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Abstract 38 

Background: Atopic dermatitis (AD) is a common allergic skin disease in which  genetic and 39 

environmental factors  influence the development of skin barrier and immune system 40 

dysfunction. Recently, evidence has emerged to support the notion that skin microbial flora can 41 

modulate development and exacerbation of this disease. Our study is the first to characterise the 42 

skin microbiome in Thai patients with atopic dermatitis before and after 4-week monotherapy 43 

with tarcolimus.  44 

Methods: Swab samples from skin lesions at volar forearm of 9 patients with atopic dermatitis 45 

and normal skin samples of 12 healthy subjects were collected. The skin microbiome was 46 

characterized using 16S ribosomal RNA gene sequencing. 47 

Results: The diversity of skin microbes is significantly different between the control and AD 48 

subjects. Lower prevalence of Actinobacteria and Gammaproteobacteria, but higher prevalence 49 

of Firmicutes was observed in the AD group. A significant increase in Staphylococcus spp. but 50 

decrease in several commensals such as Coryebacterium spp. and Dermacoccus spp. Was 51 

detected in AD compared to healthy subjects. After treatment with tacrolimus, the skin 52 

microbiota composition of AD individuals was comparable to the control group.  53 

Conclusion:. Our unique study in Thai patients provides unequivocal proof of the positive 54 

impact tacrolimus has on skin microbiome in AD. 55 

Keywords:  atopic dermatitis, skin microbiome, tacrolimus 56 

57 
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1. Introduction  58 

 Atopic dermatitis (AD) is a common inflammatory skin disease, the prevalence of which 59 

varies from 5-30% worldwide., and it is clear that incidence of AD has increased recently in 60 

industrial countries1,2. The disease is chronic and often heralds other atopic diseases such as 61 

asthma and allergic rhinitis.3 Therefore, AD has become one of the most burdensome skin 62 

diseases amongst people of all ages and ethnic backgrounds. The disease is characterised by a 63 

dysfunctional skin barrier and associated immune response leading to chronic eczematous skin 64 

eruptions. Both genetic and environmental inputs play roles in the development and 65 

maintenance of the disease. In particular, several factors have been found to promote AD 66 

including exposure to irritant substances, and recently the advance in metagenomics coupled 67 

next generation sequencing has specifically identified dysbiosis of skin microbiome as being a 68 

major factor. Excessive hyginene associated with urban lifestyle may lead to altered microbial 69 

skin contact especially in early life, which results in dysbiosis and immune dysregulation in 70 

AD. 71 

 Recent research has revealed the role of dysbiosis of the skin microbiome in 72 

pathogenesis of AD. A reduction in antimicrobial peptides, defects of epidermal barrier and 73 

dysregulation of the adaptive immune response results in a corresponding increase in skin 74 

colonization by Staphylococcus aureus, which leads to a  loss of skin bacterial diversity and 75 

increases in specific IgE antibodies against bacterial toxins in the patients’ serum.4 Meta-76 

analysis reports estimated that pool prevalence of S. aureus colonization in AD skin lesion was 77 

70 % and the prevalence of colonization correlated with disease severity.5 Furthermore, S. 78 

aureus has been reported to facilitate skin inflammation and barrier dysfunction via several 79 

mechanisms.6-9 Beside the conolization of S. aureus in AD skin lesions dysbiosis of the skin 80 

microbiome via reduction of commensal microbes such as  Staphylococcus epidermidis, 81 

Propionibacterium spp. and Corynebacterium spp. has been evident in AD. In normal life, S. 82 
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epidemidis could inhibit rare colonization and biofilm formation by S. aureus and augment 83 

human beta-defensin (HBD) expression by human keratinocyte via toll-like receptor 2 (TLR2) 84 

signalling10,11 Propionibacterium and Corynebacterium can diminish S. aureus infection via 85 

porphyrin metabolism.12  86 

 Several therapeutic approaches exist for AD  and these can act by specifically by 87 

restoring the skin barrier, diminishing skin imflammation and reversing dysbiosis of skin 88 

microbiome. Topical corticosteroids have been used alone or in combination with topical 89 

antibiotics due to their cost-effectiveness.  Nowadays, topical caucineurin inhibitors (TCIs) 90 

have been recommened as a maintenance therapy as they are low risk of triggering adverse 91 

events. To date, there is a paucity of information on the effect of TCIs on skin microbiome in 92 

AD and our study seeks to address this. Our aim is to report the findings of a comprehensive 93 

comparison of the healthy and AD skin microbiome following the introduction of tacrolimus. 94 

We report for the first time that the anti-inflammatory effect of tacrolimus is sufficient to 95 

restore the skin barrier leading to reversed dysbiosis of the skin microbiota in a Thai cohort 96 

with AD  97 

  98 

 99 

2. Methods 100 

2.1 Patients and healthy controls 101 

Nine patients diagnosed with atopic dermatitis according to Hanifin and Rajka criteria at 102 

King Chulalongkorn Memorial Hospital (4 males, 5 females) and 12 normal subjects (4 male, 8 103 

females) were enrolled in the study. The severity of AD was classified according to the Scoring 104 

of Atopic Dermatitis (SCORAD), Eczema Area and Severity Index (EASI) and Investigators’ 105 

Global Assessment (IGA). Patients with other chronic inflammatory skin diseases were 106 
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excluded from the study.  All patients were free from systemic skin therapies for at least 4 107 

weeks, systemic antibiotics for at least 6 months or topical skin therapies and topical antiseptics 108 

for at least 2 weeks prior to sample collection. Patients were allowed to use only mild liquid 109 

soap and 10% urea cream for 2 weeks and avoid all washing 24 hours prior to sampling.  The 110 

study was approved by the ethical committee of the King Chulalongkorn University. All 111 

participants provided informed consent. The demographic as well as the severity scales of AD 112 

(before and after tarcolimus treatment) data are shown in Table 1. For abbreviation, ‘D’ denotes 113 

disease, ‘Bf’ or ‘Before’ and ‘Af’ or ‘After’ denote AD-before and AD-after treatment, and the 114 

number in the middle denotes individual patient in random order. Similarly, ‘C’ denotes control 115 

followed by the number that denotes individual normal volunteer in random order.  116 

 117 

2.2 DNA extraction  118 

Samples were collected by rubbing the skin using a sterile cotton tipped applicators and 119 

transferred into microcentrifuge with 200 µl of ST solution (0.15 MNaCl with 0.1% Tween 120 

20).13 Then, samples were centrifuged at 10,000g for 5 minutes, and supernatant was removed. 121 

The sample pellet was kept at -80 °C. Total genomic DNA was extracted from the pellet by 122 

GenElute bacterial genomic DNA kit (Sigma). Finally, genomic DNA was kept at -80°C. 123 

 124 

2.3 16S rRNA gene library preparation and next generation sequencing 125 

Universal prokaryote primers (5-GTGCCAGCMGCCGCGGTAA-3) and 806R (5-126 

GGACTACHVGGGTWTCTAAT-3) for 16S rRNA gene V3-V4 with the 5 Illumina adapter 127 

and 3 Golay barcode sequences were used as previously discribed.14 To prevent PCR stochastic 128 

bias, the template quantity and quality was adequate, and a minimum of three independent PCR 129 

reactions were performed per sample.15 Paired-end sequencing, 2 × 150 was performed using 130 
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Illumina MiSeq platform (Illumina, San Diego, CA, USA) following the manufacturer's 131 

protocols at Chulalongkorn Medical Research Center (Bangkok, Thailand). 132 

 133 

2.4 Quality screening, taxon classifications and community comparison 134 

All nucleic acid sequences in this study were deposited at the NCBI Sequence Read 135 

Archive (SRA) database (accession number SRP155450). The raw sequences (FASTQ files) 136 

were categorized individuals based on the 5′ barcode sequences. The sequences were processed 137 

following mothur’s MiSeq Standard Operating Procedures.16 The pre-processing steps included 138 

removal of (i) short read lengths of ≤ 100 nucleotides (excluding the primer and adaptor 139 

sequences), (ii) long homopolymers of ≥ 8 nucleotides, (iii) ambiguous nucleotides and (iv) 140 

chimera. Passing sequences were aligned to Greengenes17 to remove contaminate sequences 141 

such as mitochondria and chloroplast. The clean sequences were classified to the operational 142 

taxonomic unit (OTU) using the Ribosomal Database Project (RDP) Classifier.18 A minimum 143 

bootstrap confidence score of 80 % was used as a cutoff for taxonomic assignment. Genus and 144 

specie of OTU (GLOTU and SLOTU) were followed the phylotype-based methods.19 Good's 145 

coverage index to estimate the data coverage of a community, and the alpha diversity by 146 

number of OTUs, Shannon and Chao bacterial community richness, were computed using 147 

mothur.16,20 Data normalization was performed to normalize the varying sequencing depth 148 

among individuals.16 The relative abundance of bacterial genera was visualized as Heatmap 149 

using R statistics package. Venn diagram, and the beta diversity by Morisita-Horn community 150 

dissimilarity index and non-metric multidimensional scaling (NMDS) based on Morisita-Horn 151 

dissimilarity indices, along the analysis of molecular variance (AMOVA) and a homogeneity of 152 

molecular variance (HOMOVA) statistics to determine significant differences between or 153 

among the structures of the comparing communities (p-value  < 0.05), were also computed 154 

using mothur.16 AMOVA determines whether the diversity is greater than their pooled 155 
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diversity, while HOMOVA determines whether the diversity in each is significant different. In 156 

addition, differentially abundant genus detection by Metastats and the linear discriminant 157 

analysis effect size (LEfSe) to find biomarkers between two or more groups from relative 158 

abundances21 were performed using mother.  159 

2.6 Correlation analyses 160 

Spearman correlation to evaluate the order and the directions of the species that drive 161 

the microbiota structures, and Pearson correlation to evaluate the direction and p-value statistics 162 

of the clinical data on the AD severity scales (Table 1: SCORAD, EASI and IGA) against the 163 

microbiota, were performed using mothur.16 The results were visualized by R package ggplot2 164 

(https://cran.r-project.org/package=ggplot2). 165 

 166 

3. Results  167 

 3.1 Skin microbiota in AD compared to healthy control 168 

AD patients aged between 16-39 years and healthy subjects aged between 23-54 years, 169 

participated in this study. The demographic data of the participants are summarized in Table 1. 170 

All patients with AD reported significant improvement of all clinical scores (SCORAD, EASI 171 

and IGA) after 4-week monotherapy with Tacrolimus. 172 

  The 16S rRNA gene sequencing yielded an average of 146,922 clean sequences for 173 

OTU classification (Supplemental Table 1), and thus yielded high Good’s coverage indices of 174 

98.45-99.93% (avg. 99.26%) at genus level (Supplemental Table 2). The number of GLOTUs 175 

vary from 6 to 162; hence, the diversity assessment within each microbiota was assessed 176 

(OTUs, Chao and Shannon) and the the variance box plot analysis showed that the species 177 

richness (Chao) and species richness and evenness (Shannon) were relatively high for the 178 

healthy controls than the AD groups (especially the Bf group). Several samples in the Bf group 179 
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had poor diversity (low number of OTUs, Chao and Shannon) (Figure 1 and Supplemental 180 

Table 2).   181 

 Taxonomic profiles demonstrated the diversity that might differ among the control and 182 

the AD: phylum Actinobacteria (class Actinobacteria) was relatively high in control followed 183 

by Proteobacteria (class Gammaproteobacteria), whereas phylum Firmicutes (class Bacilli) was 184 

generally higher in the AD, in particular the Bf group (Figures 2A and 2B). In detail, the Af 185 

group showed closer relative abundances of Actinobacteria by increasing from the matched Bf 186 

subjects, the moderate abundances of Firmicutes from the matched Bf subjects where a few 187 

were with minute and many with over high abundance, and likewise for the Proteobacteria. The 188 

number of the overlapping OTUs between the control and Af  group was thereby greater than 189 

that between the control and Bf group (Figure 2C: Control-Bf overlapped 71.62%, Control-Af 190 

overlapped 81.66%). In continuation, the NMDS was constructed to visualize the relative 191 

dissimilarity among the microbiota structures, and the control and the disease groups were 192 

discrete, although the D8 data were an exception showing close to C11, C12 and C7, in orderly.  193 

When analysis without the D8 showed even more prominent the community structure 194 

difference between the control and the disease groups with the AMOVA statistic of p < 0.001 195 

(Figure 3A and B).     196 

 197 

3.2 Effect of Tacrolimus on skin microbiome in AD  198 

To determine the microbiota structural differences within the disease group, before and 199 

after Tacrolimus treatment, AMOVA and HOMOVA statistical analyses among the three 200 

groups (Control, Bf and Af) were computed and both demonstrated significant differences of 201 

0.003 and 0.04, respectively. Additionally, the statistical difference between the Control-Bf 202 

(AMOVA p = 0.003) was suggested greater than between the Control-Af (AMOVA p = 0.15). 203 

This is supported by the NMDS illustration in Figures 3C and D, particularly in Figure 3D 204 
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where D8 data were exempted. Nevertheless, the p-value statistic between the Bf and Af groups 205 

remained non-significant (AMOVA p = 0.164). 206 

 Metastats analysis highlighted species that were differentially statisticaly different 207 

between the comparing groups. Consistently, compared to the control group, there were a fewer 208 

number of species differences in the Af than the Bf groups (Supplemental Table 3). 209 

Supplemental Table 3A describes the species whose presence or absence might be associated 210 

with AD, Supplemental Table 3B describes the species that remained different even after the 211 

treatment, and Supplemental Table 3C highlighted the species that might be associated with the 212 

positive effect of Tacrolimus, for example the increases of Dermacoccus, Pseudomonas, 213 

Corynebacterium, Proteus, Micrococcus luteus, and Lactococcus in  AF group. This effect of 214 

Tacrolimus caused the Bf community to become close to the Control.  215 

  216 

3.3 Association of bacterial species and severity of AD  217 

Spearman correlation analysis allowed determination of the associated direction of the 218 

certain bacteria species to the microbiota structures representing control and disease groups, 219 

given that the Af microbiota were found scatter around the middle between the Bf and the 220 

Control (Figure 4). Many taxa (such as Dermacoccus and Corynebacterium) were associated 221 

with the Control, and as well the Af since the communities of the Af, as displayed by the 222 

positions of the green dots, are closer to the Control. For S. epidermidis and Staphylococcus 223 

lugdunensis, both shared the directions for the majority of Af (5/7 samples equal 71.43%) and 224 

half of the Bf (4/8 samples equal 50%).  Moreover, the association with AD severity scales 225 

were analyzed. The AD severity scales vectors were found scattered around the Bf and Af 226 

groups, and no significant correlation could be depicted between the AD indicators and the Bf 227 

groups (p-values of Scorad = 0.26, EASI = 0.59, IGA = 0.78).  In parallel, sex and age factors 228 

were considered. AMOVA analysis between the male and female microbiota reported no 229 
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statistical difference (p > 0.05).Pearson correlation analysis against age showed the vector 230 

direction of the microbiota among control samples, however with insignificant p-value (p > 231 

0.05) (Supplemental Figure 1).  232 

 As statistically differentially abundant species were observed, LEfSe analysis for 233 

species biomarker was performed to identify the species that separate the control from the AD 234 

(Figure 5: blue bar), and on ther other hand the species that signature the disease groups (Bf and 235 

Af) (Figure 5: green and red bars). A total of 29 taxa were pointed as biomarkers for the control 236 

for the AD, and included Corynebacterium with the highest LDA scores followed by 237 

Acitnomycetales and Micrococcaceae. 3 taxa were pointed biomarkers for the Af, and 238 

Staphylococcus has the highest LDA score.22 1 genus (Veillonella) was pinpointed for the Bf 239 

biomarker, with minor LDA score.   240 

 241 

 242 

4. Discussion 243 

 Skin microbes participate in innate defense of the sin by several mechanisms. Restricted 244 

cutaneous microbial diversity and colonization of pathogenic bacteria are crucial biologic 245 

characteristics that drive in atopic dermatitis.  As expected, we found that the bacterial diversity 246 

was relatively higher in the healthy controls than the AD groups and correlation analysis 247 

determined the associated direction of the certain bacteria species to the microbiota structures 248 

representing control and disease groups. Several previous reports from various countries 249 

demonstrated decreased prevalence of Actinobacteria and Gammaproteobacteria as well as 250 

increase colonization of S. aureus and S. epidermidis in AD and the involved site.22 In addition, 251 

allergy-defensive action of these commensals and allergy-provocation of S. aureus related to 252 

AD has been observed.23,24 Our data is unique in the fact that it highlights lower prevalence of 253 

phylum Actinobacteria (class Actinobacteria) and  Proteobacteria (class Gammaproteobacteria),  254 
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but higher prevalence of phylum Firmicutes (class Bacilli)  in the AD group.  Interestingly, this 255 

study revealed significant increases in Staphylococcus spp. but decrease in several commensals 256 

(such as Coryebacterium spp., Dermacoccus spp. and Lactobacillus spp) in the AD. This 257 

finding is consistent with the recent metagenome analysis of skin microbiome in Singapore 258 

(similar tropical status to Thailand), which demonstrated that Dermacoccus spp. are also 259 

significantly diminished in patients with AD.25 The similarity of findings in both studies 260 

underpin the concept that dysbiosis of skin microbiome is one of important features of AD in 261 

the Thai population. Nevertheless, we could not demonstrate any correlation among skin 262 

microbiome and desease severity (either SCORAD, EASI and IGA) probably because of the 263 

limited number of patients.   264 

Several therapies for AD aim to reduce the bacterial load leading to attenuated 265 

inflammation, restored skin barrier  and reversed dysbiosis of skin microbiome. Tacrolimus, a 266 

TCI, has been widely used as a effective and safe treatment in AD. To the best of our 267 

knowledge, the effect of TCIs on skin microbiome has never before been reported.  We 268 

discovered that after treatment with tacrolimus, the skin microbiota structure of AD returned to 269 

be comparable to control group. Furthermore, the fewer number of species differences in the Af 270 

group than the Bf group when compared to control. This finding refected that tacrolimus could 271 

reverse some dysbiosis in AD. Nonetheless, there are some remaining species that may still 272 

persist to promote AD after treatment with tacrolimus. These species may require additional 273 

treatment either to equilrerate those species to the relative abundances representing the control 274 

subjects. 275 

Tacrolimus can restore the skin barrier by several mechanisms. It acts as an 276 

immunosuppressive agent by inhibiting the activation of T cellsn and suppressing scytokines 277 

production by them. Additionally, tacrolimus has been report to alleviate pruritis by suppressing 278 
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sensory nerve activation.26 Therefore, it is possible that the influence of tacrolimus in restitution 279 

of the skin microbiome might be a consequence of its anti-inflammatory effect and potential to 280 

restore the skin barrier.  281 

To date, various methods have been used for skin microbiome analysis. Our study 282 

analyzed skin microbiome in AD using 16S rRNA gene sequence. It should be note that the 283 

power of species and genus classification is in part limited by the partial 16S rRNA gene 284 

sequence. For future experiments of this nature, the unclassified and classified isolates of 285 

interest might be full-length sequenced to confirm the species annotation. 286 

In conclusion, this study for the first time characterises the skin microbiota in healthy 287 

and patients with AD in Thailand (a tropical country). Several mechanisms of tacrolimus 288 

efficacy in treatment of AD have been suggested. This study is the first original research study 289 

to describe the effect of tacrolimus on the skin microbiome in AD, and it may further influence 290 

the use of tacrolimus as a strategy toi alleviate AD in the future.  291 

 292 
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