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Abstract: This paper develops sufficient conditions for the constrained robust stabilization
of continuous-time polytopic linear systems with unknown but bounded perturbations. The
attractive ellipsoid method (AEM) is employed to determine a robustly controllable invariant set,
known as attractive ellipsoid, such that the state trajectories of the system asymptotically con-
verge to a small neighborhood of the origin despite the presence of non-vanishing perturbations.
To solve the stabilization problem, we employ the Finsler’s lemma and derive new linear matrix
inequality (LMI) conditions for robust state-feedback control design, ensuring convergence of
state trajectories of the system to a minimal size ellipsoidal set. We also consider the state and
control constrained problem and derive extended LMI conditions. Under certain conditions,
the obtained LMIs guarantee that the attractive ellipsoid is nested inside the bigger ellipsoids
imposed by the control and state constraints. Finally, we extend our AEM approach to the
gain-scheduled state-feedback control problem, where the scheduling parameters governing the
time-variant system are unknown in advance but can be measured in real-time. Two examples
demonstrate the feasibility of the proposed AEM and its improvements over previous works.

Keywords: Robust control; Disturbance rejection; Polytopic uncertainty; Gain-scheduled
control; Linear parameter-varying systems; Lyapunov methods.

1. INTRODUCTION

The influence of uncertainty on the performance of dy-
namical systems has attracted significant attention over
the past several decades. Robust control is an efficient
and systematic approach for control systems design under
structured or unstructured uncertainties. The main objec-
tives of robust control under uncertainty are stability, H2

and H∞ performance, multi-objective control, asymptotic
disturbance rejection, passivity and plant model uncer-
tainty (see e.g., Vidyasagar (1986), Scherer et al. (1997),
Petersen et al. (2000), Han (2009)).

The attractive ellipsoid method (AEM), which initially
developed for nonlinear systems (Gonzalez-Garcia et al.,
2009; Poznyak et al., 2014) and later for linear systems
(Nazin et al., 2007; Polyak et al., 2008), use the concept
of the asymptotically attractive (invariant) ellipsoid. The
main objective of the AEM is to determine a robust
controller and a corresponding asymptotically attractive
ellipsoid such that state trajectories of the system converge
to a small (in a given sense) neighborhood of the origin.
The attractive ellipsoid set has the appealing feature of
being robustly controlled invariant, and, thus the state
trajectories remain inside this minimal size set despite the
presence of non-vanishing and unmatched perturbations.

? A companion paper (Garćıa and Ampountolas, 2018) deals with
the robust stabilization of discrete-time systems by the AEM.

Ellipsoids are probably the most used tools for control
synthesis, possessing some “nice” properties that permits
the use of LMI. In general, restricting the uncertainty
to lie within ellipsoidal sets leads to a good trade-off
between generality of the uncertainty and computational
tractability. The complexity of an ellipsoidal representa-
tion is quadratic in the dimension of the state space, and
linear in the number of time steps (needed to calculate).
On the other hand, the complexity of methods associated
with polytopes (e.g., vertex control (Gutman and Cwikel,
1986) or multi-parametric optimization) that involve the
convex hull computation, increases exponentially with the
number of vertices (Kurzhanskiy and Varaiya, 2006). The
main drawback of ellipsoids is that having a fixed and
symmetrical structure imposes conservativeness in the
control design. Reducing conservatism in robust control
problems has been an extensive research topic. Mainly
devoted in the development of new LMI conditions for
stability and H2, H∞ performance of linear systems, and
robust analysis and synthesis of linear parameter varying
(LPV) systems (Gahinet and Apkarian, 1994; Peaucelle
et al., 2000; de Oliveira and Skelton, 2001; Daafouz and
Bernussou, 2001; Pipeleers, 2009).

The present paper, develops new state-feedback LMI con-
ditions for the continuous-time version of the AEM. Condi-
tions for the robust stabilization of discrete-time polytopic
systems by the AEM are presented in Garćıa and Am-
pountolas (2018). These LMI conditions feature decoupled



state-space matrices and Lyapunov matrices. This prop-
erty allows for the introduction of parameter-dependent
Lyapunov functions, and thus for the application of the
AEM to gain-scheduled control. The obtained conditions
provide the minimum size of the corresponding attractive
ellipsoid, solve the stabilization problem, and ensure con-
vergence of system state trajectories to a minimal ellip-
soidal set. To the best of our knowledge, this is the first
work that extends the AEM to systems with polytopic
uncertainty and scheduling parameters with decoupled
matrices. The AEM literature is dominated by complex
BMI or LMI conditions where matrices are not decoupled
and the associated control gain matrices depend on the
Lyapunov matrix, see e.g., Perez et al. (2015); Mera et al.
(2016). The proposed methodology employs the celebrated
Finsler’s lemma (Finsler, 1937) and develops new state-
feedback LMI conditions. Synthesis of the robust control
law is reduced to a semidefinite optimization problem that
can be readily solved using efficient interior-point methods
(Nesterov and Nemirovskii, 1994; Boyd et al., 1994). Nu-
merical examples are given to illustrate the feasibility of
the proposed approach and its improvements over previous
works.

2. PRELIMINARIES

Notation. For matrices and vectors (·)T indicates transpose
and A† := A + AT denotes the Hermitian operator on A.
For matrix elements ? denotes the transposed symmetric
element. For symmetric matrices, X ≺ 0 indicates that
X is negative definite and X � 0 indicates that X is
negative semi-definite. Sn denotes the space of square
and symmetric real matrices of dimension n. For square
matrices trace(·) denotes the trace of (·).
Problem formulation. Consider a continuous-time linear
time-invariant system,

ẋ(t) = Ax(t) +Bu(t) + ω(t), x0 given, (1)

where the pair (A,B) is controllable; A ∈ Rn×n and
B ∈ Rn×m are the state and control matrices, respectively;
x ∈ Rn is the system state, u ∈ Rm is the control input.
The disturbance vector ω ∈ Rn is unknown but bounded
(at each time instant) satisfying the following property,

ω(t)TWω(t) ≤ 1, ∀ t ≥ 0, (2)

where the matrix W ∈ Sn � 0 is given. No other
constraints are imposed on the perturbation ω, however
it is not considered to be random.

The objective of this paper is to design a robust state-
feedback controller of the form u = Kx, where K ∈ Rm×n
is a gain matrix, for the system (1) to compensate the
influence of external perturbations (2) on the system state
such that the closed-loop system trajectories

ẋ(t) = (A+BK)x(t) + ω(t), (3)

converge asymptotically to a minimal size ellipsoid, which
includes the origin. This minimum size ellipsoid guarantees
that the state trajectories of the system will remain within
a neighborhood of the origin despite the presence of non-
vanishing perturbations (2).

The following definition characterizes this minimal region.

Definition 1. (Ellipsoidal set). An ellipsoid E(P, x̄) ⊂ Rn
with center x̄ and shape matrix P is a set of the form,

E (P, x̄) :=
{
x ∈ Rn : (x− x̄)TP−1(x− x̄) ≤ 1

}
, (4)

where P ∈ Sn is a positive definite matrix.

Definition 2. (Robustly controlled invariant set). The set
Ω ⊆ X , where X is the set of admissible states, is robustly
controlled invariant for the system (1) if for all x(t) ∈ Ω,
there exists a control value u(t) such that, for all ω(t) in
(2), with W ∈ Sn � 0,

ẋ(t) = Ax(t) +Bu(t) + ω(t) ∈ Ω, ∀ t ≥ 0

If the control value is constrained as u(t) ∈ U , where U
is the set of admissible controls, such a control action is
called admissible. If x̄ = 0 then the ellipsoid can be written
as E (P ) :=

{
x ∈ Rn : xTP−1x ≤ 1

}
, P ∈ Sn � 0, and we

assume it is a robustly controlled invariant set of (1).

Also, consider the following distance metric from a point
x to a set E , ‖x‖E := infy∈E ‖x− y‖ ,∀x ∈ Rn.

Definition 3. (Asymptotically Attractive Ellipsoid). The
set E(P ) is an asymptotically attractive ellipsoid for the
system (1) if ‖x (t, x0)‖E(P ) → 0, as t → ∞, for any

x0 ∈ Rn, where x (t, x0) is a trajectory of the system for a
given admissible control.

For any initial condition x0, convergence of state trajecto-
ries in (1) to a minimal size ellipsoid is guaranteed by the
asymptotic attractivity of the set E (P ).

Definition 4. (Support function). The support function of
a compact set S ⊆ Rn, evaluated at y ∈ Rn is defined as,

f (S | y) = sup
x∈S
{yTx}. (5)

In particular, the support function of the ellipsoid (4) is,

f (E (P, x̄) | y) = yTx̄+
(
yTP y

)1/2
.

Finsler’s lemma (Finsler, 1937; de Oliveira and Skelton,
2001), will be used to derive the LMI characterization.

Lemma 5. (Finsler). Let x ∈ Rn, Q ∈ Sn and B ∈ Rm×n
such that rank(B) < n. The following statements are
equivalent:

(1) If x 6= 0 lie in the null-space of B then: xTQx ≺ 0.
(2) If B⊥ is a basis for the null-space of B then:

B⊥TQB⊥ ≺ 0.
(3) There exists a Lagrange multiplier µ ∈ R such that:
Q− µBTB ≺ 0.

(4) There exists a Lagrange multiplier Y ∈ Rn×m such
that: Q+ YB + BTYT ≺ 0.

3. MAIN RESULTS

3.1 The attractive ellipsoid method

Consider the Lyapunov function V (x) = xTP−1x, P � 0.
Its total derivative along the trajectories of system (3) is,

V̇ (x) = xT
[
QTP−1 + P−1Q

]
x

+ ωTP−1x+ xTP−1ω < 0, (6)

for all (x, ω) 6= 0, where Q := A+BK and ω(t)TWω(t) ≤ 1
for all t ≥ 0. Define the augmended vector zT =

[
xT ωT

]
,

then inequality (6) is equivalent to V̇ (x) = zTΩ1z < 0,
which holds for all z 6= 0 with,

Ω1 :=

[
QTP−1 + P−1Q P−1

P−1 0

]
.



Adding and subtracting αxTP−1x and αωTWω in (6),
where α > 0, we obtain,

V̇ (x) = zTΩ2z − αxTP−1x+ αωTWω

≤ zTΩ2z + α (1− V (x)) ,

with Ω2 :=

[
QTP−1 + P−1Q+ αP−1 P−1

? −αW

]
.

If Ω2 ≺ 0, this implies that zTΩ2z < 0 for all z 6= 0
and the corresponding Lyapunov function V (x) satisfies
the inequality zTΩ2z+α (1− V (x)) < α (1− V (x)). Then

V̇ (x) is upper bounded as, V̇ (x) < α (1− V (x)) ≤ 0, and
V (x) > 1 guarantees that E (P ) is an attractive ellipsoid
of the closed-loop system (3).

The following LMI condition guarantees that the ellipsoid
E (P ) is an attractive ellipsoid of the closed-loop system
(3) with gain matrix K = LG−1, where L and G are design
matrices of appropriate dimension.

Theorem 6. If there exists a positive definite matrix P ∈
Sn, matrices L ∈ Rm×n and G ∈ Rn×n (non-singular), and
a constant scalar α > 0, such that the following condition
is satisfied,αP + S† P + S −GT I + S

? −G−GT −G
? ? −αW

 ≺ 0 (7)

where S := AG + BL, then the ellipsoid E (P ) is an
attractive ellipsoid of the closed-loop system (3) with
feedback gain matrix K = LG−1.

Proof. Congruence transformation to Ω2 with diag(P, I),

Ω3 =

[
PQT +QP + αP I

? −αW

]
≺ 0.

Decomposing matrix Ω3 as B⊥ᵀQB⊥ ≺ 0 with,

Q =

[
αP P I
P 0 0
I 0 −αW

]
, B⊥ =

 I 0
QT 0
0 I


allows the application of Lemma 5 (Condition 2) with
Q ∈ S3n, where B⊥ ∈ R3n×2n is a basis for the null-space
of B :=

[
QT −I 0

]
∈ Rn×3n. By condition 4 of Lemma 5,

there exists a multiplier YT := [F1 F2 F3] ∈ Rn×3n, such
that Q+ YB + BTYT ≺ 0, or equivalently,αP +QF1 + FT

1 Q
T P +QF2 − FT

1 I +QF3

? −F2 − F ᵀ
2 −F3

? ? −αW

 . (8)

Since matrix F2 is nonsingular, we restrict matrices F1

and F3 to be equal to F2, i.e., F1 = F3 = F2 and set
G = F2. With these matrices, the resulted LMI is the
LMI (7) with the change of variable, L := KG. Condition
(7) guarantees that E (P ) is the attractive ellipsoid of the
closed-loop system (3). The control is given by

u(t) = Kx(t) = LG−1x(t), t ≥ 0

for G non-singular.

Two important features of condition (7) are: (1) state-
space matrices and Lyapunov matrix are separated, and
(2) the feedback gain K does not depend on the Lyapunov
matrix P . The slack variable matrix G can be seen as an
additional degree of freedom.

Remark 7. Due to the presence of the decision variable
α > 0, condition (7) is not an LMI. However, for fixed
α, this condition actually becomes an LMI. To find a
suitable α > 0, a line-search algorithm can be performed
such that it keeps increasing the value of α until the
problem becomes feasible, or stops when α reaches a
certain threshold value. The Armijo rule is essentially
a successive reduction rule, suitable for this line-search
subproblem after some modification. The idea here is to
find the maximum α that minimizes the trace(P ) subject
to feasibility of (7) and Ω2 � 0.

An optimal attractive ellipsoid will be found using the
trace criterion due to linearity of the trace function. The
following semi-definite programming (SDP) (with fixed α)
problem provides LMI-based conditions for optimal robust
stabilization,

min
P,L,G

trace (P )

subject to: (7).
(9)

The gain matrix K = LG−1 minimizes the size of the
attractive ellipsoid of the closed-loop system (3).

3.2 Handling state and control constraints

Control constraints. Suppose that inside an ellipsoid
E (Ωu) ⊆ U , the magnitude of the control signal u(t) =
Kx(t) is constrained as,

‖u‖2R := xTKTR−1Kx < µ2 (10)

for all x satisfying xTΩ−1
u x ≤ 1, where ‖·‖2R is the weighted

matrix 2-norm and µ is an appropriate positive constant
scalar that restricts the inputs for given R ∈ Sm � 0.
Equivalently, we have,

(
1/µ2

)
xTKTR−1Kx < xTΩ−1

u x,

which implies
(
1/µ2

)
KTR−1K ≺ Ω−1

u , for all x 6= 0, mul-

tiplying both sides by Ωu, yields
(
1/µ2

)
ΩuK

TR−1KΩu ≺
Ωu. Applying Schur’s lemma, this condition can be re-
written as, [

−Ωu ΩuK
T

KΩu −µ2R

]
≺ 0.

Decomposing this last inequality as,[
−Ωu 0

0 −µ2R

]
+

[
0
K

]
[Ωu 0] +

[
Ωu
0

] [
0 KT

]
≺ 0.

will allow us to derive the main result of this section with
the help of the following elimination lemma.

Lemma 8. Let us define a symmetric matrix Φ and U , M
matrices with appropriate dimensions. Then the following
conditions are equivalent:

(1) Φ ≺ 0 and Φ + UMT +MUT ≺ 0.

(2) The LMI problem

[
Φ M + UF

MT + FTUT −F − FT

]
≺ 0, is

feasible with respect to F .

Proof. Proof is omitted; see Song and Yang (2011).

Using Lemma 8 with matrix assignments,

Φ←
[
−Ωu 0

0 −µ2R

]
, U ←

[
0
K

]
, M ←

[
Ωu
0

]
, F ∈ Sn,

we have to satisfy,

−Ωu 0 Ωu
? −µ2R KF
? ? −F − FT

 ≺ 0,Ωu � 0.

In particular, we can impose that Ωu � P . In this case, the



attractive ellipsoid corresponding to P is nested inside the
bigger ellipsoid Ωu when both are represented at the same
level set E (·) of the corresponding Lyapunov functions. If
Ωu = P the magnitude of the control signal inside the
attractive ellipsoid is admissible. Also, F can be selected
as F := G and L := KG, so−Ωu 0 Ωu

? −µ2R L
? ? −G−GT

 ≺ 0. (11)

State constraints. We assume symmetric state constraints

X = {x ∈ Rn : |yTi x| ≤ 1}, i = 1, . . . , nx, (12)

where yi ∈ Rn are given vectors and nx is the number
of state constraints. The support function of the ellipsoid
E(Ωx), evaluated at yi ∈ Rn is (see Definition 4),

f (E (Ωx) | yi) =
(
yTi Ωx yi

)1/2
.

Then E(Ωx) is a subset of the polyhedral set of (12) if and
only if yTi Ωx yi ≤ 1 for all i = 1, . . . , nx. Using now Schur’s
lemma this condition can be rewritten as,[

1 yTi Ωx
? Ωx

]
� 0, i = 1, . . . , nx. (13)

Concluding, the state constraints are satisfied if E(Ωx) ⊆
X , or if the LMI conditions (13) are satisfied.

It is generally desirable to have the largest ellipsoid among
the ones satisfying conditions (11) and (13), while the
attractive ellipsoid satisfying the condition (7) should be
mimimized. We can again impose that Ωx = Ωu � P .
In this case, the attractive ellipsoid corresponding to P is
nested inside the bigger ellipsoids Ωu, Ωx. Our ultimate
goal is to reject the non-vanishing disturbances or keep
them inside a minimal attractive ellipsoid in a small
neighborhood of the origin. Therefore, we formulate the
following SDP problem (for given α),

min
P,L,G,Ωu,Ωx

trace (P )

subject to: (7), (11), (13).
(14)

3.3 Polytopic systems

The aim of this section is to derive a finite-dimensional
set of LMI conditions for the design of static feedback
controllers of linear parameter varying polytopic systems.
Consider the class of continuous-time linear parameter
varying (LPV) systems of the form

ẋ(t) = A (θ)x(t) +B (θ)u(t) + ω(t), t ≥ 0 (15)

where matrices A (θ) and B (θ) depend affinely on the
unknown but measurable time-invariant vector of param-
eters θ. The vector θ takes values in the unit simplex ΘN ,
θ ∈ ΘN ⊆ RN , N ∈ N, N ≥ 2, where N is the number of
vertices and ΘN may be expressed as,

ΘN =
{
θ ∈ RN :

N∑
i=1

θi = 1, θi ≥ 0,∀ i = 1, . . . , N
}
. (16)

The affine assumption implies that matrices A (θ) and
B (θ) are matrix polytopes and can be expressed as,

[A (θ) , B (θ)] =

N∑
i=1

θi (Ai, Bi) , (17)

where θ ∈ ΘN as above. Using a state feedback control
u(t) = Kx(t), the closed loop system is

ẋ(t) = (A (θ) +B (θ)K)x(t) + ω(t). (18)

Assume that E (P (θ)) given by (4) with x̄ = 0 and,

P (θ)−1 :=

(
N∑
i=1

θiPi

)−1

, (19)

is a robustly controlled invariant set of (18).

Theorem 9. The ellipsoid E (P ) is the attractive ellipsoid
of the closed-loop system (18) with feedback gain matrix
K = LG−1 if and only if there exist positive definite
matrices Pi ∈ Sn, i = 1, . . . , N , matrices L ∈ Rm×n and
G ∈ Rn×n, and α > 0, such that the following conditions
are satisfied,αPi + S†i Pi + Si −GT I + Si

? −G−GT −G
? ? −αW

 ≺ 0 (20)

for all vertices, i = 1, . . . , N , where Si := AiG+BiL.

Proof. Necessity proof is directly obtained from Theorem
6 and (7). Indeed, if we satisfy (7) for all θ ∈ ΘN , i.e.,
for all P (θ), A(θ) and B(θ), then this implies that the
LMI must hold on the vertices. Now suppose that (20)
holds for all Ai, Bi and Pi, i = 1, . . . , N . Multiplying each
inequality matrix by θi and summing for all i = 1, . . . , N ,
by convexity of the sets, we conclude that (20) must hold
for all θ ∈ ΘN .

Minimization of trace P (θ) can be equivalently expressed
as the minimization of a parameter η > 0, subject to,

trace(Pi) ≤ η, ∀ i = 1, . . . , N (21)

The following SDP problem (for given α > 0) summarises,

min
Pi,L,G

η

subject to: (20), (21).
(22)

3.4 Gain-scheduled dynamic feedback control

This section studies the problem of designing gain-
scheduled dynamic feedback controllers in the special case
where Bi = B, for all i = 1, 2, . . . , N . Assume gain-
scheduled state-feedback control of the form,

u (x(t)) = K (θ)x(t), K (θ) =
N∑
i=1

θiKi, (23)

where Ki, i = 1, . . . , N , are gain matrices, such that
the system ẋ(t) = [A(θ) +BK(θ)]x(t) + ω(t) converges
asymptotically to a minimal size ellipsoid, which includes
the origin for all θ ∈ θN ⊆ RN in (16).

Theorem 10. The ellipsoid E (P ) given by (4) with center
x̄ = 0 is the attractive ellipsoid of the closed-loop system
(18) with gain-scheduled control (23) and feedback gains
Ki = LiG

−1, i = 1, . . . , N , or

u(t) =

(
N∑
i=1

θiLi

)
G−1x(t), t ≥ 0, (24)

if and only if there exist positive definite Pi ∈ Sn, matrices
Li ∈ Rm×n, i = 1, . . . , N , G ∈ Rn×n, and constant scalar
α > 0, such that the following LMI conditions are satisfied, αPi + S†i Pi + Si −GT I + Si

? −G−GT −G
? ? −αW

 ≺ 0 (25)

for all vertices, i = 1, . . . , N , where Si := AiG+BLi.

Proof. Direct application of Theorems 6 and 9.



Finally, we obtain the following SDP problem (given α),

min
Pi,Li,G

η

subject to: (21) , (25) .
(26)

The feedback gain-scheduled gains Li := KiF minimize
the size of the attractive ellipsoid of the closed-loop system
ẋ(t) = [A(θ) +BK(θ)]x(t) + ω(t).

Remark 11. The LMI conditions in Theorems 9 and 10
can be readily extended by LMIs (11) and (13) to cope
with constrained states and inputs as in subsection 3.2.

4. NUMERICAL EXAMPLES

4.1 Example 1

Consider the continuous-time system (1) with the follow-
ing random matrices,

A =

[
1 0 1

1.2 1.5 1
0.8 1 −0.3

]
, B =

[
−1
0
−1

]
,W =

[
3.3 0 0
0 0.04 0
0 0 0.0004

]
×105,

Let the exogenous disturbance input ω (t) be

ω (t) = 0.2+0.4 sin (100t)+0.4 sin (50t) (0.001, 0.01, 0.1)
T
.

The system with u (t) = 0 is unstable. The control signal
(10) is bounded inside the ellipsoid E (P ) by µ2 = 1 with
R = 1. The linear feedback gain K and the ellipsoid matrix
P resulting from the solution of the SDP problem (14) are,

K = [4.0615 6.8485 3.2546] , P =

[
.0475 −.0105 −.009
−.0105 .0067 −.0093
−.009 −.0093 .0596

]
,

with α = 0.65, trace (P ) = 0.1138 and Ω = P . To assess
the performance of the proposed AEM, we compared
LMI condition (7) with the AEM as in Poznyak et al.
(2014). For the AEM in Poznyak et al. (2014), the resulted
feedback gain K, ellipsoidal matrix P and its size are,

K = [5.0334 13.0809 5.1816] , P =

[
.1033 −.0024 −.0915
−.0024 .0055 −.0080
−.0915 −.008 .1346

]
,

with α = 0.05 and trace (P ) = 0.2433. To illustrate and
compare the two approaches, consider the initial state

x0 = [−12 3 8]
T

. Figs 1(a)–1(h) compare the proposed
AEM approach in Section 3 with the AEM approach
in Poznyak et al. (2014), denoted as AEM∗. The first
subfigure illustrates the results obtained by Theorem 6 and
the solution of SDP problem (14), while second subfigure
illustrates the results obtained from AEM∗ in Poznyak
et al. (2014). As can be seen, the proposed approach
indicates smooth convergence of the system states to
the origin (cf. Fig. 1(a) with Fig. 1(b)) compared to
AEM∗. Remarkably, the obtained minimal size ellipsoid
with Theorem 6 and SDP (14) is substantially smaller
than the one in Poznyak et al. (2014) (cf. Fig. 1(c) with
Fig. 1(d); and, Fig. 1(e) with Fig. 1(f)). This demonstrates
that the proposed AEM approach is less conservative
(compared to previous works) given that the feedback
parameters of control design should be such that making
the attractive ellipsoid of a smaller size. Also it needs
less control effort to stabilise the system, where for the
proposed approach ‖u‖ = 9.12, while for Poznyak et al.
(2014) ‖u‖ = 20.3, cf. Fig. 1(g) and Fig. 1(h)).

Note that every state in state space can be taken inside P
(red ellipsoid). In this example, Ω is equal to P but can

be taken as Ω � P and any state inside Ω will satisfy the
control constraint (10), see Section 3.2. The example in
next subsection demonstrates this concept for clarity.
4.2 Example 2

Consider a continuous-time LPV system with the following
affine parameter-dependent matrices,

A (θ) =

[
−1.6 + 0.4θ 2 θ

−2 + θ −2θ θ
−θ 1 −2θ

]
, B (θ) =

[
−1 −0.5
0 −1
1 −2

]
,

and W = diag(3.333, 0.04, 0.0005)×105, where θ is a time-
invariant parameter with |θ| ≤ 1. Matrix A (θ) is unstable
for all θ ≤ 0. The control input (10) is bounded by µ = 150
with R = I and Ω � P . Let the disturbance input be,

ω (t) = 0.5+0.2 sin (100t)+0.2 sin (100t) (0.001, 0.01, 0.1)
T
.

To solve the stabilization problem, we consider a gain-
scheduled feedback controller of the form (23) and express
the LPV system into the polytopic form (15). The state
matrix A (θ) can be expressed as in (17) with N = 2,

A1 =

[
−2 2 −1
−3 2 −1
1 1 2

]
, A2 =

[
−1.2 2 1
−1 −2 1
−1 1 −2

]
,

where, θ1 = θmax−θ
θmax−θmin

, θ2 = θ−θmin

θmax−θmin
, with θmin = −1

and θmax = 1. The convex coordinates θi, i = 1, 2, satisfy
0 ≤ θi ≤ 1, and θ1 +θ2 = 1. The linear feedback gains K1,
K2, the ellipsoidal matrices P1, P2, Ω1 and Ω2 resulting
from the solution of the SDP problem (26) are as follows,

K1 =
[
−1.006 1.418 −1.416
2.317 −0.235 2.229

]
,K2 =

[
0.324 2.548 0.482
−0.006 1.387 0.049

]
,

P1 =

[
.0095 .0443 .0317
.0443 .2057 .1471
.0317 .1471 .1247

]
, P2 =

[
.0678 .1302 −.0137
.1302 .2500 −.0262
−.0137 −.0262 .0221

]
,

Ω1 =

[
10.25 −17.87 −34.74
−17.87 32.73 62.22
−34.74 62.22 119.53

]
,Ω2 =

[
10.28 −17.93 −34.84
−17.93 32.82 62.4
−34.84 62.4 119.87

]
,

with α = 0.92 and η = 0.34. To illustrate the approach,
consider the unstable system with θ1 = 0.98, θ2 =

0.02 and initial condition x0 = [−10 −12 9]
T

. Figs 1(i)
and 1(j) show the obtained results. As can be seen, the
proposed method provides fast convergence to the origin
with maximum control effort ‖u‖ = 19.9055. In this
example, Ω � P and any state inside Ω (blue ellipsoid)
satisfies the control constraints. Thus, any initial state
inside E (Ω(θ)) can be taken to the origin for all θ while
satisfying the control constraints (10).

5. CONCLUSIONS

The paper presented LMI conditions for the state-feedback
constrained stabilization of continuous-time polytopic lin-
ear systems with unknown but bounded perturbations by
the AEM. These LMI characterizations present the im-
portant property of decoupling state-space matrices with
Lyapunov matrix. It allowed us to extend our approach
to systems with structured uncertainty and scheduling
parameters. For the constrained control case, the obtained
LMIs guarantee that the attractive ellipsoid is nested in-
side the bigger ellipsoids imposed by the control and state
constraints. Two numerical examples demonstrated the
efficiency and advantages (in terms of convergence, control
effort, and minimal size ellipsoidal sets) of the proposed
approach compared to previous AEM-based works.
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Fig. 1. Example 1: Subfigures (a)–(h). Example 2: Subfigures (i)–(j). The attractive ellipsoid P (indicated with red color) is nested inside
the bigger ellipsoid Ω (indicated with blue color) imposed by the control constraints.
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