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Abbreviations: ACh, acetylcholine; dKO, double knockout (β1,4-GalNAc-transferase and 

α2,8-sialyltransferase knockout); EPP, endplate potential; GalNAc, N-acetyl galactosamine; 

GBS, Guillain-Barré syndrome; GD3s-KO, α2,8-sialyltransferase knockout; GM2s-KO, β1,4-

GalNAc-transferase knockout; MEPP, miniature endplate potential; MFS, Miller Fisher 

syndrome; NeuAc, neuraminic acid; NMJ, neuromuscular junction; WT, wildtype. 
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Abstract 

Gangliosides are a family of sialylated glycosphingolipids enriched in the outer leaflet of cell 

neuronal membranes, in particular at synapses. Therefore, they have been hypothesized to 

play a functional role in synaptic transmission. We have measured in detail the 

electrophysiological parameters of synaptic transmission at the neuromuscular junction 

(NMJ) ex vivo of a GD3-synthase knockout mouse, expressing only the O- and a-series 

gangliosides, as well as of a GM2/GD2-synthase*GD3-synthase double-knockout (dKO) 

mouse, lacking all gangliosides except GM3. No major synaptic deficits were found in either 

null-mutant. However, some extra degree of rundown of acetylcholine release at high 

intensity use was present at the dKO NMJ and a temperature-specific increase in 

acetylcholine release at 35 C was observed in GD3-synthase knockout NMJs, compared to 

wildtype. These results indicate that synaptic transmission at the NMJ is not crucially 

dependent on the particular presence of most ganglioside family members and remains 

largely intact in the sole presence of GM3 ganglioside. Rather, presynaptic gangliosides 

appear to play a modulating role in temperature- and use-dependent fine-tuning of transmitter 

output. 

 

 



Zitman et al. Role of gangliosides in synaptic function - 4 - 

Introduction 

Neuronal membranes contain high levels of gangliosides (Ledeen, 1985), which are a diverse 

family of sialylated glycosphingolipids (Fig. 1; Svennerholm, 1994; Ngamukote et al., 2007). 

Complex gangliosides GM1, GD1a, GD1b and GT1b are the major species in central and 

peripheral nervous tissue (Tettamanti et al., 1973; Gong et al., 2002). Simple gangliosides 

(e.g. GM3 and GD3) are relatively abundant in early embryonic brain but decrease rapidly in 

later stages (Ngamukote et al., 2007). 

Gangliosides are components of membrane lipid rafts and are thought to play roles in 

modulation of membrane-bound enzymes, ion-channel kinetics, cell-adhesion, 

neuritogenesis, cell-signaling and membrane stability and maintenance (Yates and 

Rampersaud, 1998; Hakomori, 2003; Hashiramoto et al., 2006; Sohn et al., 2006; Ledeen and 

Wu, 2006; Sonnino et al., 2007; Susuki et al., 2007; Wu et al., 2007). 

Importantly, gangliosides are involved in neurological disease. Anti-ganglioside 

antibodies have been shown in the Guillain-Barré syndrome (GBS), where anti-GM1 

antibodies are mainly associated with motor variants of the disease and anti-GQ1b antibodies 

with the Miller Fisher syndrome (MFS) variant (Willison and Yuki, 2002; Ang et al., 2004). 

Ganglioside metabolism is disturbed in an infantile epilepsy syndrome (Simpson et al., 2004), 

in Sandhoff’s disease (Liu et al., 1999), and possibly in Huntington's disease (Desplats et al., 

2007) and multiple sclerosis (Marconi et al., 2006). Gangliosides can also function as cell 

surface receptors for microbial toxins (Fishman, 1982; Bullens et al., 2002). Experimental 

studies in mice by us and others have shown that GBS/MFS-associated anti-ganglioside 

antibodies can mediate functional and structural damage to neuromuscular junctions (NMJs) 

(Buchwald et al., 1995; Plomp et al., 1999; Ortiz et al., 2001; O'Hanlon et al., 2001; Halstead 

et al., 2004; Santafe et al., 2005). 

Gangliosides contain negatively charged sialic acid residues that contribute to the surface 

charge of membranes and thereby potentially modulate H+ and Ca2+ homeostasis as well as 

voltage-gated ion-channel functioning. In addition, they influence membrane viscosity in a 

temperature-dependent way and thereby indirectly modulate ion-channel activities (Kappel et 

al., 2000). Gangliosides in the vicinity of ion-channels or -pumps may directly influence their 

kinetics and function (Wang et al., 1999; Ledeen and Wu, 2006). Furthermore, they may 

influence intracellular Ca2+ homeostasis (Wu et al., 2005). Recent functional studies using 

anti-ganglisode antibodies suggest a relationship between gangliosides and voltage-gated 

Ca2+ channels (Ortiz et al., 2001; Santafe et al., 2005; Nakatani et al., 2007).  
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In the light of their known effects on ion-channels and their particular abundance in 

synaptic regions, gangliosides are thought to play a role in neurotransmitter release, which is 

critically dependent on presynaptic ion-channel function (Wieraszko and Seifert, 1985; 

Ramirez et al., 1990; Egorushkina et al., 1993; Takamiya et al., 1996; Tanaka et al., 1997; 

Furuse et al., 1998; Ando et al., 1998; Meir et al., 1999; Chiavegatto et al., 2000; Bullens et 

al., 2002; Hakomori, 2003; Proia, 2003). Several important proteins of the release machinery 

co-localize with gangliosides within lipid rafts (Chamberlain et al., 2001; Lang et al., 2001; 

Taverna et al., 2004; Salaun et al., 2004). 

β1,4-GalNAc-transferase (or GM2/GD2-synthase, EC 2.4.1.92) knockout (GM2s-KO) 

mice lack complex gangliosides (Fig. 1; Takamiya et al., 1996; Sheikh et al., 1999) and 

develop sensory and motor coordination defects upon aging (Chiavegatto et al., 2000; 

Sugiura et al., 2005). Previously we investigated synaptic transmission in young GM2s-KO 

mice at NMJs ex vivo (Bullens et al., 2002). Surprisingly, we found that complex 

gangliosides were redundant for acetylcholine (ACh) release at room temperature. However, 

reduced release was found at 17 C, suggesting that complex gangliosides are involved in 

temperature-stabilization of synaptic transmission. 

Two additional ganglioside-deficient mice have been generated: 1) a GD3-synthase 

knockout (GD3s-KO) mouse (Okada et al., 2002), which lacks the gene coding for α2,8-

sialyltransferase (EC 2.4.99.8) and only expresses the O- and a-series gangliosides and 2) a 

GM2s*GD3s double knockout (dKO) mouse (Kawai et al., 2001; Inoue et al., 2002), which 

lacks the genes coding for both β1,4-GalNAc-transferase and α2,8-sialyltransferase, thereby 

only expressing GM3 ganglioside (Fig. 1). GD3s-KO mice are viable and fertile and show no 

overt phenotype, while dKO mice display sudden death starting from about 7-12 weeks of 

age. Here, we studied the roles of specific ganglioside subsets in neurotransmission by 

characterizing neuromuscular function in these two null-mutants. 
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Material and methods 

Mice 

We used male and female GD3s-KO mice (Okada et al., 2002) for experiments. To generate 

the dKO mice, homozygous female GM2s-KO mice (Takamiya et al., 1996) were crossbred 

with male homozygous GD3s-KO mice. Their double heterozygous progeny was then 

intercrossed to generate homozygous dKO mice. Genotyping was performed as described 

(Takamiya et al., 1996; Inoue et al., 2002). Male and female dKO mice were used in the 

experiments. Wildtype (WT) mice were used as controls. The mice were 6-13 weeks of age. 

Body weights of WT, GD3s-KO and dKO mice used were 20.3  1.0, 21.1  0.8 and 21.5  

0.8 g, respectively. All animal experiments were carried out according to Dutch law and 

Leiden University guidelines. 

 

In vivo neuromuscular function tests 

The inverted screen hanging test was used to assess fatigability of limb muscles as described 

before (Kaja et al., 2007). The test ended upon falling or completing the maximum hanging 

time which was set at 300 s.  

Muscle strength was assessed using a grip strength meter (type 303500, Technical and 

Scientific Equipment GmbH, Bad Homburg, Germany) and essentially performed as 

described (Kaja et al., 2007). As grip strength the peak force value was taken of a pull 

measured by the grip-strength-meter. Each trial consisted of at least 10 pullings and the 

averaged value was used for statistical analysis. Values were normalized to the body weights 

of mice. 

Respiratory rate and volume were assessed with non-invasive whole-body 

plethysmography (RM-80, Columbus Instruments, Ohio, USA). The signal was digitized 

using a Digidata 1440A interface (Axon Instruments/Molecular Devices, Union City, CA, 

USA) and analyzed with the event detection feature of Clampfit 9.2 (Axon 

Instruments/Molecular Devices). 

 

In vitro electrophysiology at the NMJ 

Mice were killed by CO2 asphyxiation. Left and right hemi-diaphragms were dissected with 

their phrenic nerve attached and mounted in standard Ringer’s medium (119 mM NaCl, 4.5 

mM KCl, 2 mM CaCl2, 1 mM MgSO4, 1 mM NaH2PO4, 23 mM NaHCO3, 11 mM glucose, 

pH 7.4) at room temperature, pre-gassed with 95% O2 / 5% CO2. 
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Intracellular recordings of miniature endplate potentials (MEPPs) and endplate potentials 

(EPPs) in the NMJ were made using a glass micro-electrode (10-20 MΩ, filled with 3 M 

KCl) connected to a Geneclamp 500B (Axon Instruments/Molecular devices) for amplifying 

and filtering (10 kHz low-pass) of the signal. The signal was digitized using a Digidata 

1322A interface (Axon Instruments/Molecular Devices) and analyzed using Clampfit 9.2 

(Axon Instruments/Molecular Devices) and Mini Analysis 6.0.3 (Synaptosoft, Fort Lee, 

USA). Muscle action potentials were eliminated by using the selectively skeletal muscle Na+ 

channel blocker, μ-Conotoxin GIIIB (3 μM) (Scientific Marketing Associates, Barnet, Herts, 

UK). To record EPPs, the phrenic nerve was stimulated at multiple frequencies using a 

bipolar platinum electrode. The mean EPP and MEPP amplitudes at each NMJ were 

normalized to -75 mV, with the reversal potential for ACh-induced current assumed to be 0 

mV (Magleby and Stevens, 1972). In order to calculate the quantal content for each NMJ, the 

mean amplitude of the 30 EPPs recorded at low rate (0.3 Hz) stimulation were corrected for 

non-linear summation (McLachlan and Martin, 1980) and the normalized and corrected mean 

EPP amplitude was divided by the normalized mean MEPP amplitude (calculated from at 

least 40 MEPPs sampled). The quantal content is the number of ACh quanta that is released 

upon a single nerve impulse.  

MEPPs were also recorded after addition of hypertonic medium (0.5 M sucrose Ringer's 

medium), in order to estimate the pool of ACh vesicles ready for immediate release (Stevens 

and Tsujimoto, 1995; Varoqueaux et al., 2005). In some experiments we tested the effect on 

EPPs and MEPPs of 200 nM of the Cav2.1 Ca2+ channel blocker -agatoxin-IVA (Scientific 

Marketing Associates) and 10 M of the Cav1 blocker nifedipine (Sigma-Aldrich, 

Zwijndrecht, The Netherlands). 

Temperature of the bath medium was controlled using a Peltier device placed around the 

recording bath and adjusted by varying the DC output of a power supply (Delta Elektronika, 

Zierikzee, The Netherlands). A miniature probe connected to a digital thermometer was used 

to monitor the temperature. Bath temperature was held at 24-26 °C, unless stated otherwise. 

Electrophysiological data is presented as group mean ± SEM of the mean muscle values 

calculated from the mean NMJ values. At least 10 NMJs were sampled per muscle per 

experimental condition. 
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Statistical analysis 

Statistical differences between groups means were analyzed with an unpaired Student’s t-test 

or an analysis of variance (ANOVA), with Bonferroni post-hoc testing, wherever appropriate. 
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Results 

In vivo neuromuscular tests 

Neuromuscular synapse dysfunction may lead to respiration difficulties that are detectable in 

whole body plethysmography (Halstead et al., 2008a). Upon such assessment we found in 

both the GD3s-KO and dKO mice a lower respiration rate than in WT mice (WT 424 ± 20; 

GD3s-KO 298 ± 10; dKO 307 ± 14 min-1; n=8-20 mice, p<0.01; Fig. 2A, C). The positive 

peak amplitude of the measured signal, reflecting tidal volume, was ~35% increased in dKO 

mice (WT 12.2 ± 0.7; GD3s-KO 12.2 ± 0.4; dKO 16.4 ± 0.6 mV; p<0.01; Fig. 2B, C). When 

the signals were normalized to body weight this difference became somewhat smaller but 

remained statistically significant (WT 0.65 ± 0.03; GD3s-KO 0.59 ± 0.02; dKO 0.77 ± 0.03 

mV per g body weight; p<0.01 dKO vs. GD3 and p<0.05 dKO vs. WT). Fig. 2C shows 

typical examples of respiration traces recorded. 

GD3s-KO mice showed no overt neuromuscular phenotype. In 6 of the 14 dKO mice 

used, however, we observed symptoms of weakness and/or uncoordinated movement 

(especially of hind legs). Although grip strength testing indicated normal muscle strength in 

dKO mice (~6 g/g body weight for each strain; p=0.30, n=7-20 mice; Fig. 2D), they 

performed worse on the inverted mesh (hanging times: WT 300 ± 0; GD3-KO 277 ± 16; dKO 

178 ± 28 s; p<0.05, n=5-20 mice; Fig. 2E). Symptomatic dKO mice had shorter (p<0.05) 

hanging times (111  39 s) than non-symptomatic dKO mice (228  30 s), but did not differ 

from each other with respect to the other in vivo tests.  

 

Normal basic synaptic electrophysiology in GD3s-KO and dKO mice 

Spontaneous uniquantal transmitter release was measured at the diaphragm NMJ. No 

statistically significant differences were found between genotype groups in MEPP amplitude 

(~0.9 mV; p=0.43, Fig. 3A, E) and MEPP frequency (~1.3 s-1; p=0.10, Fig. 3B). The 0.3 Hz 

nerve stimulation-evoked transmitter release resulted in equal EPP amplitudes for the three 

groups (~25 mV; p=0.45, Fig. 3C, F). The delay between nerve stimulus and start of the EPP 

was somewhat longer in dKO preparations (WT 1.74 ± 0.09; GD3s-KO 1.84 ± 0.05; dKO 

2.16 ± 0.11 ms; p<0.05 dKO vs. WT). Quantal content was calculated and appeared not 

statistically significantly different between groups although there was a tendency towards 

reduction in the dKO NMJ (WT 47.0 ± 2.7; GD3s-KO 46.1 ± 1.9; dKO 40.3 ± 1.0; p=0.27, 

Fig. 3D). ACh release at the NMJ is almost completely mediated by Ca2+ flux through Cav2.1 

(P/Q-type) channels. We probed for compensatory contribution of non-Cav2.1 channels by 
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determining the effect of 200 nM -agatoxin-IVA (Cav2.1 blocker) and 10 M nifedipine 

(Cav1 blocker) on 0.3 Hz evoked ACh release at both dKO and GD3s-KO NMJs. -Agatoxin 

readily reduced the quantal content by 95% at NMJs of both genotypes (from 28.4  1.6 to 

1.4  0.3 in the dKO and from 44.1  4.8 to 2.1  0.5 in the GD3s-KO; one hemidiaphragm 

preparation each, 10-15 NMJs sampled per condition), indicating an almost complete 

dependence on Cav2.1, and identical to the reductions we observe routinely at wild-type 

NMJs (Kaja et al., 2007). This seems to rule out any compensatory contribution by other 

types of Cav channels. The Cav1 (L-type) channel blocker nifedipine was without effect on 

the quantal content measured at dKO and GD3s-KO NMJs, excluding compensation by Cav1 

channels. The quantal content values were 29.9  2.6 before and 31.3  0.3 after nifedipine in 

the dKO and 44.1  4.8 before and 44.1  4.1 after nifedipine in the GD3s-KO (one 

hemidiaphragm preparation each, 10-15 NMJs sampled per condition). 

 

No change in hypertonic shock-induced ACh release 

Hypertonic medium (0.5 M sucrose Ringer's) elevated MEPP frequencies to equal levels in 

the three genotype groups (~48 s-1; p=0.48, n=3-6; Fig. 4). These results suggest an 

unchanged size of the readily releasable ACh vesicle pool at the NMJ of the two null-mutant 

mice.  

 

More pronounced ACh release rundown at dKO NMJs at high rate nerve stimulation 

Some effects of ganglioside composition on transmitter release may only come about at high 

intensity use of the synapse, stressing the exocytotic molecular machinery. We, therefore, 

measured EPPs during 1 s high-rate (40 Hz) nerve stimulation trains, which is the 

approximate physiological firing frequency. At dKO NMJs a modest but statistically highly 

significant increase in EPP rundown was observed, compared to the other two groups. The 

EPP rundown plateau levels (the mean of the 21st-35th EPP, expressed as percentage of the 

first EPP in the train) were: WT 81.2 ± 0.9; GD3s-KO 83.0 ± 0.8; dKO 75.7 ± 0.8% (p<0.01, 

n=11-12 mice; Fig. 5A). At 3 Hz no such difference was encountered. The rundown level in 

all groups was ~83% (p=0.15). In a separate experimental series on dKO NMJs we explored 

the behaviour of ACh release at stimulation frequencies of 3, 30, 40, 50, and 70 Hz. Except 

for 3 Hz (p=0.65), dKO EPPs ran down to a 5-7% lower level than WT at all stimulation 

frequencies (p<0.01; Fig. 5B). Examples of typical EPP rundown traces are shown in Fig. 5C.  

 

 



Zitman et al. Role of gangliosides in synaptic function - 11 - 

Temperature-dependent changes in transmitter release parameters 

We explored a possible temperature-dependent functioning of gangliosides by performing 

synaptic electrophysiological measurements at 17, 20, 30, and 35 °C in a separate series of 

experiments (Fig. 6). No major differences between GD3s-KO, dKO and WT NMJs in the 

temperature-dependency of synaptic transmission parameters (MEPP amplitude and 

frequency, EPP amplitude and quantal content) were observed within this temperature range, 

other than a somewhat increased MEPP amplitude at GD3s-KO NMJs at 17 C (~30%, 

p<0.05; Fig. 6A) and an increase of quantal content in GD3s-KO NMJs (~40%, p<0.05), 

compared to WT, at 35 C (Fig. 6D). The rundown of EPPs at 40 Hz stimulation at dKO 

NMJs was more pronounced than in GD3s-KO and WT, over the whole temperature range, 

although only statistically significantly at 25 C (as described above), 30 and 35 C test 

temperatures (p<0.05; Fig. 6E). Because the extent of this extra EPP rundown was similar 

(~25%) at the several temperatures, it can be concluded that the three genotype groups show 

a similar temperature-dependency for this parameter. The 3 Hz EPP rundown at both dKO 

and GD3s-KO NMJs was not statistically significantly different from WT at all tested 

temperatures, although there was a tendency of increased rundown at dKO NMJs. At 17 and 

30 C, 3 Hz EPP rundown at dKO NMJs was somewhat more pronounced than at GD3s-KO 

NMJs (p<0.05; Fig. 6F). 

  

Influence of external Ca2+ concentrations on transmitter release  

Besides our basic measurements in 2 mM extracellular Ca2+, low (0.2 mM) as well as high (5 

mM) Ca2+ extracellular medium was applied to explore the Ca2+-dependency of synaptic 

transmission in the GD3s-KO and dKO mice. MEPP amplitude was ~0.83 mV for each strain 

at each Ca2+ concentration (Fig. 7A). MEPP frequency (Fig. 7B), EPP amplitude (Fig. 7C) 

and quantal content (Fig. 7D) in WT NMJs were, as expected, steeply dependent on Ca2+. 

However, we observed no different values of these parameters at GD3s-KO and dKO NMJs, 

compared to WT, at all Ca2+ concentrations, showing unaltered Ca2+-sensitivity of these 

parameters. As observed at 2 mM Ca2+, the 40 Hz EPP rundown level at dKO NMJs in the 

presence of 5 mM Ca2+ (71.3%) was lower than that in WT (79.8%) and GD3s-KO (78.4%) 

(Fig. 7E; p<0.01). At low Ca2+ and 40 Hz stimulation, WT EPPs were potentiated to a plateau 

level of ~150% of the first EPP. GD3s-KO and dKO NMJs showed similar EPP potentiation 

(p=0.83, Fig. 7E). Example traces of the EPP profiles at 40 Hz stimulation at 0.2 mM Ca2+ 

are shown in Fig. 7F. EPPs at dKO NMJs at 3 Hz stimulation at 5 mM Ca2+, but not at 0.2 
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and 2 mM, showed a slightly lower EPP rundown level (79.5%) than at WT (84.8%) and 

GD3s-KO (85.1%) NMJs (Fig. 7G, p<0.01). We assessed 25 ms paired-pulse facilitation by 

comparing the first and second EPP of 40 Hz trains, but found no statistically significant 

differences between GD3s-KO, dKO and WT NMJs at any of the Ca2+ concentrations tested 

(Fig. 7H). 
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Discussion 

We studied the effects of changed ganglioside profiles in neuronal membranes on synaptic 

transmission by characterizing NMJ function in GD3s-KO mice, lacking b- and c-series 

gangliosides, and in dKO mice, lacking all ganglioside types except GM3 (Fig. 1). However, 

we found no major synaptic deficits in both null-mutants. This is quite surprising, in view of 

studies suggesting a synaptic role for gangliosides on the basis of exogenous ganglioside 

application (Tanaka et al., 1997; Ando et al., 1998), as well as the reported co-localization in 

lipid rafts of gangliosides and proteins important for neuroexocytosis (Chamberlain et al., 

2001; Lang et al., 2001; Taverna et al., 2004; Salaun et al., 2004). The only changes we 

observed were some extra degree of rundown of transmitter release at high intensity use at 

the dKO NMJ and a temperature-specific increase in quantal content at 35 C in GD3s-KO 

NMJs, compared to WT. These results indicate that synaptic transmission at the NMJ is not 

crucially dependent on any particular ganglioside and remains largely intact in the sole 

presence of GM3 ganglioside. 

 

In vivo neuromuscular analysis 

We have performed some orienting in vivo characterization of neuromuscular function of the 

GD3s-KO and dKO mice. Previously we showed that severe paralysis of mouse diaphragm 

muscle leads to reduced respiration rate and tidal volume in whole body plethysmography 

(Halstead et al., 2008b). Although we here observed some reduction in respiration rate in 

both GD3s-KO and dKO mice, tidal volume was not reduced (in fact, there was ~35% 

increase in the dKO), making severe diaphragm paralysis highly unlikely. Therefore, these 

changes in respiration patterns probably have a central (possibly synaptic) origin. The 

reduced hanging time of dKO mice in the inverted mesh test is at least not due to initial 

forelimb muscle weakness because grip strength testing appeared normal. Although most 

likely due to central dysfunction, it can not be excluded that the reduced inverted mesh 

performance has a fatigue component due to increased rundown of transmitter release at the 

NMJ (see below). 

 

Basic synaptic transmission 

In standard physiological medium at 25 C the variations in ganglioside composition at 

GD3s-KO and dKO NMJs did not seriously limit synaptic function. The rate of uniquantal 

ACh release, measured as MEPP frequency, was not different from the WT control NMJs. 
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Uniquantal size, measured as MEPP amplitude, as well as the amount of ACh released upon 

0.3 Hz nerve stimulation were similar in the three genotypes. These unchanged synaptic 

function parameters at GD3s-KO and dKO NMJs show that at 0.3 Hz stimulation there is a 

normal invasion of the nerve impulse into the presynaptic nerve ending and a normal 

translation of this depolarization into transmitter release. Apparently, the function of voltage-

gated Na+, K+ and Ca2+ channels involved in these processes is not impeded by either the loss 

of b- and c-series gangliosides or by the loss of all gangliosides except GM3. Some degree of 

ion-channel dysfunction may be present in the dKO phrenic nerve, because we observed 

~25% longer delay between nerve stimulus and postsynaptic response in dKO preparations, 

compared to WT. Although we have not investigated whether this effect is either due to extra 

synaptic delay or to slower axonal action potential conduction, the observation that GM1 and 

GD1a are necessary for stability and ion-channel composition of motor nerve nodes of 

Ranvier (Susuki et al., 2007) favors the latter possibility. Our experiments with specific 

Cav2.1 and Cav1 Ca2+ channel blockers indicated no compensatory contribution by non-

Cav2.1 Ca2+ channels to ACh release at both dKO and GD3s-KO NMJs. 

Previously we demonstrated a redundancy for the set of complex gangliosides (i.e. the 

gangliosides from all series with more than two non-sialic acid sugar residues; Fig. 1) by 

finding unaltered basic synaptic function at NMJs of GM2s-KO mice (Bullens et al., 2002). 

Our present results in dKO and GD3s-KO mice, in combination with this previous study, 

show that the sole presence of GM3 ganglioside is sufficient to support neurotransmitter 

release at the NMJ. GM3 is upregulated in dKO whole brains (Kawai et al., 2001) and such 

an accummulation may also take place at the presynaptic motoneuronal membrane, possibly 

enhancing compensatory effects of GM3 in supporting neurotransmitter release upon absence 

of all other types of gangliosides. Alternatively, gangliosides might not influence the function 

of ion-channels and/or other membrane factors at mouse presynaptic nerve terminal at all. In 

other organisms, like Drosophila melanogaster, functional synapses exist in spite of the 

inability to produce gangliosides (Roth et al., 1992; Chen et al., 2007). This shows that 

gangliosides are not a general prerequisite for synaptic function. However, such absence of a 

biological role for gangliosides in mammals is rather unlikely in view of the presence of such 

a highly organized ganglioside synthesis system and, furthermore, the demonstrated severe 

neurodegeneration in transgenic mice lacking all gangliosides including GM3 (Yamashita et 

al., 2005) and the severe neurological symptoms in human babies with loss-of-function 

mutated GM3-synthase (Simpson et al., 2004). Therefore, it would be of interest to 

investigate synaptic transmission in GM3-synthase null-mutant mice.  
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Increased rundown of high-rate transmitter release at dKO synapses 

We observed a more pronounced rundown of high rate (30-70 Hz) nerve stimulation-evoked 

ACh release at dKO NMJs (EPP rundown plateau levels, expressed as percentage of the first 

EPP in the trains, were ~6% lower than WT). In contrast, GD3s-KO NMJs showed a 40 Hz 

rundown level comparable to the WT control. This more pronounced rundown of ACh 

release at dKO NMJs is, however, not to be expected to negatively impact on successful 

synaptic transmission. From the mean dKO EPP amplitude of 24 mV and the published 

safety factor for the mouse NMJ of at least 2.4 (Wood and Slater, 2001) it can be calculated 

that EPPs of more than 10 mV will result in successful transmission. Even at maximal 

rundown (to a plateau level of ~66% of their initial value, at 70 Hz stimulation), dKO EPPs 

would remain ~16 mV, i.e. large enough to trigger an action potential in the muscle fibre. 

This could explain the absence of overt muscle weakness in the dKO mice. However, it can 

not be excluded that a more pronounced EPP rundown underlies the worse performance of 

dKO mice on the inverted mesh, which tests for fatigue on the longer duration scale 

(minutes). It may be that the extra EPP rundown in dKO mice became more prominent upon 

such long-duration and high-intensity use, resulting in subthreshold EPPs. 

Rundown of neurotransmitter release is presumably depending on a combination of the 

inactivation characteristics of presynaptic Ca2+ channels and the size and replenishment rate 

of the pool of releasable ACh vesicles. At least the pool size in dKO motor nerve terminals 

seems not reduced because MEPP frequency after addition of hypertonic medium, being a 

measure for pool size (Stevens and Tsujimoto, 1995; Varoqueaux et al., 2005), was not 

reduced compared to WT. The extra EPP rundown at dKO NMJs was found at most 

temperatures and Ca2+ concentrations tested here. Previously, we analyzed synaptic function 

at NMJs of GM2s-KO mice and found some extra rundown of EPP amplitude during high 

frequency stimulation in particular at 30-35C and at a high extracellular Ca2+ concentration 

(Bullens et al., 2002). However, GD3s-KO NMJs did not show extra EPP rundown at any 

condition. This suggests a role for the O- and/or a-series gangliosides in transmitter release at 

high frequency nerve stimulation, which could be supported by the finding that in particular 

GM1 ganglioside influences cellular Ca2+ membrane flux and homeostasis (Wu et al., 2004), 

including stimulation of Ca2+ influx in some cell types (Wu et al., 1990). If GM1 would 

promote Ca2+ influx at the motor nerve terminal through slowing down Ca2+ channel 

inactivation this could explain the extra EPP rundown in the dKO NMJs where GM1 is 
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absent. Ion-channel kinetics have been shown to be influenced by gangliosides, either 

through an electrical effect of the negative charges on their head groups or by an indirect 

mechanical effect through their ability to control membrane fluidity (Kappel et al., 2000). 

 

Temperature-dependency 

Gangliosides have been hypothesized to play a role in thermal stabilization of the neuronal 

membrane, including adaptation of ion-channel function (Rahmann et al., 1998). We 

observed a slight tendency of the quantal content at dKO and GD3s-KO NMJs to increase 

with increasing temperature. At 35 C this resulted in statistically significantly higher level 

(~40%) at GD3s-KO NMJs, compared to the WT level which itself remained more or less 

equal at all temperatures tested. On the basis of this observation it can be hypothesized that 

gangliosides inhibit transmitter release, e.g. through a (temperature-dependent) effect on 

activation and/or inactivation of presynaptic voltage-dependent K+ and/or Ca2+ channels. The 

negative charges on extracellular sialic acid residues of gangliosides contribute to membrane 

surface charge and may thus influence voltage-dependent properties of ion-channels (Green 

and Andersen, 1991). For instance, it has recently been shown that removal of sialic acid 

from the extracellular neuronal membrane by neuraminidase treatment shifts the activation- 

and inactivation-voltage of Na+ channels (Isaev et al., 2007), although it remains unclear 

whether removal of sialic acid from either the surrounding gangliosides or the ion-channel 

protein itself is causing this effect. The tendency for increased quantal content at 35 C at 

dKO compared to WT NMJs indicates that the presence of GM3 alone is not sufficient to 

keep quantal content at WT level. This may be related to the relatively low level of 

sialylation of GM3 (only a single sialic acid residue) as compared to other types of 

gangliosides, because this degree influences the specific effects of gangliosides on ion-

channel function (Kappel et al., 2000). An alternative explanation for the tendency of an 

increase of quantal content at GD3s-KO and dKO NMJs at the higher temperatures tested 

could be an increased Ca2+ availability. Gangliosides have temperature-dependent Ca2+ 

binding sites of which the amount is positively associated with the extent of sialylation 

(Rahmann et al., 1998). Therefore, loss of sialic acid density in the vicinity of presynaptic 

voltage-gated Ca2+ channels could lead to less adequate Ca2+ buffering and thus to increased 

ACh release. Such an effect seems to occur rather specifically at temperatures around 35 C, 

because in our Ca2+ variation experiments at 25 C all GD3s and dKO synaptic parameters 

except dKO EPP rundown showed normal Ca2+-dependencies. 
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In conclusion, our results show that most types of gangliosides are not crucially important for 

synaptic transmission at the mouse NMJ but, rather, have a role in temperature- and use-

dependent fine-tuning of transmitter release level. It remains to be directly shown whether the 

remaining (and possibly upregulated) presence of the simple ganglioside GM3 at dKO 

membranes explains the partial redundancy of all other gangliosides in neurotransmission. 
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Figure legends 
 

Figure 1. Synthesis of the ganglioside family  

Ganglioside nomenclature is according to Svennerholm (Svennerholm, 1994). Membranes of 

WT mice contain all the gangliosides. GD3s-KO mice lack the GD3s gene, which results in 

the absence of all the gangliosides within the dashed rectangle (b- and c-series). dKO mice 

lack both the GalNAc-transferase and the GD3s genes, leaving expression of only GM3 and 

its precursor lactosylceramide (LacCer), shown within the continuous rectangle. 

NeuAc: neuraminic acid (or sialic acid); GalNAc: N-acetylgalactosamine; GalNAc-T: N-

acetylgalactosamine transferase; GD3s: GD3 synthase. Arrows represent the stepwise 

biosynthesis through glycosyltransferases. 

 

Figure 2. In vivo assessment of neuromuscular functioning 

Mouse respiration was characterized with non-invasive plethysmography (n= 8-20). A. 

Respiration frequency was ~40% higher in WT mice than in the other two groups. B. The 

positive peak of the plethysmography signal (reflecting tidal volume) was ~35% higher in 

dKO mice, compared to WT and GD3s-KO. C. Typical examples of respiration traces 

recorded. D. Grip strength was averaged for ten trials and normalized to the body weights of 

the mice; all groups pulled ~6 gram per gram bodyweight (n=7-20). E. Hanging times in the 

inverted screen test. A maximum hanging time of 300 s was chosen. dKO mice had 

considerably shorter hanging times than WT and GD3s-KO mice (n= 5-20). 

*p<0.05; **p<0.01 

 

Figure 3. Basic ACh release parameters at the NMJ 

Ex vivo electrophysiological measurements at NMJs of phrenic nerve-diaphragm preparations 

were performed at 24-26 °C in standard Ringer's medium. Each genotype group consisted of 

at least 5 mice. A. Uniquantal size measured as MEPP amplitude. B. Spontaneous uniquantal 

ACh release measured as MEPP frequency. C. EPP amplitude at 0.3 Hz stimulation. D. 

Calculated quantal content of EPP at 0.3 Hz nerve stimulation. E. Typical examples of MEPP 

recordings. F. Typical examples of EPP recordings. No statistically significant differences 

between genotypes were observed. 
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Figure 4. Hypertonic medium-evoked ACh release  

MEPP frequency in hypertonic medium (0.5 mM sucrose-Ringer's). No statistically 

significant differences between genotypes were observed (n=3-5). 

 

Figure 5. Evoked ACh release at high rate stimulation frequencies 

A. Mean EPP rundown profile at 40 Hz stimulation. Each EPP in the trains is expressed as 

percentage of the first EPP. dKO EPPs ran down more pronounced than WT and GD3s-KO 

EPPs (#p<0.01; n=11-12). B. Rundown level is expressed as the ratio of the mean amplitude 

of the plateau phase of the train (21st-35th EPP) and the amplitude of the first EPP and was 

measured at several stimulation frequencies for WT and dKO mice. dKO NMJs displayed 

lower rundown levels at all frequencies but 3 Hz (**p<0.01, n=7-12). C. Typical traces of 

EPP amplitude rundown profiles at 40 and 70 Hz stimulation for WT and dKO NMJs.  

 

Figure 6. Temperature-dependency of ACh release parameters 

Electrophysiological measurement of ACh release at diaphragm NMJs at different bath 

temperatures. Each genotype group consisted of 4-6 mice. A. MEPP amplitude at GD3s-KO 

NMJs was higher than at WT and dKO NMJs at 17 °C. B. No statistically significant 

differences between genotypes in spontaneous ACh release measured as MEPP frequency at 

all temperatures. C. Differences between genotypes in evoked EPP amplitude at 0.3 Hz nerve 

stimulation were found only at 17 and 35 °C (##p<0.01 for GD3s-KO vs. dKO and *p<0.05 

for WT vs. GD3s-KO, respectively). D. The quantal content at GD3s-KO NMJs was higher 

than WT, only at 35 C (*p<0.05). E. dKO mice have lower rundown levels than GD3s-KO 

and WT mice at >20 C. EPP rundown level is expressed as the ratio of the mean amplitude 

of the plateau phase of the train (21st-35th EPP) and the amplitude of the first EPP at 40 Hz 

stimulation (* p<0.05; ** p<0.01). F. dKO and GD3s-KO EPP rundown level at 3 Hz 

stimulation did not differ from WT at all measured temperatures. Between each other they 

differed in this parameter at 17 and 30 °C (#p<0.05). 

 

Figure 7. Ca2+-dependency of ACh release parameters 

Electrophysiological measurement of ACh release at diaphragm NMJs at different 

extracellular Ca2+ concentrations. Each genotype group consisted of 4-6 mice. No differences 

between genotypes in Ca2+-dependency were found for (A) MEPP amplitude, (B) 

spontaneous uniquantal ACh release, measured as MEPP frequency, (C) evoked EPP 
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amplitude at 0.3 Hz nerve stimulation and (D) calculated quantal content of EPP at 0.3 Hz 

nerve stimulation. E. Rundown level of EPPs is expressed as the ratio of the mean amplitude 

of the plateau phase of the train (21st-35th EPP) and the amplitude of the first EPP at 40 Hz 

stimulation. At 2 and 5 mM Ca2+ concentrations we found a lower rundown level at dKO 

NMJs, compared to WT and GD3s-KO NMJs. F. Typical examples of EPP profiles at 40 Hz 

stimulation in 0.2 mM Ca2+ medium. G. EPP rundown level at 3 Hz stimulation shows a 

slight, but statistically significant, increase of the rundown at dKO NMJs at 5 mM Ca2+, 

compared to WT and GD3s-KO. H. No differences between genotypes in paired-pulse (25 

ms) facilitation. 

** p<0.01 
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Figure 2, Zitman et al.
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