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Blocks with a generalized quaternion defect group and

three simple modules over a 2-adic ring

Florian Eisele

April 5, 2018

Abstract

We show that two blocks of generalized quaternion defect with three simple modules over

a sufficiently large 2-adic ring O are Morita-equivalent if and only if the corresponding blocks

over the residue field of O are Morita-equivalent. As a corollary we show that any two blocks

defined over O with three simple modules and the same generalized quaternion defect group

are derived equivalent.

1 Introduction

Let (K,O, k) be a 2-modular system. We assume that K is complete and that k is algebraically
closed. The aim of this article is to prove the following result:

Theorem 1.1. Assume 3 6 n ∈ N and K ⊇ Q(ζ2n−1 + ζ−1
2n−1), where ζ2n−1 denotes a 2n−1-th root

of unity. Let Λ be a block of OG and Γ be a block of OH for finite groups G and H. If the defect
groups of Λ and Γ are both isomorphic to the generalized quaternion group Q2n and Λ and Γ both
have three isomorphism classes of simple modules, then the following hold:

1. Λ and Γ are Morita-equivalent if and only if the k-algebras k ⊗ Λ and k ⊗ Γ are Morita-
equivalent.

2. Λ and Γ are derived equivalent.

The problem of classifying blocks of quaternion defect over O arises naturally from a well-known
classification result of Erdmann in [4], where such blocks are classified over k. If the structure
of these blocks is as narrowly restricted over k as it is revealed to be in [4], does it also follow
that their structure is equally restricted over O? A priori it is not even clear that the number of
Morita-equivalence classes of blocks over O reducing to a single Morita-equivalence class of blocks
over k is finite. However, Theorem 1.1 tells us that in our case this number is not merely finite,
but in fact equal to one. In a way this was to be expected, considering the result of [7], which
proves the first part of Theorem 1.1 for one of the three possible Morita-equivalence classes of
blocks of defect Q8. The results of [10] concerning character values of blocks of quaternion defect
and the later refinement of those results to perfect isometries between such blocks in [2] also hint
towards Theorem 1.1 being true, as they already show that all of the blocks over O which are
claimed to be isomorphic respectively derived equivalent in Theorem 1.1 do at the very least have
isomorphic centers. Moreover, a derived equivalence between the principal block of O SL2(q) and
its Brauer correspondent has been shown to exist in [5].

The proof of Theorem 1.1 builds mainly upon the results in [4] and [2]. For the case of defect
Q8 we also make use of the result in [7], as it can be seen already from the decomposition matrix
(see (19)) that this case is somewhat different as there are more symmetries. Here is a rough
outline of the proof:
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1. First we prove that one of the algebras in Erdmann’s classification [4], namely the basic
algebra of the principal block of k SL2(q) for q ≡ 3 mod 4, has a unique (or, rather, “at
most one”) symmetric O-order with split semisimple K-span reducing to it, provided the
center of the order is prescribed. Roughly speaking, we do this by showing that the endo-
morphisms of the projective indecomposable modules can be recovered as the projection of
the (prescribed) center to certain Wedderburn components. Moreover, the homomorphisms
between different projective indecomposables viewed as bimodules over the endomorphism
rings of those projective modules can also be obtained in this way. Which projections we
have to take can be read off from the decomposition matrix, which we know. After that it
comes down to conjugation and exploiting the symmetry of the order.

2. The result of [2] gives us a perfect isometry between any one of the blocks we are interested
in and the principal block of O SL2(q) for appropriately chosen q ≡ 3 mod 4. In particular,
this determines the center of the block in question, which is needed to apply the result of the
first step. However, this is where a technical difficulty arises: above we assume that both
the center of the block and the decomposition matrix are known. The K-span of the center
is a semisimple commutative K-algebra whose Wedderburn components can be associated
with the rows of the decomposition matrix. In order to perform the above step properly
we need to know which Wedderburn component of the center is associated with which row
of the decomposition matrix. The problem we are facing here boils down to the following:
given a basic O-order Λ which reduces to the k-algebra treated in the first step as well as the
basic order Γ of the principal block of O SL2(q), we have two separate isometries between
the Grothendieck groups of their K-spans. On the one hand an isometry coming from the
perfect isometry between blocks, which induces an isomorphism between the centers. On the
other hand an isometry which preserves the decomposition matrix, and therefore induces an
algebra isomorphism between the K-spans of Λ and Γ . We need to show that we can choose
these two isometries equal to each other. The first isometry is determined up to perfect self-
isometries of Γ , while the second isometry is determined up to self-isometries preserving the
decomposition matrix, which come from algebra automorphisms of the K-span of Γ . What
both isometries have in common is that they map the sublattice of the Grothendieck group
of K ⊗ Λ generated by the K-spans of projective Λ-modules onto the analogously defined
sublattice of the Grothendieck group of K ⊗ Γ . Therefore they differ by a self-isometry of
the Grothendieck group of K⊗Γ which preserves the sublattice generated by the projective
Γ -modules. Thus, in order to show that we can choose the above two isometries equal to
one another, we merely have to show that the group of perfect self-isometries of Γ and the
group of self-isometries of Γ stabilizing the decomposition matrix taken together generate
the group of self-isometries of Γ which preserve the lattice generated by projective modules.
This is a fairly concrete problem, and proving this comes down to explicitly determining
these groups of self-isometries.

3. In the last step we generalize the result of the first two steps to all blocks of quaternion defect
with three simple modules using the fact that each such block (over k) is derived equivalent
to the principal block of k SL2(q) for some q ≡ 3 mod 4. The latter block is of course the
same block we studied in the first two steps. Now we exploit the fact that a one-sided tilting
complex T over a k-algebra lifts to a tilting complex T̂ over an O-order (which we may choose

freely) reducing to said k-algebra. The endomorphism ring of the lifted tilting complex T̂
is also reasonably well behaved, and in particular reduces to the endomorphism ring of T .
Hence we can start with an arbitrary block (over O) of quaternion defect with three simple
modules, to obtain, as the endomorphism ring of some tilting complex, an O-order reducing
to the basic algebra of the principal block of k SL2(q). This O-order is then determined up
to isomorphism by the first two steps. We can use this to determine the original block up to
Morita-equivalence. Obviously there are a lot of technical pitfalls here that we just skimmed
over in this short explanation.

Of course there still remain some important open questions surrounding tame blocks, and blocks
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of quaternion defect in particular. For blocks with three simple modules one might ask whether
the algebra Q(3B)c from [4] actually occurs as a block of some group ring for each c. The answer
to this, unfortunately, does not follow from our result. Moreover, the classification of blocks of
quaternion defect with two simple modules is still not entirely satisfactory, even over k.

2 The algebra Q(3K)c

In this section we are going to look at a specific basic algebra of a block of defect Q2n over
an algebraically closed field of characteristic two, namely the algebra Q(3K)c from [4], where
c = 2n−2. This algebra is the basic algebra of the principal block of k SL2(q) for q ≡ 3 mod 4,
where q depends on n (more about that later). The point of this section is to extract from the
presentation of that algebra given in [4] the properties that we are going to need to prove Theorem
4.2. Therefore a lot of what we are going to prove here will be elementary.

Let Λ̄ denote the algebra Q(3K)c from Erdmann’s classification (see the annex of [4]) with
parameters a = b = 2 and c = 2n−2 for some 3 6 n ∈ N. That is, Λ̄ = kQ/I, where Q is the
following quiver

Q =

•1 •2

•3

γ
ss

β

33

δ





η

JJ

κ

��

λ

^^

(1)

and I is the ideal generated by the following relations:

βδ = κλκ
ηγ = λκλ
δλ = γβγ
κη = βγβ

λβ = (ηδ)2
n−2−1η

γκ = (δη)2
n−2−1δ

γβδ = 0
δηγ = 0
λκη = 0

(2)

Proposition 2.1. The following elements are contained in I:

λβγ, βγκ, γβδ, ηγβ, βδη, δηγ, ηδλ, κηδ, δλκ, λκη, κλβ, γκλ (3)

Proof. This is just a calculation (in each case we highlight the part of the path that we will
substitute in the next step using one of the relations given in (2)):

λβγ = (ηδ)c−1ηγ = (ηδ)c−2ηδηγ = 0 (4)

βγκ = β(δη)c−1δ = βδ(ηδ)c−1

= κλκ(ηδ)c−1 = κλκηδ(ηδ)c−2

= 0
(5)

γβδ = 0 (6)

ηγβ = λκλβ = 0 (uses (14)) (7)

βδη = κλκη = κλβγβ = 0 (uses (4)) (8)

δηγ = 0 (9)

ηδλ = ηγβγ = λκλβγ = 0 (uses (4)) (10)

κηδ = βγβδ = 0 (11)

δλκ = γβγκ = 0 (uses (5)) (12)

λκη = 0 (13)

κλβ = κ(ηδ)c−1η
= κηδ(ηδ)c−2η
= 0 (uses (11))

(14)

γκλ = (δη)c−1δλ = (δη)c−1γβγ
= (δη)c−2δηγβγ = 0

(15)
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Remark 2.2. Think of the quiver Q as a triangle and of paths in Q as walks along the edges of
that triangle. Then Proposition 2.1 tells us that going two steps forward in any direction and then
going one step back in the opposite direction gives us a path which is zero in Λ̄. And, in the same
vein, going one step in any direction followed by two steps in the opposite direction also yields
zero. This implies that there are two kinds of non-zero paths in Λ̄:

1. Paths going back and forth between two vertices.

2. Paths walking around the triangle without changing direction.

Proposition 2.3. The elements βγ + γβ, δη + ηδ and λκ+ κλ lie in the center of Λ̄.

Proof. Proposition 2.1 implies that the product of βγ + γβ with any arrow other than β and γ
must be zero, regardless of whether we multiply from the left or from the right. Moreover, the
following holds already in the quiver algebra kQ, independently of the relations in I:

β · (βγ + γβ) = βγβ = (βγ + γβ) · β and γ · (βγ + γβ) = γβγ = (βγ + γβ) · γ (16)

The element βγ + γβ also commutes with the idempotents e1, e2 and e3, also already in kQ. So
clearly βγ + γβ is central, and the exact same reasoning implies that δη + ηδ and λκ + κλ are
central as well.

Proposition 2.4. Assume x is a path in Q. Then one of the following three possibilities holds:

x+ I = γd1 · (βγ)m · βd2 + I for some m ∈ Z>0 and d1, d2 ∈ {0, 1}
or

x+ I = ηd1 · (δη)m · δd2 + I for some m ∈ Z>0 and d1, d2 ∈ {0, 1}
or

x+ I = κd1 · (λκ)m · λd2 + I for some m ∈ Z>0 and d1, d2 ∈ {0, 1}

(17)

In other words, any path in Q is equivalent mod I to a path going back and forth between two
vertices.

Proof. We will prove this by induction. For paths of length strictly less than two there is nothing
to show. For paths of length two the claim follows from the first six relations given in (2). Using
the induction hypothesis a path of length at least three may be written as a path alternating
between two vertices composed with a single arrow. Either the resulting path is also alternating
between two vertices, in which case there is nothing to show, or the last three arrows occurring
in the path must lie in I by the “one step in one direction, two steps in the opposite direction”
criterion explained in Remark 2.2.

Proposition 2.5. We have

eiΛ̄ei = eiZ(Λ̄)ei for all i ∈ {1, 2, 3} (18)

Proof. Proposition 2.3 guarantees that e0Z(Λ̄)e0 contains βγ and κλ, e1Z(Λ̄)e1 contains γβ and
δη and that e2Z(Λ̄)e2 contains ηδ and λκ. Hence in order to prove (18) it suffices to show that
for each i the given two elements generate eiΛ̄ei as a k-algebra. But this follows directly from
Proposition 2.4.

Proposition 2.6. Let i, j ∈ {1, 2, 3} with i 6= j. Then eiΛ̄ej is generated by a single element as
a left eiΛ̄ei-module, namely by the arrow in Q going from ei to ej.

Proof. By Proposition 2.4, eiΛ̄ej is spanned as a k-vector space by paths going back and forth
between the vertices ei and ej, starting in ei and ending in ej . But necessarily the last arrow
involved in such a path is the arrow going from ei to ej . Therefore the path is a product of a path
starting and ending in ei, that is, an element of eiΛ̄ei, and the arrow going from ei to ej . This
proves that the latter arrow generates the module.
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3 Generalities on the principal block of O SL2(q)

In this section we gather some basic facts on the principal 2-block of SL2(q), in particular the case
q ≡ 3 mod 4. A Sylow 2-subgroup of SL2(q) is isomorphic to Q2n , where n is the 2-valuation of
q2 − 1. We should first remark that for every n > 3 there exists a q such that a Sylow 2-subgroup
of SL2(q) is isomorphic to Q2n .

Remark 3.1. Assume n > 3. Then the condition q ≡ 2n−1 − 1 mod 2n ensures that q + 1
is divisible by two exactly n − 1 times, and q − 1 is divisible by two exactly once, and therefore
q2 − 1 = (q − 1)(q + 1) has 2-valuation n. Moreover, such a q satisfies q ≡ 3 mod 4. By
Dirichlet’s theorem on arithmetic progressions there exists an infinite number of primes q satisfying
the condition q ≡ 2n−1 + 1 mod 2n.

Similarly there is a prime q with q ≡ 2n−1 + 1 mod 2n. This q will of course satisfy q ≡ 1
mod 4 and a Sylow 2-subgroup of SL2(q) is isomorphic to Q2n.

According to [1, Table 9.1 on page 107] the decomposition matrix of B0(SL2(q)) for q ≡ 3
mod 4 is as follows

e1 e2 e3

χ1 1 0 0
χ2 0 1 0
χ3 0 0 1
χ4 1 1 1
χ5 1 1 0
χ6 1 0 1
χ6+r 0 1 1 [ exactly once for each r = 1, . . . , l ]

(19)

where l = 2n−2 − 1. By comparing this matrix with the possible decomposition matrices given in
the appendix of [4] (or by comparing Cartan matrices), one deduces that B0(k SL2(q)) is Morita
equivalent to Q(3K)c for c = 2n−2 (i. e. the algebra we looked at in the previous sections) if q ≡ 3
mod 4.

Proposition 3.2 (Decomposition matrix). Assume n > 3. If D ∈ {0, 1}(6+l)×3 is a matrix
satisfying the equation

D⊤ ·D =




4 2 2
2 2 + 2n−2 2n−2

2 2n−2 2 + 2n−2


 =: C (20)

and if every row of D is non-zero, then D is equal to the decomposition matrix given in (19), up
to permutation of rows and columns.

Proof. For i ∈ {1, 2, 3} denote by ci the set of all indices j ∈ {1, . . . , 6+l} such that Dj,i = 1. Since
every row of D is non-zero we have |c1 ∪ c2 ∪ c3| = 6 + l. Moreover |ci| = Ci,i and |ci ∩ cj | = Ci,j

for all i, j ∈ {1, 2, 3}. The inclusion-exclusion principle implies that

|c1 ∩ c2 ∩ c3| = |c1 ∪ c2 ∪ c3| − |c1| − |c2| − |c3|+ |c1 ∩ c2|+ |c1 ∩ c3|+ |c2 ∩ c3|
= (5 + 2n−2)− 4− (2 + 2n−2)− (2 + 2n−2) + 2 + 2 + 2n−2 = 1

(21)

The number of rows of D equal to a given row can now easily be computed. For instance the
number of rows equal to (1, 1, 1) is equal to |c1 ∩ c2 ∩ c3| = 1, and the number of rows equal to
(1, 0, 0) is equal to |c1|−|c1∩c2|−|c1∩c3|+ |c1∩c2∩c3| = 1. It is clear that the inclusion-exclusion
principle determines for each vector in {0, 1}1×3 how often it occurs as a row in D.

Proposition 3.3. Assume that Λ̄ is a k-algebra, and that e1, . . . , en ∈ Λ̄ is a full set of orthogonal
primitive idempotents. If eiZ(Λ̄) = eiΛ̄ei for each i, then every O-order Λ in a split-semisimple
K-algebra A with k ⊗ Λ ∼= Λ̄ and rankO Z(Λ) = dimk Z(Λ̄) has decomposition numbers less than
or equal to one.
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Proof. Since Z(Λ) is a pure sublattice of Λ (meaning r ·x ∈ Z(Λ) implies x ∈ Z(Λ) for any r ∈ O)
we have an embedding k ⊗ Z(Λ) →֒ k ⊗ Λ. The image of this embedding lies in the center of
k⊗Λ, and equality of dimensions implies that Z(k⊗Λ) = k⊗Z(Λ). Now we have a commutative
diagram

Z(Λ) //

����

êiΛêi

����
Z(Λ̄) // // eiΛ̄ei

(22)

where the surjectivity of all except the upper horizontal arrow has either been shown above (for the
vertical arrow on the left), holds by assumption (for the lower horizontal arrow) or is a general fact
(for the rightmost vertical arrow). If we consider this as a diagram of O-modules, then it follows
from the Nakayama lemma that the top arrow has to be surjective too. But that implies that
êiΛêi is commutative (and hence so is êiAêi), which implies that the column in the decomposition
matrix belonging to êi has entries 6 1. Since this holds for all i, the statement is proven.

Note that the previous two propositions, in conjunction with Proposition 2.5, show that any
O-order reducing to Q(3K)c which has semisimple K-span and the right dimension of the center
has the matrix given in (19) as its decomposition matrix.

Proposition 3.4 (Splitting field in characteristic zero). Let Λ be a block of OG for some finite
group G, and assume that the defect group of Λ is isomorphic to Q2n for some n > 3. Assume
moreover that K ⊇ Q(ζ2n−1 + ζ−1

2n−1). Then K ⊗ Λ is split.

Proof. By [11, Corollary 31.10] every finite-dimensional division algebra D over Q2 has a splitting
field E which is finite-dimensional and unramified over Z(D). We can write E as F ·Z(D), where
F is an unramified extension of Q2. Since we assume the residue field of O to be algebraically
closed each unramified extension of Q2 is contained in K, and therefore K · Z(D) ⊇ E. Hence
K⊗Λ is split if and only if its center is split (which means that K contains each field occurring in
the Wedderburn decomposition of Z(K ⊗ Λ)), which happens if and only if K contains all values
of all characters of the block Λ. By [10, Proposition 4.1] the character values of Λ are contained
in the extension of some unramified extension of Q2 by ζ2n−1 + ζ−1

2n−1 , which is contained in K by
assumption.

4 The uniqueness of the lift of Λ̄

Theorem 4.2 below shows that the algebra Λ̄ = Q(3K)c lifts uniquely to a symmetric O-order if
we prescribe the center. That is a key ingredient in proving the main theorem of this article.

Proposition 4.1. Let A be a finite-dimensional semisimple K-algebra, let Λ ⊂ A be a symmetric
O-order and let e, f ∈ Λ be two idempotents with ef = fe = 0. Then

eΛf = {x ∈ eAf | x · fΛe ⊆ eΛe}

Proof. Set M := {x ∈ eAf | x · fΛe ⊆ eΛe}. Clearly eΛf ⊆ M , and it suffices to prove M ⊆ Λ.
Let T : A×A −→ K be an associative K-bilinear form on A such that Λ is self-dual with respect
to T (associativity means T (ab, c) = T (a, bc), and symmetry means T (a, b) = T (b, a)). Such a
form exists for any symmetric order. Then

T (M,Λ) = T (eMf,Λ) = T (M, fΛe) = T (M · fΛe, 1) ⊆ T (eΛe, 1) ⊆ O

(where associativity and symmetry of T has been used to pull e and f across). So M is contained
in the dual of Λ with respect to T , which is of course again Λ. That is, M ⊆ Λ.
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Theorem 4.2. Let Λ̄ denote the algebra Q(3K)c from section 2 with c = 2n−2 (3 6 n ∈ N

arbitrary) and let

A = K ⊕K ⊕K ⊕K3×3 ⊕K2×2 ⊕K2×2 ⊕
6+l⊕

i=7

K2×2 (23)

where l = 2n−2 − 1. Denote by ε1, . . . , ε6+l the primitive idempotents in Z(A) with the natural
choice of indices.

Let Λ ⊂ A and Γ ⊂ A be two O-orders such that all of the following holds:

1. k ⊗ Λ ∼= k ⊗ Γ ∼= Λ̄

2. Λ and Γ are symmetric

3. Λ and Γ both have the decomposition matrix given in (19) (note: the order of the rows is
fixed by the inclusion of Λ resp. Γ into A)

4. Z(Λ) = Z(Γ )

Then Λ and Γ are conjugate in A.

Proof. First let us fix an isomorphism ψ : k ⊗ Λ −→ Λ̄. That fixes labels for the simple k ⊗ Λ-
modules, since the simple Λ̄-modules correspond to the vertices of the quiver Q from section 2,
which where labeled 1, 2 and 3. Without loss of generality we may choose ψ in such a way that
the decomposition matrix of Λ with respect to this labeling is equal to (19) with the order of both
rows and columns being fixed. This can be done since Λ̄ has sufficiently automorphisms (that is
easy to check). Choose orthogonal primitive idempotents ê1, ê2, ê3 in Λ such that ψ(1k ⊗ êi) = ei
for i ∈ {1, 2, 3}. Do the analogous things for Γ to obtain ψ′, f̂1, f̂2 and f̂3. The equality of the

decomposition matrices implies that the systems of orthogonal idempotents ê1, ê2, ê3 and f̂1, f̂2, f̂3
are conjugate within A (as the entries of the decomposition matrix determine the ranks of those
idempotents in each matrix ring summand of A). We can therefore replace Λ by u1Λu

−1
1 for an

appropriately chosen unit u1 ∈ A, and assume that êi = f̂i for i ∈ {1, 2, 3}.
The fact that eiΛ̄ei = eiZ(Λ̄)ei implies that êiΛêi = êiZ(Λ)êi (and the same for Γ ). To

see this first note that for any order there is an embedding k ⊗ Z(Λ) →֒ Z(k ⊗ Λ). We have
dimk k⊗Z(Λ) = rankO Z(Λ) = dimK Z(A) = 6+l, which is equal to dimk(Z(k⊗Λ)) = dimk Z(Λ̄),
and therefore the aforementioned embedding is in fact an isomorphism. Since we assume that
Z(Λ) = Z(Γ ) (as subsets of Z(A)), we can conclude that

êiΛêi = êiZ(Λ)êi = f̂iZ(Γ )f̂i = f̂iΓ f̂i (24)

for all i ∈ {1, 2, 3}.
Let i 6= j ∈ {1, 2, 3}. We know that eiΛ̄ej is generated by a single element as a left eiΛ̄ei-

module. Hence the same is true for êiΛêj and êiΓ êj as left êiΛêi-modules respectively êiΓ êi-
modules. Let vij respectively wij denote generators for êiΛêj respectively êiΓ êj.

Since all decomposition numbers are zero or one, it follows that the K-vector space εmêiAêj is
at most one-dimensional for each central primitive idempotent εm ∈ Z(A) and all i, j ∈ {1, 2, 3}.
Since ε4êiAêj ∼= K for all i, j ∈ {1, 2, 3}, and because we can replace vij by o · vij for a unit
o ∈ O×, we can ask that ε4vij be equal to πdij ·ε4wij for certain numbers dij ∈ Z, where π denotes
a (fixed) generator of the maximal ideal of O.

Consider an element of the form

u2 :=

6+l∑

i=1

3∑

j=1

cij · εiêj

where the cij are parameters in K× yet to be determined. Note that some of those parameters are
superfluous since some of the products εiêj are zero (we include those superfluous parameters only
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because it simplifies notation). We will try to choose the cij in such a way that (1−ε4)·u2viju−1
2 =

(1− ε4) · wij for all pairs (i, j) ∈ {(1, 2), (2, 3), (3, 1)}.
We will take care of the fourth Wedderburn component later on, and therefore we set c41 =

c42 = c43 = 1. Note that for each Wedderburn-component except for the fourth there is at most
one pair (i, j) ∈ {(1, 2), (2, 3), (3, 1)} such that vij and wij projected to that component is non-
zero, as all rows of the decomposition matrix (19) except for the fourth have at least one zero
in them. Seeing how εm · u2 · vij · u−1

2 = cmi

cmj
· εm · vij for each m ∈ {1, . . . , 6 + l}, it follows

that we can choose the cmi such that εm · u2 · vij · u−1
2 = εm · wij for all 4 6= m ∈ {1, . . . , 6 + l}

and for all (i, j) ∈ {(1, 2), (2, 3), (3, 1)} (where the pair (i, j) is uniquely determined by m, as we
just discussed). Without loss of generality we will replace Λ by u2Λu

−1
2 . Hence, we now have

(1− ε4) · vij = (1− ε4) · wij for all (i, j) ∈ {(1, 2), (2, 3), (3, 1)}.
Now consider the product βδλ ∈ e1Λ̄e1. This is non-zero, which implies that

ê1Λê2Λê3Λê1 6⊆ π · Λ (25)

On the other hand v12 · v23 · v31 generates this (left or right) ê1Λê1-module, since

ê1Λê2Λê3Λê1 = ê1Λê1v12 · ê2Λê2v23 · ê3Λê3v31
= ê1Z(Λ)ê1v12 · ê2Z(Λ)ê2v23 · ê3Z(Λ)ê3v31
= Z(Λ) · v12v23v31

The analogous statement holds for w12 · w23 · w31. By construction we have v12 · v23 · v31 =
πd12+d23+d31 ·w12 ·w23 ·w31 (by looking at the decomposition matrix we see that this element has
a non-zero entry only in the fourth Wedderburn component, so this follows immediately from the
definition of the dij). It follows that d12 + d23 + d31 = 0, since if it were greater than zero, then
v12 · v23 · v31 would lie in π · Λ, as w12 · w23 · w31 already lies in ê1Γ ê1 = ê1Λê1 ⊂ Λ. And by
swapping the roles of Λ and Γ in this argument, we can also conclude that d12 + d23 + d31 cannot
be smaller than zero.

Now we can use conjugation by the element

u3 = (1 − ε4) + ε4 · (ê1 + πd12 ê2 + πd12+d23 ê3)

By construction (1 − ε4) · u3viju−1
3 = (1 − ε4) · vij for all i, j, and we have already shown that

(1− ε4) · vij = (1− ε4) · wij for all (i, j) ∈ {(1, 2), (2, 3), (3, 1)}. Moreover, ε4 · u3v12u−1
3 = ε4w12,

ε4 · u3v23u−1
3 = ε4w23 and ε4 · u3v31u−1

3 = πd12+d23+d31 · ε4w31 = ε4w31. Hence we can conclude
that u3 · vij · u−1

3 = wij for all (i, j) ∈ {(1, 2), (2, 3), (3, 1)}. Replace Λ by u3Λu
−1
3 .

Now we have êiΛêi = êiΓ êi for all i ∈ {1, 2, 3} and êiΛêj = êiΓ êj for all (i, j) ∈
{(1, 2), (2, 3), (3, 1)}. By the assumption that Λ and Γ are symmetric, and using Proposition
4.1 it follows that êiΛêj = êiΓ êj for all (i, j) ∈ {(2, 1), (3, 2), (1, 3)} as well. Therefore we get
Λ = Γ , which finishes the proof.

We should remark at this point that the condition “Z(Λ) = Z(Γ )” in the previous theorem
is quite strong, and certainly stronger than merely asking that the centers should be isomorphic.
Hence, in order to apply Theorem 4.2 to blocks of quaternion defect, we must first study to which
extent the perfect isometries between them provide us with information on the embedding of the
center into the Wedderburn-decomposition of the block. That is what the next section is about.

5 Perfect self-isometries of B0(O SL2(q)) for q ≡ 3 mod 4

In this section we will study self-isometries preserving projectivity and perfect self-isometries of
B0(O SL2(q)) for q ≡ 3 mod 4. For the most part we restrict our attention to the case n > 3 (n
being the 2-valuation of q2 − 1), but in the case n = 3 the main result of this section, Corollary
5.6, is just the same as [7, Proposition 1.1]. Since later on we will have to deal with orders which
are not a priori known to be blocks of groups rings, we are going to formulate Proposition 5.1
below in a slightly more general setting than needed for the purposes of this section.
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Proposition 5.1 (Isometries preserving projectivity). Let Λ be an O-order with split-semisimple
K-span and decomposition matrix as given in (19). We index the elements of IrrK(K ⊗Λ) by the
numbers {1, . . . , 6 + l} using the same ordering as for the rows of the decomposition matrix (19).
We write self-isometries of the Grothendieck group K0(K ⊗ Λ) as signed permutations, using the
following convention for a signed cycle: (i1, . . . , ik) denotes the permutation that sends |ij| to ij+1

for each j ∈ Z/kZ.
Denote the projective indecomposable Λ-modules belonging to the first, second and third column

of (19) by P1, P2 and P3, respectively. Let ϕ : K0(K ⊗ Λ) −→ K0(K ⊗ Λ) be an isometry that
maps the Z-lattice 〈[K ⊗ P ] | P projective Λ-module〉Z onto itself. Then

ϕ ∈ 〈±id, (2, 3)(5, 6), (−1,−4)(2, 3)(−5)(−6), (2, 4)(−1,−3)(−6)〉 · Sym({7, . . . , 6 + l}) (26)

Proof. Clearly ϕ induces a permutation of ± Irr(K⊗Λ). If [V ] ∈ Irr(K⊗Λ), then (ϕ([Pi]), [V ]) =
([Pi], ϕ

−1([V ])) ∈ {−1, 0, 1}, where we made use of the fact that all decomposition numbers of Λ
are 6 1. For each [Pi] there is a [Vi] ∈ Irr(K ⊗ Λ) which occurs with multiplicity 1 in [Pi] and
with multiplicity 0 in each [Pj ] with i 6= j. If we write ϕ([Pi]) = ai,1[P1] + ai,2[P2] + ai,3[P3], then
ai,j = ([Vj ], ϕ([Pi)]) = (ϕ−1([Vj ]), [Pi]) ∈ {−1, 0, 1}. In the same vein, for each j 6= j′ ∈ {1, 2, 3} we
have a [V ] ∈ Irr(K ⊗Λ) such that ([Pl], [V ]) = 1 if and only if l ∈ {j, j′} and ([Pl], [V ]) = 0 for the
unique l ∈ {1, 2, 3}−{j, j′}. Then ai,j+ai,j′ = ([V ], ϕ([Pi])) = (ϕ−1([V ]), [Pi]) ∈ {−1, 0, 1}. Hence
the only possibilities for ϕ([Pi]) are linear combinations of [P1], [P2] and [P3] with coefficients 0,
1 and −1, where either only one coefficient is non-zero, or one coefficient is equal to zero, one is
equal to +1 and one is equal to −1. Let [P ] = a[P1] + b[P2] + c[P3]. Then

([P ], [P ]) =
(
a b c

)
·




4 2 2
2 2 + 2n−2 2n−2

2 2n−2 2 + 2n−2


 ·




a
b
c




= 4a2 + (2 + 2n−2) · (b2 + c2) + 4ab+ 4ac+ 2n−1bc

(27)

By symmetry we only have to check the cases (a, b, c) = (1,−1, 0) and (a, b, c) = (0, 1,−1). We
get ([P ], [P ]) = 2 + 2n−2 respectively ([P ], [P ]) = 4. As (ϕ([Pi]), ϕ([Pi])) = ([Pi], [Pi]) is equal to
4 if i = 1 and equal to 2 + 2n−2 if i ∈ {1, 2} it follows that ±([P1] − [P2]) and ±([P1] − [P3]) are
suitable images for both [P2] and [P3], and ±([P2]− [P3]) is a suitable image for [P1].

Now we list all possible images of the triple [P1], [P2] and [P3] which stabilize the Cartan
matrix, which means that they may be induced by an isometry ϕ, but we will still have to find
a signed permutation on ± IrrK(K ⊗ Λ) that induces them. We give such a permutation in each
case.

ϕ([P1]) ϕ([P2]) ϕ([P3]) Signed permutation on {1, . . . , 6 + l}
±[P1] ±[P2] ±[P3] ±id

±[P3] ±[P2] ±(2, 3)(5, 6)
±([P1]− [P2]) ±([P1]− [P3]) ±(1, 4)(−2)(−3)(5, 6)(−id{7,...,6+l})
±([P1]− [P3]) ±([P1]− [P2]) ±(1, 4)(−2,−3)(−id{7,...,6+l})

±([P2]− [P3]) ±[P2] ∓([P1]− [P2]) ±(2, 4)(−1,−3)(−6)
∓[P3] ±([P1]− [P3]) ±(1, 2,−4,−3)(5,−6)(−id{7,...,6+l})
∓([P1]− [P2]) ±[P2] ±(−1,−3, 4, 2)(5,−6)
±([P1]− [P3]) ∓[P3] ±(1, 2)(−3,−4)(−6)(−id{7,...,6+l})

(28)

Note that the given signed permutations are unique up to composition with permutations which
fix [P1], [P2] and [P3]. That are precisely all the permutations that fix {1, . . . , 6} point-wise. This
proves the lemma (it is easy to verify that the elements given in (26) are generators for the group
we just determined).

Now we are interested in the question which of these self-isometries are actually perfect if we
pick Λ = B0(O SL2(q)). For the rest of the section we will fix some prime q with q ≡ 3 mod 4 and
assume that K ⊗ B0(O SL2(q)) is split, which is equivalent to asking that K ⊇ Q(ζ2n−1 + ζ−1

2n−1)
(n is the 2-valuation of q2 − 1).
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Remark 5.2 (Character table). We are going to need the character table of SL2(q), which can
be found in [1, Table 5.4], to check perfectness of characters. The table below is the part we
are interested in, namely the characters which lie in the principal 2-block of SL2(q). We already
replaced those character values for which there is a more explicit description due to our constraints
on q (concretely: q0 = −q, θ0(ε) = 1, α0(ε) = ε).

εI2 d(a) d′(ξ) εuτ

ε ∈ {±1} a ∈ µq−1 ξ ∈ µq+1 ε, τ ∈ {±1}
|CSL2(q)(g)|| q(q2 − 1) q − 1 q + 1 2q

o(g) o(ε) o(a) o(ξ) q · o(ε)

1 χ1 1 1 1 1

R′
+(θ0) χ2

1
2 (q − 1) 0 −θ0 (ξ) 1

2 (−1 + τ
√−q)

R′
−(θ0) χ3

1
2 (q − 1) 0 −θ0 (ξ) 1

2 (−1− τ
√−q)

St χ4 q 1 −1 0

R+(α0) χ5
1
2 (q + 1) ε α0 (a) 0 1

2ε (1 + τ
√−q)

R−(α0) χ6
1
2 (q + 1) ε α0 (a) 0 1

2ε (1− τ
√−q)

R′(θ) χ6+i (q − 1) · θ(ε) 0 −θ(ξ)− θ(ξ)−1 −θ(ε)

(29)

The top row and the leftmost column contains the names for the conjugacy classes respectively
characters used in [1]. The symbol µj denotes the group of j-th roots of unity in the algebraic
closure of Fq (i. e., a cyclic group of order j if gcd(q, j) = 1). The symbol θ0 denotes the unique
ordinary character of order two of the group µq+1, and the symbol α0 denotes the unique ordinary
character of order two of the group µq−1. The parameter θ in the last row ranges over all characters
of order 2i of the group µq+1 for i > 2, although different θ may still yield the same character
R′(θ). Namely, we have R′(θ1) = R′(θ2) for θ1 6= θ2 if and only if θ1 is the complex conjugate of
θ2.

We should recall that, due to our choice of q, the 2-valuation of q−1 is one, and the 2-valuation
of q+1 is n−1. In particular θ ranges over (2n−1−2)/2 = 2n−2−1 different values. The following
will be useful later on:

1. Since q−1 has 2-valuation one, the 2-valuation of the order of an element a ∈ µq−1 is either
0 or 1. We have

α0(a) =

{
−1 if a has even order
1 if a has odd order

(30)

2. Since q + 1 has 2-valuation n− 1, the 2-valuation of the order of an element ξ ∈ µq+1 is at
most n− 1. We have

θ0(ξ) =

{
−1 if the 2-valuation of o(ξ) is n− 1
1 otherwise

(31)

Proposition 5.3. 1. The involution g 7→ g−1 on O SL2(q) induces a self-isometry (2, 3)(4, 5)
of the principal block. This self-isometry is also induced by an automorphism (see Proposition
6.3 below).

2. Alvis-Curtis duality (see [1, Chapter 8.4]) swaps the trivial character and the Steinberg
character, which correspond to the first and fourth row of the decomposition matrix (19).
By inspecting the rows of (28) we see that the signed permutation it induces on irre-
ducible characters is either in (1, 4)(−2)(−3)(5, 6)(−id{7,...,6+l}) · Sym({7, . . . , 6 + l}) or in
(1, 4)(−2,−3)(−id{7,...,6+l}) · Sym({7, . . . , 6 + l}).
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Note that the existence of the above perfect self-isometries implies that Z(B0(O SL2(q))) has
automorphisms which induce the corresponding (unsigned) permutations on the Wedderburn com-
ponents (or, equivalently, the primitive idempotents of Z(K ⊗B0(O SL2(q)))).

It is now quite natural to ask whether the self-isometry inducing the permutation
(2, 4)(−1,−3)(−6) is also perfect, since then all three generating (signed) permutations in equa-
tion (26) would come from perfect isometries. It turns out that this is false. But, as we will see
in a moment, we can find an element σ ∈ Sym({7, . . . , 6 + l}) such that (2, 4)(−1,−3)(−6) ◦ σ
is perfect. Nevertheless, we will start by looking at the permutation (2, 4)(−1,−3)(−6), and the
corresponding character of G×G:

ι0(g, h) := −χ1(g)χ3(h)− χ3(g)χ1(h) + χ2(g)χ4(h) + χ4(g)χ2(h) + χ5(g)χ5(h)

−χ6(g)χ6(h) +
∑6+l

i=7 χi(g)χi(h)
(32)

Since perfect characters form an additive group, and we know that the character of G×G repre-
senting the identity permutation is perfect, we may just as well study the character

µ(g, h) =
(∑6+l

i=1 χi(g)χi(h)
)
− ι0(g, h)

= χ1(g)χ1(h) + χ3(g)χ3(h) + χ1(g)χ3(h) + χ3(g)χ1(h) + χ2(g)χ2(h)
+χ4(g)χ4(h)− χ2(g)χ4(h)− χ4(g)χ2(h) + 2χ6(g)χ6(h)

(33)

Now we will look at how exactly µ(g, h) fails to be perfect, and how we can rectify that. Unfortu-
nately, checking that a character is perfect is usually a somewhat tedious computation, and what
follows is no exception.

Lemma 5.4. The character µ(g, h) defined in (33) has the following properties:

1. If g has even order, and h has odd order, then µ(g, h) = µ(h, g) = 0.

2. If g and h both have odd order, then

µ(g, h)

|CSL2(q)(g)|
∈ O and

µ(g, h)

|CSL2(q)(h)|
∈ O (34)

3. If g and h both have even order, then

µ(g, h)

|CSL2(q)(g)|
∈ O and

µ(g, h)

|CSL2(q)(h)|
∈ O (35)

except possibly if g and h belong to the conjugacy classes labeled by d′(ξ1) and d′(ξ2) in the
character table (29), and ξ1 and ξ2 both have order divisible by 2n−1.

Proof. Note that only the characters χ1 through χ6 are involved in µ, and the entries in the rows
of the character table (29) depend only slightly on the concrete parameters ε, a, ξ, ε and τ that
specify the actual conjugacy class (note: there are in fact two different parameters called “ε”).
In fact, we only need to know ε for the first column, α0(a) for the second, θ0(ξ) for the third
and ε as well as τ for the fourth. If we are looking at the character values of an element of odd
order, then ε = 1, α0(a) = 1, θ0(ξ) = 1 and ε = 1 respectively (only τ still depends on the
actual conjugacy class). If we are looking at the character values of an element of even order,
then ε = −1, α0(a) = −1, θ0(ξ) still depends on the order of ξ and ε = −1 (again, τ depends on
the actual conjugacy class). Here we used the last part of Remark 5.2. Hence we can write the
values of µ(g, h) for g ∈ {ε1I2, d(a1), d′(ξ1), ε1uτ1} of odd order and h ∈ {ε2I2, d(a2), d′(ξ2), ε2uτ2}
of even order into a 4 × 4-matrix, whose entries will only depend on τ1, θ0(ξ2), and τ2. One can
compute this 4 × 4-matrix by hand or using a computer (which seems more sensible seeing how
this is a rather lengthy computation), and one obtains the zero matrix, which proves the first part
of our assertion.
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In the same vein we can put the values of µ(g,h)
|CSL2(q)(g)| for g ∈ {ε1I2, d(a1), d′(ξ1), ε1uτ1} and

h ∈ {ε2I2, d(a2), d′(ξ2), ε2uτ2} both of odd order into a 4 × 4-matrix. Note that |CSL2(q)(h)| and
|CSL2(q)(g)| and do not depend on ε1, a1, etc. at all. We obtain the following matrix:

ε1I2 d(a1) d′(ξ1) ε1uτ1

ε2I2
q+1

(q−1)q
2

(q−1)q 0 −−1+τ2
√−q

(q−1)q

d(a2) 2 q+1
q−1

4
q−1 0 −2−1+τ2

√−q
q−1

d′(ξ2) 0 0 0 0

ε2uτ2 − (τ1
√−q−1)(1+q)

2q −−1+τ1
√−q

q 0 (τ1
√−q−1)(τ2

√−q−1)
2q

(36)

To see that all of the entries lie in O it suffices to know the following: 2 divides q − 1 and q + 1,
q − 1 divides both 2 and q + 1, and both 2 and q − 1 divide 1 ± √−q. The latter is owed to the

fact that 1±√−q
2 is integral due to our choice of q. Since µ(g, h) = µ(h, g) for all g and h the proof

of the second part of our assertion is complete.

To finish the proof let us look at the values of µ(g,h)
|CSL2(q)(g)| for g ∈ {ε1I2, d(a1), d′(ξ1), ε1uτ1} and

h ∈ {ε2I2, d(a2), d′(ξ2), ε2uτ2} both of even order. We get almost the same matrix as above:

ε1I2 d(a1) d′(ξ1) ε1uτ1

ε2I2
q+1

(q−1)q
2

(q−1)q 0 −−1+τ2
√−q

(q−1)q

d(a2) 2 q+1
q−1

4
q−1 0 −2−1+τ2

√−q
q−1

d′(ξ2) 0 0 2(θ0(ξ1)θ0(ξ2)−θ0(ξ1)−θ0(ξ2)+1)
q+1 0

ε2uτ2 − (τ1
√−q−1)(1+q)

2q −−1+τ1
√−q

q 0 (τ1
√−q−1)(τ2

√−q−1)
2q

(37)

The only entry that is different is the (3, 3)-entry, which will in general not lie in O. However,
this entry is zero unless both θ0(ξ1) and θ0(ξ2) are equal to −1, which, according to (31), happens
only if ξ1 and ξ2 both have order divisible by 2n−1. That finishes the proof.

Lemma 5.5. Let

ι1(g, h) :=
∑

θ

(R′(θ)(g)R′(θ)(h)−R′(θ)(g)R′(θ · θ0)(h)) (38)

using the notation for the irreducible characters from (29). The summation index θ ranges over
the same 2n−2 − 1 characters of µq+1 as in the character table.

Then ι0 − ι1 is a perfect isometry, and clearly the induced signed permutation on irreducible
characters is (2, 4)(−1,−3)(−6) ◦ σ for an element σ ∈ Sym({7, . . . , 6 + l}) of order two.

Proof. It is clear by definition that ι0 − ι1 is an isometry, we only need to check that it is perfect.
To do that we may just as well prove that µ+ ι1 is perfect.

Let us first note that ι1(g, h) 6= 0 if and only if both g and h have order divisible by 2n−1. It
is clear that if h has order not divisible by 2n−1, then ι1(g, h) = 0 because R(θ)(h) = R(θ · θ0)(h)
which means that each individual summand in the definition of ι1 is zero. The fact that ι1(g, h)
is zero whenever g has order not divisible by 2n−1 can be seen by rearranging the sum. To be
precise, we apply an index shift to obtain the following equality:

ι1(g, h) =
∑

θ R
′(θ)(g)R′(θ)(h)−∑

θ R
′(θ)(g)R′(θ · θ0)(h)

=
∑

θ(R
′(θ)(g)R′(θ)(h) −

∑
θ R

′(θ · θ0)(g)R′(θ)(h))

= ι1(h, g)

(39)
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We conclude that µ + ι1 satisfies all of the conditions 1 through 3 from the statement of Lemma
5.4 just as µ does (because the relevant values of µ+ ι1 are actually equal to those of µ).

It remains to prove that if g and h both have order divisible by 2n−1 (which we will assume
from here on out), then

µ(g, h) + ι1(g, h)

|CSL2(q)(g)|
=
µ(g, h) + ι1(g, h)

q + 1

!∈ O (40)

To show this we can simply evaluate µ and ι1: µ(g, h) = 8 (from (37)), and since θ0(h) = −1 the
formula for ι1(g, h) simplifies to the following:

ι1(g, h) = 2 ·
∑

θ

(θ(g) + θ(g)−1)(θ(h) + θ(h)−1) (41)

The latter is technically abuse of notation, since θ is not really defined on g (or h, for that matter),
but rather on ξ ∈ µq+1, where d′(ξ) is the “standard” representative (from (29)) of the conjugacy
class that g (or h) is an element of.

Recall that if we take all characters of µq+1 of two-power order except those of order 6 2,
and partition these characters into sets of cardinality two containing a character and its complex
conjugate, then the summation index θ in (41) ranges over representatives of those sets. Since the
values of R′(θ) and R′(θ̄) are actually equal, we might as well let θ range over all characters of
two-power order > 2, and then divide the resulting sum by two. Using the fact that the characters
of µq+1 of two-power order are obtained by mapping g respectively h to all possible 2n−1-st roots
of unity, we get the following:

ι1(g, h) =
∑n−1

i=2

∑
σ∈Gal(Q(ζ2i )/Q)(ζ

σ
2i + (ζσ2i )

−1)((ζz2i )
σ + ((ζz2i )

σ)−1)

=
∑n−1

i=2

∑
σ∈Gal(Q(ζ2i )/Q)(ζ

1+z
2i + ζ1−z

2i + ζ−1+z
2i + ζ−1−z

2i )σ

= . . . (continued below)

(42)

Here ζ2i denotes a primitive 2i-th root of unity, and z ∈ Z is chosen such that θ(h) = θ(gz) for
all θ of two-power order (i.e. the two-part of h is conjugate to the 2-part of gz; in particular, z is
odd). Note that for any j ∈ Z we have

n−1∑

i=0

∑

σ∈Gal(Q(ζ2i )/Q)

(ζj2i)
σ =

{
0 if j 6≡ 0 mod 2n−1

2n−1 if j ≡ 0 mod 2n−1 (43)

This follows for instance from column orthogonality in the character table of the cyclic group of
order 2n−1. This allows us to simplify (42) as follows (note: we need to pay attention to the
different ranges for the summation index i in (42) and (43)):

. . . = N(z)−∑1
i=0

∑
σ∈Gal(Q(ζ2i )/Q)(ζ

1+z
2i + ζ1−z

2i + ζ−1+z
2i + ζ−1−z

2i )σ

z odd
= N(z)− 8

(44)

Here N(z) denotes 2n−1 · (δ1+z,0 + δ1−z,0 + δ−1+z,0 + δ−1−z,0) (where δa,b = 1 if a ≡ b mod 2n−1

and δa,b = 0 otherwise). We can now conclude that

µ(g, h) + ι1(g, h) = N(z) (45)

which is divisible by 2n−1, and therefore also by q + 1 (in O).

Corollary 5.6. Let

ϕ : K0(K ⊗B0(O SL2(q))) −→ K0(K ⊗B0(O SL2(q))) (46)
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be an isometry that maps the Z-lattice 〈[K ⊗ P ] | P projective B0(O SL2(q))-module〉Z onto itself.
Then ϕ can be written as ϕ1 ◦ ϕ2, where ϕ1 ∈ Sym({7, . . . , 6 + l}) (we identify isometries and
signed permutations as in Proposition 5.1) and ϕ2 is a perfect isometry.

Proof. For n = 3 the assertion has been proved in [7, Proposition 1.1]. For n > 3 the claim follows
from Proposition 5.1, which yields a factorization of ϕ as ϕ1 ◦ ϕ2 with ϕ1 ∈ Sym({7, . . . , 6 + l}).
Proposition 5.3 and Lemma 5.5 then show that ϕ2 composed with an appropriate element of
Sym({7, . . . , 6 + l}) is a perfect isometry.

6 Fixing the Wedderburn embedding

Throughout this section we will assume the following:

1. Λ is a symmetric O-order with split semisimple K-span.

2. k ⊗ Λ is basic.

3. The decomposition matrix of Λ is the one given in (19), up to permutation of rows and
columns.

4. We fix a prime q ≡ 3 mod 4 and an isomorphism (which we assume to exist)

Φ : Z(Γ )
∼−→ Z(Λ) (47)

where Γ is the basic order of B0(O SL2(q)). We assume moreover that there is an isometry

Φ̂ : K0(K ⊗ Γ ) −→ K0(K ⊗ Λ) (48)

with the following properties:

(a) if ε ∈ Z(K ⊗ Γ ) is a central primitive idempotent, V is the simple K ⊗ Γ -module
associated with ε, and W is the simple K ⊗ Λ-module associated with the central
primitive idempotent (idK ⊗ Φ)(ε) ∈ Z(K ⊗ Λ), then Φ̂([V ]) = ±[W ].

(b) Φ̂(〈[K ⊗ P ] | P is a projective Γ -module〉Z) = 〈[K ⊗Q] | Q is a projective Λ-module〉Z

Note that since Γ is the basic order of B0(O SL2(q)) we may identify K0(K ⊗ Γ ) with K0(K ⊗
B0(O SL2(q))). The following diagram visualizes the situation we are looking at:

Z(Γ )

��

∼Φ

� r

wedΓ |Z(Γ )

$$❏❏
❏

❏

❏

❏

❏

❏

❏

❏

❏

Z(Λ)
� �

wedΛ |Z(Λ)

//
� _

��

Z(A) = K ⊕K ⊕K ⊕K ⊕K ⊕K ⊕
l copies︷ ︸︸ ︷

K ⊕ . . .⊕K
� _

��
Λ �
�

wedΛ

// A = K ⊕K ⊕K ⊕K3×3 ⊕K2×2 ⊕K2×2 ⊕K2×2 ⊕ . . .⊕K2×2

︸ ︷︷ ︸
l copies

✚❩	

	

(49)

where the maps wedΛ : Λ −→ A and wedΓ : Γ −→ A denote Wedderburn embeddings whose
images have the decomposition matrix (19) with the order of the rows being fixed. The potential
non-commutativity of the top part of this diagram is the main obstacle in showing there is only
one Morita equivalence class of quaternion blocks over O reducing to the Morita equivalence class
of B0(k SL2(q)). We will now investigate this non-commutativity in greater detail.
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Remark 6.1. 1. Let us denote the primitive idempotents of Z(A) by ε1, . . . , ε6+l. A K-algebra
automorphism of Z(A) is given by a permutation of these idempotents, i. e. each automor-
phism is of the form ασ for some σ ∈ Sym({1, . . . , 6 + l}), where

ασ(εi) = εσ(i) (50)

Since A is split the permutation σ determines the automorphism uniquely.

2. A self-isometry of K0(A) determines an automorphism of Z(A). To be more specific, we can
construct the corresponding permutation σ by forgetting the signs in the signed permutation
acting on ± Irr(A). Similarly, an isometry between K0(K ⊗ Γ ) and K0(A) determines an
embedding Z(Γ ) −→ Z(A).

3. Two Wedderburn embeddings of a commutative O-order into Z(A) differ only by an auto-
morphism of Z(A).

Proposition 6.2. There is a permutation σ ∈ Sym({7, . . . , 6 + l}) such that

wedΛ(Z(Λ)) = ασ(wedΓ (Z(Γ ))) (51)

Remark: Note that ασ extends to an automorphism of A, and α−1
σ ◦ wedΛ can be regarded as

another Wedderburn embedding of Λ, whose image has the same decomposition matrix as the
image of wedΛ (where the order of the rows is fixed).

Proof. We may (canonically) identify K0(A) with Z6+l (equipped with the usual euclidean scalar
product), since the Wedderburn components of A are ordered. With this identification the iso-
morphisms idK ⊗ wedΛ : K ⊗ Λ −→ A and idK ⊗ wedΓ : K ⊗ Γ −→ A come from isometries

ŵedΛ : K0(K ⊗ Λ) −→ Z6+l respectively ŵedΓ : K0(K ⊗ Γ ) −→ Z6+l (52)

that send the equivalence classes of simple K ⊗ Λ- respectively K ⊗ Γ -modules to the stan-
dard basis of Z6+l. Due to our assumption on the decomposition matrices of the images of
wedΛ and wedΓ , these isometries send the Z-lattice 〈[P ] | P projective Λ-module〉Z respectively
〈[P ] | P projective Γ -module〉Z onto the Z-sublattice of Z6+l generated by the columns of the
decomposition matrix (19).

Now let us compare the maps wedΓ |Z(Γ ) and wedΛ |Z(Λ)◦Φ. They are induced by the isometries

ŵedΓ and ŵedΛ◦Φ̂, both of which send 〈[K⊗P ] | P a projective Γ -module〉Z to the Z-sublattice of
Z6+l which is generated by the columns of the decomposition matrix (here we use the assumptions

we made on Φ̂). By Corollary 5.6 we can conclude that ŵedΓ and ŵedΛ ◦ Φ̂ differ by a self-
isometry of K0(K ⊗ Γ ) which is the composition of a perfect self-isometry of Γ and an element of
Sym({7, . . . , 6 + l}).

Assume γ is an automorphism of Z(Γ ) which comes from a self-isometry γ̂ of K0(K ⊗ Γ ).

Then wedΓ ◦γ comes from the isometry ŵedΓ ◦ γ̂., In light of the previous paragraph, we can
choose a γ̂ = γ̂1 ◦ γ̂2, with γ̂1 ∈ Sym({7, . . . , 6 + l}) and γ̂2 being a perfect isometry, such that

ŵedΛ ◦ Φ̂ = ŵedΓ ◦ γ̂. Now we can pull γ̂1 through ŵedΓ , to obtain γ̂′1 ◦ ŵedΓ ◦ γ̂2 for a certain self-
isometry γ̂′1 of K0(A). Note that there is an automorphism of Z(A) induced by the self-isometry
γ̂′1, and this automorphism is equal to ασ with σ ∈ · Sym({7, . . . , 6 + l}). By Remark 6.1 (2) we
can conclude that

wedΛ |Z(Λ) ◦ Φ = ασ ◦ wedΓ |Z(Γ ) ◦ γ2 (53)

where γ2 is the automorphism of Z(Γ ) induced by the perfect isometry γ̂2. Now we can simply
take the images of the maps on both sides of this equation, and our claim immediately follows.

Proposition 6.3. Assume q ≡ ±3 mod 4. There is a non-trivial outer automorphism of SL2(q)
induced by conjugation with an appropriately chosen element of GL2(q). This outer automorphism
induces a non-trivial permutation of the simple B0(k SL2(q))-modules.
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Proof. By looking at the parametrization of the conjugacy classes of SL2(q) given in [1], we see
that there are two conjugacy classes of unipotent matrices in SL2(q), while there is only one such
class in GL2(q). Hence GL2(q) acts non-trivially on the conjugacy classes of SL2(q), and therefore
also on its (absolutely) irreducible characters. It can be seen by inspection of the character
table [1, Table 5.4] (see also [1, Excercise 4.3]) that the unique non-trivial outer automorphism of
SL2(q) induced by an element of GL2(q) swaps the characters R+(α0) and R−(α0) as well as the
characters R′

+(θ0) and R′
−(θ0). The reduction of the characters R′

+(θ0) and R′
−(θ0) to 2-regular

conjugacy classes gives the Brauer characters belonging to the simple B0(k SL2(q))-modules St
k

+

and St
k

− (this is proven in [1, Section 9.4.4]). This shows that twisting by α swaps the two simple

modules St
k

+ and St
k

−.

Note that an automorphism of B0(O SL2(q)) gives rise to an automorphism of the basic order of
B0(O SL2(q)) inducing the same permutation on isomorphism classes of simple modules. Therefore
we get the following:

Corollary 6.4. Assume q ≡ ±3 mod 4. By n we denote the 2-valuation of the order of SL2(q),
and we assume n > 3. Again, let Γ be the basic algebra of B0(O SL2(q)) and let S1, S2 and S3

denote its simple modules. Then for every automorphism α of k⊗Γ there exists an automorphism

α̂ of Γ such that (idk ⊗ α̂) ◦ α−1 fixes all simple modules, that is, S
(idk⊗α̂)◦α−1

i
∼= Si for each

i ∈ {1, 2, 3}
Note: S

(idk⊗α̂)◦α−1

i denotes the module obtained from Si by letting k⊗ Γ act on it through the
automorphism (idk ⊗ α̂) ◦ α−1. Later on we will also use the analogous notation for bimodules.

Proof. We know that the Cartan matrix of B0(SL2(q)) looks as follows:



4 2 2
2 2 + 2n−2 2n−2

2 2n−2 2 + 2n−2




︸ ︷︷ ︸
if q ≡ 3 mod 4

or




2n 2n−1 2n−1

2n−1 2 + 2n−2 2n−2

2n−1 2n−2 2 + 2n−2




︸ ︷︷ ︸
if q ≡ 1 mod 4

(54)

If α is an automorphism of k⊗ Γ , then the dimension of the endomorphism ring of the projective
cover of Sα

i is the same as the dimension of the endomorphism ring of the projective cover of Si (for
each i). If either n > 3 or q ≡ 1 mod 4, then the diagonal entries of the above Cartan matrices
are not all equal, which implies that α needs to fix one isomorphism class of simple modules, and
it might swap the other two. Hence, if α is non-trivial, then it necessarily needs to induce the
same permutation on simple modules as the automorphism of Γ coming from Proposition 6.3.

The case q ≡ 3 mod 4 and n = 3 is special, since then the Cartan matrix imposes no restric-
tion on the permutation of the simple modules induced by α. However, in that case, [7, Theorem
A] implies that Γ ∼= OÃ4 = OQ8 ⋊C3, and [7, Lemma 1.2] implies that this O-order has an auto-
morphism which induces a permutation of order three on isomorphism classes of simple modules.
It follows that this automorphism together with the automorphism from Proposition 6.3 generates
a full symmetric group on three points, which implies our assertion.

7 Transfer to other algebras of quaternion type

In this section we are going to use a technique reminiscent of the one used in [3] to get a theorem
similar to Theorem 4.2 for arbitrary blocks of quaternion defect. Note that, technically, Theorem
4.2 cannot be applied to any block of quaternion type yet, but only to their basic algebras if they
happen to be isomorphic to Q(3K)c. The fact that Theorem 4.2 remains valid if one replaces the
algebra Λ̄ = Q(3K)c by an algebra Morita-equivalent to it would be a side-note at best. The main
idea in [3] was that, up to technicalities, one can in fact replace Λ̄ = Q(3K)c by an algebra derived
equivalent to it, instead of just Morita-equivalent. In our case the technical side of this argument
is in fact much simpler than in [3], and hence we will only have to use well-known facts about
derived equivalences.
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Definition 7.1 (Admissible lifts of quaternion blocks). We call an O-order Λ admissible if the
following three conditions hold:

1. K ⊗ Λ is split semisimple

2. Λ is symmetric

3. For some prime q there is an isometry Φ̂ : K0(K ⊗ Λ) −→ K0(K ⊗ B0(O SL2(q))) and
an isomorphism Φ : Z(Λ) −→ Z(B0(O SL2(q))) which satisfy the assumptions made at the
beginning of section 6.

If Λ̄ is a finite-dimensional k-algebra, then an admissible lift is an admissible O-order Λ with
k ⊗ Λ ∼= Λ̄

Lemma 7.2 (Admissible lifts of Q(3K)c). Let Λ be an admissible lift of Q(3K)c (c = 2n−2, 3 6 n
arbitrary). Assume that K ⊗B0(O SL2(q)) is split, where q ≡ 3 mod 4 is a prime such that q+1
has 2-valuation n− 1. Then Λ is isomorphic to the basic order of B0(O SL2(q)).

Proof. Let Γ be the basic order of B0(O SL2(q)). We need to show that Λ and Γ are isomorphic.
Proposition 2.5 and Proposition 3.3 imply that both Λ and Γ have decomposition numbers 6 1.
Now Proposition 3.2 implies that the decomposition matrices of Λ and Γ are both equal to the
one given in (19), up to permutation of rows and columns. Let

A := K ⊕K ⊕K ⊕K3×3 ⊕K2×2 ⊕K2⊗2 ⊕
6+l⊕

i=7

K2×2 (55)

From the decomposition matrices of Λ and Γ we know that this algebra A is isomorphic to both
K⊗Λ and K⊗Γ . We can choose Wedderburn embeddings wedΛ : Λ −→ A and wedΓ : Γ −→ A
such that the decomposition matrices of their images are both equal to (19) (the order of the
rows now being fixed). Moreover, Proposition 6.2 implies that there is an automorphism α of
A permuting the Wedderburn components 7, . . . , 6 + l such that α(wedΛ(Z(Λ))) = wedΓ (Z(Γ )).
Note that wedΛ(Z(Λ)) = Z(wedΛ(Λ)) (and the same for Γ ). Now we may apply Theorem 4.2 to
the O-orders α(wedΛ(Λ)) and wedΓ (Γ ). It follows that α(wedΛ(Λ)) and wedΓ (Γ ) are conjugate
in A, which implies that Λ and Γ are isomorphic.

At this point we have to look at the other two Morita equivalence classes of 2-blocks with
defect group Q2n . These are the algebras Q(3A)c2 and Q(3B)c from the appendix of [4] (note:
we parametrize these algebras as in [6], using only a single parameter “c”, as that is the only
undetermined parameter in the context of blocks). The article [6] gives us an explicit (one-sided)
two-term tilting complex in Kb(proj−Q(3A)c2) with endomorphism ring Q(3B)c and an explicit
two-term tilting complex in Kb(proj−Q(3A)c2) with endomorphism ring Q(3K)c (the algebra we
have been looking at exclusively so far).

We will need a few well-known results on derived equivalences in order to get a version of
Lemma 7.2 for the algebras Q(3A)c2 and Q(3B)c. The first one is a theorem of Rickard which tells
us that a derived equivalences between two k-algebras give rise to derived equivalences between
two O-orders reducing to these respective k-algebras. The caveat of this is that only one of the
two O-orders can be chosen freely, while the other one is then determined up to isomorphism by
this choice. Note that while our notation is mostly standard, there is one peculiarity that may be
worth pointing out: we consider one-sided tilting complexes as complexes of right modules, and the
endomorphism ring has the usual composition as its multiplication (that is, the endomorphism ring
of a module acts on the module from the left). With this convention, a ring is derived equivalent
to the endomorphism ring of a tilting complex, rather than the opposite ring thereof.

Theorem 7.3 (see [13, Theorem 3.3]). If Λ is an O-order and T ∈ Kb(proj−k ⊗ Λ) is a tilting

complex, then there is a tilting complex T̂ ∈ Kb(proj−Λ) (unique up to isomorphism) with k⊗T̂ ∼=
T . Moreover, EndDb(Λ)(T̂ ) is an O-order, and k ⊗ EndDb(Λ)(T̂ ) ∼= EndDb(k⊗Λ)(T ).
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A second fact we will need is that two-term tilting complexes are determined by their terms.

Theorem 7.4 (see [8, Corollary 8]). Let A be a k-algebra and let P1 and P0 be projective A-
modules. Then there is at most one tilting complex of the form 0 −→ P1 −→ P0 −→ 0, up to
isomorphism in Kb(proj−A).

On top of that we are going to use some facts from [12], [14] and [9], which are formulated for an
R-algebra A which is projective as an R-module, where R is an arbitrary commutative ring. These
facts can therefore be applied to finite dimensional k-algebras and O-orders equally. Namely, if
we have a one-sided tilting complex T ∈ Kb(proj−A) whose endomorphism ring is isomorphic to
B, then there is a two-sided tilting complex X ∈ Db(mod−Bop ⊗R A) whose restriction to A is
isomorphic to T in the derived category (see [12, Corollary 3.5]). Moreover, by [14, Lemma 2.2]
such an X can be chosen in such a way that the restriction of each term of X to both A and B
is projective (without necessarily being projective as a B-A-bimodule). An equivalence between
Db(B) and Db(A) is then afforded by the functor −⊗L

B X . If we choose X is such a way that all
its terms are projective as B-modules, then we may replace the left derived tensor product by the
ordinary tensor product of complexes. We denote the inverse of X by X∨. We have X⊗L

AX
∨ ∼= B

in Db(Bop ⊗R B) and X∨ ⊗L
B X ∼= A in Db(Aop ⊗R A). For symmetric algebras A the complex

X∨ can be computed as HomR(X,R) (see [9, Section 9.2.2]).
In the case of self-injective algebras it is fairly easy to check whether a derived equivalence

is actually a Morita-equivalence. A one-sided tilting complex T over a self-injective algebra A is
always isomorphic (in Db(A)) to a tilting complex whose highest and lowest degree non-zero terms
are in the same degree as its highest and lowest degree non-zero homologies (as both epimorphisms
onto projectives and embeddings of projectives split in this case). In particular, a one-sided tilting
complex which has non-zero homology only in a single degree is isomorphic to the stalk complex
of a projective module (which has to be a progenerator), and its endomorphism ring in Db(A)
is isomorphic to the endomorphism ring of that projective module. It follows that A is Morita
equivalent to EndDb(A)(T ). If there is a two-sided tilting complex for two algebras which has
homology concentrated in a single degree, then these algebras are Morita-equivalent because the
restriction of said tilting complex to either side is isomorphic to a one-sided tilting complex, and
isomorphisms in Db(A) preserve homology (pretty much by definition).

We should also note that if A is a symmetric k-algebra, and B is the endomorphism ring of
a two-term tilting complex over A, then A is also the endomorphism ring of a two-term tilting
complex over B. This follows simply from the fact that X∨ can be computed as Homk(X, k), and
the fact that we can choose a one-sided tilting complex in such a way that its non-zero terms are
concentrated between the highest and lowest degree non-zero homology.

If we have a one-sided tilting complex T over a symmetric O-order Λ, then its endomorphism
ring Γ is an O-order by [15], and by [12, Theorem 2.1 and Corollary 2.2] the fact that Γ is an
O-order implies that k ⊗ T is a tilting complex over k ⊗ Λ with endomorphism ring k ⊗ Γ . If
k ⊗ T has homology concentrated in a single degree then it is isomorphic to the stalk complex
of a progenerator P in mod−k ⊗ Λ. We know that there is a progenerator P̂ of mod−Λ with
k ⊗ P̂ ∼= P . Hence the stalk complex associated with P̂ is a tilting complex over Λ reducing to
the stalk complex associated with P . By Theorem 7.3 such a complex is unique up to (quasi-

)isomorphism, and therefore T must be isomorphic to the stalk complex associated with P̂ , which
means that Γ is Morita-equivalent to Λ.

Assuming A is a symmetric R-algebra we can also give an explicit description of two-sided
tilting complexes with homology concentrated in a single degree. Namely, such a complex X is
quasi-isomorphic to the stalk-complex of its non-zero homology, which we will denote by M . Since
we also know that its restriction to either side is quasi-isomorphic to a one-sided tilting complex,
which under the assumptions made is quasi-isomorphic to the stalk complex of a progenerator,
it follows that M is projective as a left and as a right module. Of course we can do the same
for X∨, which must be quasi-isomorphic to some A-B-bimodule M∨, also projective from the left
and from the right. Due to projectivity it follows that we do not have to bother with the derived
tensor product (as discussed above), and we can conclude that M ⊗AM

∨ ∼= B as a B-B-bimodule
and M∨⊗B M ∼= A as an A-A-bimodule. That is, M is an invertible bimodule. In the case where
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A is equal to B and A is a basic k-algebra or a basic O-order we can go even further: in that case
M ∼= Aα for some automorphism α of A.

Proposition 7.5. Let Λ be an admissible O-order, and let T ∈ Kb(proj−Λ) be a tilting complex.
Then Γ := EndDb(Λ)(T ) is an admissible O-order.

Proof. Since Λ is symmetric, Γ is both an O-order and symmetric (see [15]). Moreover, K ⊗ T
is a tilting complex over K ⊗ Λ with endomorphism ring K ⊗ Γ (this is elementary), and since
K ⊗ Λ is assumed to be split semisimple, so is K ⊗ Γ (since two semisimple algebras are derived
equivalent if and only if they are Morita equivalent).

It remains to find an isometry Ψ̂ : K0(K ⊗ Γ ) −→ K0(K ⊗ Λ) mapping the sublattice of
K0(K⊗Γ ) generated by K-spans of projective Γ -modules onto the analogously defined sublattice
of K0(K ⊗ Λ). Moreover there should be an isomorphism Ψ : Z(Γ ) −→ Z(Λ) whose K-linear
extension maps a primitive idempotent εV in Z(K ⊗ Γ ) to εW , the primitive idempotent in

Z(K ⊗ Λ) that belongs to [W ] = ±Ψ̂([V ]). Once we have found these maps, it is immediate

that the composition of Ψ̂ respectively Ψ with the maps Φ̂ respectively Φ from the definition of
admissibility (of Λ) yields the maps needed for Γ to be admissible. First let us choose a two-sided
tilting complex X with terms that are projective as left Γ -modules and as right Λ-modules such
that −⊗Γ X affords an equivalence between Db(mod−Γ ) and Db(mod−Λ). We choose Ψ̂ to be

the induced map from K0(K⊗Γ ) to K0(K⊗Λ), that is, [V ] 7→ [V ⊗K⊗Γ (K⊗X)]. This map Ψ̂ is
an isometry since K ⊗X is a two-sided tilting complex, and it maps the sublattice of K0(K ⊗Λ)
spanned by the projective modules into the sublattice of K0(K ⊗ Γ ) spanned by projectives. The
reason for the latter is simply that if P is projective, then all terms of P ⊗Γ X are projective, and
the homomorphism between the Grothendieck groups is defined by applying − ⊗Γ X and then
taking the alternating sum of the terms. Since the same argument applies to −⊗K⊗Λ (K ⊗X∨),

it also follows that Ψ̂ maps the sublattice generated by projective Γ -modules surjectively onto the
sublattice generated by projective Λ-modules.

To get the required isomorphism between the centers we first note that it is well known that the
centers of derived equivalent algebras are isomorphic. Concretely, an isomorphism Ψ : Z(Γ ) −→
Z(Λ) can be obtained by identifying both Z(Γ ) and Z(Λ) with the ring of endomorphisms of X
(in Db(Λ ⊗ Γ op)). That means in particular that x · Ψ(z) = z · x for all x ∈ Hi(X) (i arbitrary)
and all z ∈ Z(Γ ). This implies that if an idempotent ε ∈ Z(K ⊗ Γ ) acts non-trivially on a simple
K ⊗ Γ -module V , then the image of ε under the K-linear extension of Ψ acts non-trivially on
V ⊗K⊗Γ (K ⊗X), which by definition becomes ±Ψ̂([V ]) in the Grothendieck group. This shows

that Ψ̂ and Ψ have the required properties.

Proposition 7.6. Assume that Λ̄ is a k-algebra and Λ0 is an admissible lift of Λ̄ such that the
following hold:

1. If Λ is an arbitrary admissible lift of Λ̄, then Λ ∼= Λ0.

2. Every automorphism of K0(k ⊗ Λ0) which is induced by some element of Autk(k ⊗ Λ0) is
also induced by an element of AutO(Λ0).

Then the following holds for every basic k-algebra Λ̄′ which is derived equivalent to Λ̄ by means
of a two-term tilting complex: There is an admissible lift Λ′

0 of Λ̄′ such that if Λ′ is an arbitrary
admissible lift of Λ̄′, then Λ′ ∼= Λ′

0.

Proof. Let T be a two-term tilting complex over Λ̄′ with EndDb(Λ̄′)(T )
∼= Λ̄. Then, for any

admissible lift Λ′ of Λ̄′ there exists a tilting complex T̂ ∈ Kb(proj−Λ) such that k ⊗ T̂ ∼= Tϕ,

where ϕ : k ⊗ Λ′ ∼−→ Λ̄′ is an isomorphism. Define Λ to be EndDb(Λ′)(T̂ ), and let X denote a

two-sided tilting complex in Db(Λop ⊗ Λ′) whose restriction to the right is isomorphic to T̂ . We
assume without loss that all terms of X are projective as left Λ-modules and as right Λ′-modules.

We let Λ′
1 and Λ′

2 be arbitrary admissible lifts of Λ̄′. Let ϕ1, ϕ2, X1, X2, Λ1 and Λ2 be
constructed as above. Then Λ1 and Λ2 are both admissible lifts of Λ̄ by Proposition 7.5, and
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therefore they are both isomorphic to Λ0 by assumption. For i ∈ {1, 2} let αi : Λ0
∼−→ Λi be

an isomorphism. Then αiXi for i ∈ {1, 2} are two-sided tilting complexes in Db(Λop
0 ⊗ Λ′

i). The
restriction to the right of k ⊗ αiXi is of course still isomorphic to Tϕi , and therefore we have the
following isomorphisms in Db(k ⊗ Λ0)

(k ⊗ α1X1)⊗k⊗Λ′

1

ϕ1 Λ̄′ϕ2

︸ ︷︷ ︸
∼=Tϕ2∼=k⊗α2X2

⊗k⊗Λ′

2
(k ⊗ α2X2)

∨ ∼= k ⊗ Λ0 (56)

Of course this is only a (quasi-)isomorphism of complexes of left modules, but we can still deduce
that the left hand side has homology concentrated in a single degree. This implies that (k ⊗
α1X1) ⊗k⊗Λ′

1

ϕ1Λ̄′ϕ2 ⊗k⊗Λ′

2
(k ⊗ α2X2)

∨ is isomorphic to (k ⊗ Λ0)
β for some automorphism β of

k ⊗ Λ0. Hence we get

ϕ1Λ̄′ϕ2 ∼= (k ⊗ α1X1)
∨ ⊗k⊗Λ0 (k ⊗ Λ0)

β ⊗k⊗Λ0 (k ⊗ α2X2) (57)

which is now a quasi-isomorphism of two-sided complexes. By assumption there exists an au-
tomorphism γ ∈ Aut(Λ0) which induces the same action on K0(k ⊗ Λ0) as β. In particular
(k ⊗ α1X1)

∨ ⊗k⊗Λ0 (k ⊗ Λ0)
β ∼= (k ⊗ α1X1)

∨ ⊗k⊗Λ0 (k ⊗ Λγ
0 ) in Db(Λ0) (i. e. again forgetting

about the left action), since (k⊗ α1X1)
∨ restricted to the right is a two-term tilting complex, and

these are determined by their terms (and β and idk ⊗ γ act on these terms in the same way by
definition). This implies that if we replace (k ⊗Λ0)

β by k ⊗Λγ
0 in the right hand side of (57), we

still get a complex with homology concentrated in a single degree. Moreover, since all involved
complexes have terms which are projective as both left and right modules, we have

(k ⊗ α1X1)
∨ ⊗k⊗Λ0 (k ⊗ Λγ

0 )⊗k⊗Λ0 (k ⊗ α2X2) ∼= k ⊗ ((α1X1)
∨ ⊗Λ0 Λ

γ
0 ⊗Λ0

α2X2) (58)

in Db(Λ′ op
1 ⊗Λ′

2). We conclude that Y := (α1X1)
∨ ⊗Λ0 Λ

γ
0 ⊗Λ0

α2X2 is a two-sided tilting complex
all of whose terms are projective from the left and from the right such that k⊗ Y is isomophic to
a stalk complex. By the properties of tilting complexes we revisited above we can conclude that
Y actually affords a Morita equivalence. As Λ′

1 and Λ′
2 are basic this implies Λ′

1
∼= Λ′

2.

Proof of Theorem 1.1. First we need to show that (the basic order of) a block of quaternion defect
of OG with three simple modules is admissible in the sense of Definition 7.1. It is clearly symmetric
and it has split semisimple K-span by Proposition 3.4. That takes care of the first two properties
required for admissibility.

In [10, Definition following Corollary 2.7], the blocks of quaternion defect are divided into
three different cases, labeled “(aa)”, “(ab)” and “(bb)”. The blocks with three simple modules
correspond to the case “(aa)” (see [10, table on page 231]). By [2, Theorem 1] there is a perfect
isometry between any two blocks of quaternion defect with the same label (i. e. either “(aa)”,
“(ab)”, or “(bb)”). In particular, there is a perfect isometry between any block of quaternion
defect with three simple modules and the principal block of O SL2(q) for an appropriately chosen
q. A perfect isometry gives rise to an isomorphism between centers and an isometry between
Grothendieck groups satisfying the required properties of Φ and Φ̂. This takes care of the third
property required in the definition of admissibility. It follows that Λ and Γ are both admissible,
and so are their basic orders.

By [4, Chapter IX] there are only three possible basic algebras for k ⊗ Λ respectively k ⊗ Γ
for any fixed generalized quaternion defect group. These are the algebras Q(3A)c2, Q(3B)c and
Q(3K)c. Hence the basic algebras of k ⊗ Λ and k ⊗ Γ each are isomorphic to one of those (for
appropriate c). Any two admissible lifts of Q(3K)c are isomorphic by Lemma 7.2. The algebra
Q(3A)c2 is derived equivalent to Q(3K)c by means of a two-term tilting complex, and Corollary 6.4
implies that the second condition of Proposition 7.6 is satisfied for the (unique) admissible lift of
Q(3K)c, and hence Proposition 7.6 yields that any two admissible lifts of Q(3A)c2 are isomorphic.
By comparing Cartan matrices one sees that B0(O SL2(q)) for an appropriately chosen q ≡ 1
mod 4 is a lift of Q(3A)c2, and hence Corollary 6.4 and Proposition 7.6 can be applied again. It
follows that any two admissible lifts of Q(3B)c are isomorphic. This completes the proof of the
first assertion.
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The second assertion follows from the fact that the algebras k ⊗ Λ and k ⊗ Γ are derived
equivalent, together with Theorem 7.3, Proposition 7.5 and the uniqueness of admissible lifts we
just showed.
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