrix K = LG−1, where L and G (non-
singular) are design matrices of appropriate dimension.

Theorem 3. If there exists a symmetric positive definite
matrix P ∈ Sn, matrices L ∈ Rm×n and G ∈ Rn×n (non-
singular), and a constant scalar α ∈ (0, 1], such that the
following condition is satisfied,

P −G−GT 0 GTAT + LTBT GT

? −αW I 0
? ? −P 0

? ? ? − 1

α
P

 ≺ 0 (6)

then the ellipsoid E (P ) is an attractive ellipsoid of the
closed-loop system (3) with feedback gain matrix K =
LG−1 and perturbation matrix W ∈ Sn.

Proof. Assume that condition (6) is feasible. Block (1, 1)
of (6) implies P − G − GT ≺ 0, where P is positive
definite and G is of full rank. Observe that W � 0 and
P � 0 are guaranteed by the block (2, 2) and (3, 3) of (6),
respectively. Then, we have the following property

(P −G)
T
P−1 (P −G) � 0,

which is equivalent to, −GTP−1G � P −G−GT ≺ 0.
We introduce the change of variables L := KG to obtain,




−GTP−1G 0 GTAT +GTKTBT GT

? −αW I 0
? ? −P 0

? ? ? − 1

α
P

 ≺ 0. (7)

Let Γ := diag(G, I, I, I), decomposing (7) as ΓTΦΓ ≺ 0,

Φ :=


−P−1 0 AT +KTBT I
? −αW I 0
? ? −P 0

? ? ? − 1

α
P

 , (8)

implies that inequality (7) is valid if and only if Φ ≺ 0
is satisfied. Applying now the Schur complement to the

block

[
−P 0
? −(1/α)P

]
of (8), we obtain Ω2 ≺ 0, which

guarantees that E (P ) is an attractive ellipsoid of the
closed-loop system (3). The feedback control law may be
retrieved as uk = Kxk = LG−1xk for G non-singular.

Two important features of condition (6) are: (a) the state-
space matrices and Lyapunov matrix are separated, and
(b) the feedback gain K does not depend on the Lyapunov
matrix P . The slack variable matrix G can be seen as an
additional degree of freedom.

An optimal (minimum size) attractive ellipsoid can be
obtained by using the trace criterion due to linearity of
the trace function. The following SDP problem (with fixed
α obtained from the line search subproblem, see Remark
4 below) solves the optimal robust stabilization problem
and calculates the minimal size ellipsoid,

min
P,L,G

trace (P )

subject to: (6).

The linear feedback gain K = LG−1 minimizes the size of
the attractive ellipsoid of the closed-loop system (3).

Remark 4. (Line search subproblem). Due to the presence
of the decision variable α, condition (6) is not an LMI.
However, for fixed α, this condition actually becomes
an LMI. The idea here is to find the maximum α that
minimizes the trace(P ) subject to feasibility of (6) and
Ω2 ≺ 0. To find a suitable α ∈ (0, 1], a line-search
subproblem can be solved starting from α = 1, such that
it keeps decreasing the value of α, by a certain factor,
until the problem becomes infeasible, or stops when α ≈ 0.
The Armijo-type rule is essentially a successive reduction
rule, suitable for this line-search subproblem. Here, fixed
scalars γ > 0 and β, with β ∈ (0, 1) are chosen, and the

Armijo rule is expressed as α(`) = β`
∗
γ, where `∗ is the

first nonnegative integer ` for which the problem becomes
infeasible; ` also indicates the number of steps required
for the Armijo rule to converge. In other words, the step
sizes β`γ, ` = 0, 1, . . . , are tried successively until (6) is
infeasible or Ω2 non-negative for ` = `∗. Thus, we are not
satisfied with just a cost improvement; the amount of the
improvement has to be sufficiently large as per the tests
described above. Alternatively the quantity trace(P ) can
be plotted against α and the maximum α that minimizes
trace(P ) would be selected. The reduction factor β is
chosen close to 1 (e.g., 0.95), depending on the confidence
we have on the quality of the initial step size γ. We can
always take γ = 1 (i.e., α(0) = 1 for iteration ` = 0).

3.2 Constrained control

Consider now the constrained control case, where the
magnitude of the control signal uk = Kxk inside an
ellipsoid E (Ω) is constrained as,

‖uk‖2R = xTkK
TR−1Kxk < µ2, (9)

for all xk such that xTkΩ−1xk ≤ 1, where ‖·‖2R is the
2-norm induced by the weighting matrix R ∈ Sm �
0. Here µ is an appropriate positive constant scalar
that restricts the inputs for given matrix R. Equiva-
lently,

(
1/µ2

)
xTkK

TR−1Kxk < xTkΩ−1xk, which implies(
1/µ2

)
KTR−1K ≺ Ω−1 for all x 6= 0. Multiplying both

sides of this inequality by Ω and applying Schur’s lemma
we obtain, [

−Ω ΩKT

KΩ −µ2R

]
≺ 0.

Decomposing this inequality now as[
−Ω 0
0 −µ2R

]
+

[
0
K

]
[Ω 0] +

[
Ω
0

] [
0 KT

]
≺ 0.

will allow us to derive the main result of this section with
the help of the following elimination lemma.

Lemma 5. Let us define a symmetric matrix Φ and U , M
matrices with appropriate dimensions. Then the following
conditions are equivalent:

(1) Φ ≺ 0 and Φ + UMT +MUT ≺ 0.
(2) The LMI problem[

Φ M + UF
MT + FTUT −F − FT

]
≺ 0,

is feasible with respect to F .

Proof. Proof is omitted; see Song and Yang (2011).

Using Lemma 5 with matrix assignments,

Φ←
[
−Ω 0
0 −µ2R

]
, U ←

[
0
K

]
, M ←

[
Ω
0

]
, F ∈ Sn,

the following LMI problem is feasible with respect to F ,−Ω 0 Ω
? −µ2R KF
? ? −F − FT

 ≺ 0, Ω � 0.

In particular, we can impose that Ω � P . If Ω := P
the magnitude of the control signal inside the attractive
ellipsoid will be bounded. Also, F can be selected as
F := G and L := KG, so−Ω 0 Ω

? −µ2R L
? ? −G−GT

 ≺ 0. (10)

Finally, we obtain the following SDP problem (with fixed
α, see Remark 4),

min
P,L,G,Ω

trace (P )

subject to: (6) , (10) .
(11)

The obtained linear state-feedback gain K = LG−1 from
the solution of the SDP problem (11) minimizes the size of
the attractive ellipsoid of the closed-loop system (3), while
states inside Ω satisfy the control constraint (9).



3.3 Polytopic systems

Consider the class of discrete-time linear parameter vary-
ing (LPV) systems of the form

xk+1 = A (θ)xk +B (θ)uk + ωk, (12)

where matrices A (θ) and B (θ) depend affinely on the
unknown but measurable time-invariant vector of param-
eters θ. The vector θ takes values in the unit simplex ΘN ,
θ ∈ ΘN ⊆ RN , N ∈ N, N ≥ 2, where N is the number of
vertices and ΘN may be expressed as,

ΘN =
{
θ ∈ RN :

N∑
i=1

θi = 1, θi ≥ 0,∀ i = 1, . . . , N
}
. (13)

The affine assumption implies that matrices A (θ) and
B (θ) are matrix polytopes and can be expressed as,

[A (θ) , B (θ)] =

N∑
i=1

θi (Ai, Bi) , (14)

where θ ∈ ΘN as above. Usually a large number of vertices
N is required to arbitrarily approximate the original state
space representation. Using a state feedback control u =
Kx, the closed loop system is

xk+1 = [A (θ) +B (θ)K]xk + ωk. (15)

Assume that the ellipsoid E (P (θ)) is given by

E (P (θ)) :=
{
x ∈ Rn : xTP−1(θ)x ≤ 1

}
, (16)

with P−1(θ) ∈ Sn � 0 as,

P−1(θ) :=

(
N∑
i=1

θiPi

)−1

,

is an invariant set of (15); Pi ∈ Sn, i = 1, . . . , N , are posi-
tive definite matrices. The resulting parameter-dependent
Lyapunov function V (x, θ) = xTP−1(θ)x. Robust stability
requires stability to be checked for all θ ∈ ΘN . This is
equivalent of solving an infinite number of feasibility prob-
lems on P (θ) � 0. Alternatively, quadratic stability, which
implies robust stability, requires stability to be checked
at the N vertices of A and B, provided that the matrix
polytopes (14) can arbitrarily approximate the original
state space. This is equivalent of solving N feasibility
problems on P � 0. The resulting V (x, θ) = V (x) = xTPx
does not depend directly on θ.

Theorem 6. The ellipsoid E (P ) given by (16) is the at-
tractive ellipsoid of the closed-loop system (15) with state-
feedback gain K = LG−1 if and only if there exist sym-
metric positive definite matrices Pi ∈ Sn, i = 1, . . . , N ,
and matrices L ∈ Rm×n and G ∈ Rn×n, and and constant
scalar α ∈ (0, 1], such that the following conditions are
satisfied,

Pi −G−GT 0 GTAT
i + LTBT

i GT

? −αW I 0
? ? −Pi 0

? ? ? − 1

α
Pi

 ≺ 0, (17)

for all vertices, i = 1, . . . , N .

Proof. Necessity is directly obtained from Theorem 3.
Indeed, if we satisfy (6) for P (θ), A(θ) and B(θ), for all
θ ∈ ΘN then this implies that the LMI must hold on the
vertices. Now suppose that (17) holds for all Ai, Bi and
Pi, i = 1, . . . , N . Multiplying each inequality matrix by θi

and summing for all i = 1, . . . , N , by convexity of the sets,
we conclude that (17) must hold for all θ ∈ ΘN .

Minimization of the trace of P (θ) can be equivalently
expressed as the minimization of a parameter η > 0
subject to,

trace(Pi) ≤ η, for all i = 1, . . . , N. (18)

We can now state the following SDP problem (given
α ∈ (0, 1]) to address the robust stabilization problem of
polytopic systems subject to bounded perturbations,

min
Pi,L,G

η

subject to: (17) , (18) .
(19)

3.4 Gain-scheduled dynamic feedback control

This section studies the problem of designing gain-
scheduled feedback controllers for the time-varying linear
system (12) in the special case where Bi = B, for all
i = 1, 2, . . . , N , N ≥ 2, where N is the number of vertices.

Assume gain-scheduled state-feedback control of the form

uk (xk) = K (θ)xk, K (θ) =
N∑
i=1

θiKi, (20)

where Ki, i = 1, . . . , N , are gain matrices, such that the
system [A(θ) +BK(θ)]xk + ωk converges asymptotically
to a minimal size ellipsoid, which includes the origin for
all θ ∈ θN ⊆ RN in (13).

Theorem 7. The ellipsoid E (P ) given by (16) is the at-
tractive ellipsoid of the closed-loop system (15) with gain-
scheduled control (20) and feedback gains Ki = LiG

−1,
i = 1, . . . , N , or

uk =

(
N∑
i=1

θiLi

)
G−1xk, (21)

if and only if there exist symmetric positive definite
matrices Pi ∈ Sn, matrices Li ∈ Rm×n, i = 1, . . . , N ,
G ∈ Rn×n, and a constant scalar α ∈ (0, 1], such that the
following LMI conditions are satisfied

Pi −G−GT 0 GTAT
i + LT

i B
T GT

? −αW I 0
? ? −Pi 0

? ? ? − 1

α
Pi

 ≺ 0, (22)

for all vertices, i = 1, . . . , N .

Proof. Proof omitted since it is a direct application of
Theorems 3 and 6.

Finally, we obtain the following SDP problem (given α)

min
Pi,Li,G

η

subject to: (18) , (22) .
(23)

The obtained linear state-feedback gains Ki = LiG
−1

from the solution of the SDP problem (23) minimize the
size of the attractive ellipsoid of the closed-loop system
[A(θ) +BK(θ)]xk + ωk.

Remark 8. Note that the LMI conditions in Theorems
6 and 7 can be readily extended by LMI (10) to cope
with constrained inputs as in Section 3.2. For the gain-
scheduling problem, using Li, i = 1, . . . , N , and, Ω (θ) :=



∑N
i=1 θiΩi, in LMI condition (10) results in the following

problem (for given α),

min
Pi,Li,Ωi,G

η

subject to: (18) , (22) .
(24)

Remark 9. The input matrix B can vary in a different

matrix polytope given by, B (θ) =
∑N
j=1 θjBj , θj ∈ ΘN .

4. NUMERICAL EXAMPLES

This section presents two numerical examples both with
three states and two controls to demonstrate the efficiency
of the proposed AEM approach. Here we follow a slightly
different notation compared to rest of the paper. The state

vector is denoted as: xk := x(k) = [x1(k) x2(k) x3(k)]
T

,
where xi(k) denotes the i-th element of vector x at discrete
time instant k. Similarly, the control vector is denoted as:

uk := u(k) = [u1(k) u2(k)]
T

, where ui(k) denotes the i-th
element of vector u at discrete time instant k.

4.1 Example 1

Consider the following discrete-time system

A =

[
2 1 2
6 −2 1
1 0 1

]
, B =

[
−0.2 0

1 0.1
1 0.5

]
,W =

[
2.2 0 0
0 0.04 0
0 0 0.0004

]
× 105,

with R = I. Let the exogenous disturbance input ωk be

ωk = 0.2 + 0.5 sin (50k) + 0.4 sin (100k) (0.001, 0.01, 0.1)
T
.

This system is unstable with u = 0. The control input (9)
is bounded by µ2 = 100 with R = I. The linear feedback
gain K and the ellipsoidal matrices P and Ω resulting from
the solution of the SDP problem (11) are as follows,

K =
[
−1.9780 3.2024 2.2909
−6.2962 −7.5908 −11.8332

]
,

P =

[
0.6763 0.9373 −1.1563
0.9373 1.3097 −1.6066
−1.1563 −1.6066 2.0394

]
,

Ω =

[
3.4095 4.7553 −5.8414
4.7553 6.7163 −8.1787
−5.8414 −8.1787 10.3236

]
,

with α = 0.33, trace (P ) = 4.0254 and Ω � P . To
illustrate the approach, consider the initial state x0 =

[1.78 2.45 −3.1]
T

. Fig. 1 illustrates the obtained results
of the proposed AEM approach. Figs 1(a)–1(c) depict the
state trajectories while Figs 1(d) and 1(e) the control
signal trajectories. Fig. 1(f) displays the minimal size
ellipsoid projected onto the subspace (u1, u2). As can be
seen in Fig. 1(f) the control trajectories remain inside the
attractive ellipsoid despite the presence of non-vanishing
disturbances.

Fig. 2 displays the state trajectories while approaching
the minimal size attractive ellipsoid P (red color) and the
controlled invariant ellipsoid Ω (blue color); both ellipsoids
projected onto the subspaces (x1, x2) and (x2, x3). As
can be seen in Figs 2(a), 2(c), every state in state-space
can be taken inside P (red ellipsoid) but only states
inside Ω (blue ellipsoid) satisfy the control constraints
(9); note that Ω � P holds in this example. Finally,
Figs 2(b), 2(d) demonstrate that the state trajectories
remain inside the attractive ellipsoid and converge to a
small neighborhood of the origin despite the presence of
non-vanishing disturbances. Therefore the proposed AEM
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Fig. 2. Example 1: Projection onto the subspaces (x1, x2) and
(x2, x3). The attractive ellipsoid P is indicated with red color;
the controlled invariant ellipsoid Ω is indicated with blue color.

approach is appropriate in selecting design parameters for
the constrained stabilization and state-feedback control
of discrete-time systems; and, for making the attractive
ellipsoid of an appropriate small size.

4.2 Example 2

Consider a discrete-time LPV system with the following
affine parameter-dependent matrices,

A (θ) =

[
1 −1 + θ 0

1 − θ 1 0.5
θ −1 1 − θ

]
,

B (θ) =

[
−1 −0.5
0 1
1 2

]
, W =

[
2 0 0
0 0.05 0
0 0 0.0005

]
× 105,

where θ is a time-invariant parameter, with |θ| ≤ 1. The
control input (9) is bounded by µ2 = 100, R = I and
Ω = P . The matrix A (θ) is unstable for all θ. Let us
consider the exogenous disturbance input ωk be,

ωk = 0.5 + 0.2 sin (80k) + 0.2 sin (100k) (0.001, 0.01, 0.1)
T
.

To solve the stabilization problem, we consider gain-
scheduled feedback control of the form (20) and express the
LPV system into the polytopic form (12). The state matrix
A (θ) can be expressed as in (14) with N = 2 vertices,

A1 =

[
1 −2 0
2 1 0.5
−1 −1 2

]
, A2 =

[
1 0 0
0 1 0.5
1 −1 0

]
,
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Fig. 3. Example 2: State and control trajectories.
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Fig. 4. Example 2: Projection onto the subspaces (x1, x2) and
(x2, x3). The minimal size attractive ellipsoid is indicated with
red color.

θ1 = θmax−θ
θmax−θmin

, θ2 = θ−θmin

θmax−θmin
, with θmin = −1 and

θmax = 1. The convex coordinates θi, i = 1, 2, satisfy
0 ≤ θi ≤ 1, and θ1 + θ2 = 1. The feedback gains K1,
K2, and the ellipsoidal matrices P1, P2 resulting from the
solution of the SDP problem (24) are as follows,

K1 =
[

2.8917 −0.1381 −0.1120
−1.5954 −0.4125 −0.6762

]
,

K2 =
[

0.5318 1.1772 0.4340
−0.2418 −0.7690 −0.4158

]
,

P1 =

[
.0198 −.0077 .0235
−.0077 .0034 −.0092
.0235 −.0092 .0643

]
, P2 =

[
.0120 −.0044 .0211
−.0044 .0020 −.0078
.0211 −.0078 .0735

]
,

with α = 0.55 and η = 0.0875 To illustrate the approach,
consider an unstable system with θ1 = 0.98, θ2 = 0.02 and

initial state x0 = [9 −3 −6]
T

. Figs 3–4 show the obtained
results. As can be seen in Fig. 3, the proposed method
provides fast and smooth convergence to the origin. Figs
4(a), 4(c) indicate that the system states are driven inside
the minimum size ellipsoid. Finally, Figs 4(b), 4(d) provide
a zoom of the attractive ellipsoid to demonstrate that the
state trajectories remain inside the attractive ellipsoid and
converge to a small neighborhood of the origin despite
the presence of the non-vanishing disturbances. It should
be noted that in this example for any initial state inside
E (P (θ)), the control constraint (9) are satisfied.

5. CONCLUSIONS

The attractive ellipsoid method has extended to cope with
the problem of robust stabilization of discrete-time poly-
topic systems subject to control constraints and unknown
but bounded non-vanishing perturbations. New LMI con-
ditions were obtained with the important property of de-
coupling state-space matrices and Lyapunov matrix. These
conditions allowed us to extend the proposed approach
to systems with polytopic uncertainty and scheduling pa-
rameters. The obtained state-feedback robust control laws
provide a minimal size ellipsoid for the closed-loop system.
Two examples demonstrated the ability of the proposed
AEM to keep the system states inside the attractive ellip-
soid and to converge to a small neighborhood of the origin
despite the presence of non-vanishing disturbances.
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