
Received November 21, 2018, accepted December 21, 2018, date of publication January 7, 2019, date of current version January 29, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2891264

Incast Mitigation in a Data Center Storage Cluster
Through a Dynamic Fair-Share Buffer Policy
YAWAR ABBAS BANGASH 1, TAUSEEF RANA1, HAIDER ABBAS2, (Senior Member, IEEE),
MUHAMMAD ALI IMRAN 3, (Senior Member, IEEE), AND ADNAN AHMED KHAN1
1Department of Computer Software Engineering, National University of Sciences and Technology, Islamabad 44000, Pakistan
2Department of Information Security, National University of Sciences and Technology, Islamabad 44000, Pakistan
3School of Engineering, University of Glasgow, Glasgow G12 8QQ, U.K.

Corresponding author: Mohammad Ali Imran (muhammad.imran@glasgow.ac.uk)

This work was supported by EPSRC Global Challenges Research Fund—the DARE project—under Grant EP/P028764/1.

ABSTRACT Incast is a phenomenon when multiple devices interact with only one device at a given time.
Multiple storage senders overflow either the switch buffer or the single-receiver memory. This pattern
causes all concurrent-senders to stop and wait for buffer/memory availability, and leads to a packet loss and
retransmission—resulting in a huge latency. We present a software-defined technique tackling the many-
to-one communication pattern—Incast—in a data center storage cluster. Our proposed method decouples
the default TCP windowing mechanism from all storage servers, and delegates it to the software-defined
storage controller. The proposed method removes the TCP saw-tooth behavior, provides a global flow
awareness, and implements the dynamic fair-share buffer policy for end-to-end I/O path. It considers all
I/O stages (applications, device drivers, NICs, switches/routers, file systems, I/O schedulers, main memory,
and physical disks) while achieving the maximum I/O throughput. The policy, which is part of the proposed
method, allocates fair-share bandwidth utilization for all storage servers. Priority queues are incorporated to
handle the most important data flows. In addition, the proposed method provides better manageability and
maintainability compared with traditional storage networks, where data plane and control plane reside in the
same device.

INDEX TERMS Incast, software-defined storage, I/O throughput, dynamic fair-share buffer, end-to-end
I/O path, fair-share BW utilization.

I. INTRODUCTION
A Software Defined Data Center (SDDC) consists of a Soft-
ware Defined Storage (SDS), a Software DefinedNetworking
(SDN), and a Software Defined Computing (SDC). In SDDC,
multiple resources are distributed across different servers in
to improve access performance for various categories of data
and tasks. In such a paradigm, a cluster of storage servers
is networked together. Data blocks are stripped over these
servers for concurrent access to facilitate small and big files,
related and un-related data, concurrent and random data,
web searches, maps, and data warehousing. The purpose is
to deliver an application level throughput. When multiple
storage servers request a single storage server for a short
time, many data flows converge on the same interface of
a switch/server overwhelm either the switch/server shared-
memory or the allowed interface’s buffer capacity. This
many-to-one communication pattern leads to a phenomenon
known as Incast. An Incast model with a single switch and

a single I/O request in a storage cluster is shown in Figure 1.
In this figure, the Meta Data Server (MDS) manages and
stores all metadata, and provides information about the
requested file. The file is stripped over N storage servers
(HDD, SSD), and all stripes are accessed via a synchronized
read. These stripes are returned directly to the requesting
I/O machine/server without routing through MDS.

In the real world, the situation is more complex: multi-
ple I/O requests from multiple servers also lead to Incast
in a storage cluster. This situation is depicted in Figure 2.
Even the simplest situation consists of multiple switches with
multiple concurrent I/O accesses. For the single-server sce-
nario, the traffic is from the storage servers to the requesting
machine. For themultiple-servers scenario, the conditionmay
apply for traffic in both directions. Providing the general idea
about Incast, we do not include multiple switches’ figure.

Incast was first studied byNagle et al. [1] where they found
throughput collapse for an increased number of concurrent

10718
2169-3536 
 2019 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

VOLUME 7, 2019

https://orcid.org/0000-0003-4743-9136
https://orcid.org/0000-0002-6013-062X


Y. A. Bangash et al.: Incast Mitigation in a Data Center Storage Cluster Through a Dynamic Fair-Share Buffer Policy

FIGURE 1. A general Incast model for a single switch: For every file
access, the client/server requests the MDS to provide metadata
(stripe ID and location).

FIGURE 2. A single switch with multiple concurrent I/O requests from
multiple clients.

storage senders. Switch buffers exhaust when more traffic
is forwarded to a port than it can send/receive. Reasons
include: ingress and egress port speed mismatch, multiple
inputs to a single output port, half-duplex collision on an
out-put port, the complex interconnection in data centers
equipment (switches, servers, links, etc.), and the deployed
communication protocol. The main problem occurs in a stor-
age cluster, where multiple storage servers send data and
cannot sendmore data until all parallel threads completed [2].
The application level throughput decreases far below the
available bandwidth (BW ) when the synchronized concurrent
senders increase. In addition, in a parallel file system, when
a single I/O request is issued for data stripped over multiple
file servers, I/O request has to wait for all aggregator storage
nodes to complete [3]. This intra request synchronization

FIGURE 3. Throughput collapse in a data center storage cluster [5]: As the
number of storage servers increases and, hence their I/O requests,
the I/O throughput collapse occurs.

leads to Incast in storage. A brief overview of Incast prob-
lem can be found at [4]. A common throughput collapse
behavior is depicted in Figure 3, where Phanishayee et al. [5]
observed that when the number of concurrent sending stor-
age servers exceeds seven, the overall throughput collapse
starts. The default TCP fails to handle multiple concurrent
storage servers. If the switch’s buffer capacity is big enough
to accommodate the traffic burst, throughput collapse will
not occur. However, in practical situation, big switch buffers
are expensive and causes delay in the network. For multiple
concurrent senders, the throughput collapse stays the same
irrespective of the data transfer size (small data size and big
data size).

The throughput collapse results in an increased latency,
and causes harm to any network-based business activities.
Latency is an important metric in a computer network, spe-
cially in a delay sensitive distributed storage application [6].
The main aim is to improve the end-user experience. In emer-
gency and disaster scenarios such as earthquake, tsunami,
and terrorism, a container based data center requires as min-
imum as possible delay to provide service level agreement.
Mayer [7] presented at Web 2.0 conference, that Google’s
traffic is reduced by 20% due to 500ms increase in latency.
Stefanov [8] in YSlow (a web page analyzer based on Yahoo
rules) stated that in Yahoo, an extra 400ms reduced the traffic
by 9%, and every 100ms latency costs 1% in business rev-
enue to Amazon. These results suggest to find a solution to
minimize latency as much as possible.

McKeown et al. [9] presented SDNwhere a control plane is
decoupled from a data plane, and provided a centralized pol-
icy to manage and control all networking operations (packet
drop, modify, forward, update). In SDN, the control plane is
moved out of a commodity switch and housed in the main
controller. According to our best knowledge, a must-read
comprehensive survey about SDN can be found at [10].

VOLUME 7, 2019 10719



Y. A. Bangash et al.: Incast Mitigation in a Data Center Storage Cluster Through a Dynamic Fair-Share Buffer Policy

A simple and a robust algorithm design can cope with
Incast rather than to modify the whole protocol stack. Such
an algorithm can manage buffer allocation dynamically, and
thus, can make an over-sized buffer void [11]. Inspired by
SDN decoupled architecture, we propose a Dynamic Fair-
share Buffer Policy (DyFaShBuP) for End-to-End I/O path.
DyFaShBuP handles Incast in a data center storage clus-
ter. It decouples the windowing mechanism from TCP, and
delegates it to the SDS controller. An OpenFlow enabled
switch collects storage servers statistics, e.g., IP addresses,
MAC addresses, ports speed, buffer capacity, and window
size (WS), and forwards these collected information to the
controller. According to the network stats and number of
concurrent sending storage servers, the controller re-defines
and updates the policy, which is further distributed to the con-
current sending storage servers. Upon receiving the updated
policy, all storage senders modify and adjust WS according
to the available buffer capacity. The centralized controlled
approach achieves high burst data-flows, provides a mini-
mum latency, allocates a dynamic fair-share buffer (WS) and
BW for end-to-end I/O path, and guarantees application level
throughput.

Our key contributions are as follows: This is a compre-
hensive study to dissect Incast in many aspects, ranges from
hardware architecture (link, switch, NIC) to software imple-
mentation (protocol, OS, file system). We present a dynamic
fair-share buffer policy for end-to-end I/O path. This policy
guarantees the fair-share buffer and I/O throughput, and does
not limit the number of concurrent storage servers, and, thus
it achieves scalability. We propose a novel software-defined
inspired Incast tackling technique in a data center storage
cluster. The default TCP windowing mechanism (windows
size and flow control) is de-coupled from all storage servers
and delegated to the SDS controller. The proposed method
does not incorporate sender and receiver cooperation prevent-
ing Incast, but a centralized controller is responsible to cope
with a momentary data-burst. The simulation results confirm
that a large number of concurrent storage servers do not lead
to Incast, while achieving the maximum I/O throughput. The
rest of the paper is organized as follows. Section II discusses
the background, Section III overviews the related work about
Incast; Section IV discusses Incast anatomy. Section V is
about the proposed method. Section VI covers Incast scenar-
ios, performance analysis, and discussion, while Section VII
concludes the paper.

II. BACKGROUND
SDS is an emerging storage paradigm that provides a cen-
tralized, de-coupled, and a hierarchical structure to facilitate
scalability, redundancy, performance, security, manageabil-
ity, and maintainability. According to the IDC report (2013),
software based storage services will slowly replace traditional
storage services for every data center. The decentralized
approach in traditional storage systems suffers from reconfig-
uration of application programs, long time-consuming plan-
ning and up-gradation, maintenance activities, and storage

scalability issues. In SDS paradigm, examining the I/O data
path for different processes used by different tenants helps
identifying the possible potential bottleneck [12].

In SDS, the intelligent and centralized server-address man-
agement ease the processing overhead on end hosts (stor-
age servers). However, a tremendous communication with
the SDS controller can lead to latency. A proper method is
needed to handle the controller-switch latency. In addition,
in a data center storage paradigm, different traffic work-
loads exist (e.g., short flow, long flow). TCP fails to meet
these requirements (the ability to support both short and
long flows) [13]. Hundreds of thousands of Virtual Machines
(VMs) hide massive details of network topology. Managing
a frequent communication system is difficult without the
software-defined concept. Proprietary based storage solu-
tions are rigid to go beyond their products and, thus, lack in
innovations and flexibility. Amodern storage platform should
address these issues: topology deployment, un-manageable
cable connection, proper cooling system, control and
management, scalable routing for short and long flows, and
performance and reliability. SDS controller addresses appli-
cation level demands without hardware changes. SDS solu-
tions are software based where a data plane and a control
plane are de-coupled.

In our proposed method, key advantages of SDS con-
troller are as follow: new features addition on the go, reduce
complexity, efficient storage resource utilization, global flow
visibility, managed modularity, dynamic fair-share buffer
allocation for end-to-end I/O path, high throughput guaran-
tee, tolerance for short-term congestion, and decoupling the
data plane from the control plane. In addition, DCTCP [17]
and ICTCP [18] are distributed solutions (based on
sender or receiver coordination), while our proposed method
is based on centralized control mechanism. SDN paradigm
can implement new policy and re-program end hosts [14].

For a reliable data center, we should not only scale the
storage and consider all its factors, but we should consider
the whole system. From external point of view, a data center
is an independent domain, but from the data center point of
view, it is a complete dependent system. All communicating
entities depend on each other somehow. A well-managed
data center should address all system’s parameters such as
switch fabrics and port design, controller design, memory
structure, distributed file system, network system, I/O paths,
and allocated BW. Consequently, the storage system will
prevent Incast. However, if a single control plane receives
plenteous packets and flow requests, it can reach to a state
called control plane saturation [15]. The underlined protocol
should address control plane saturation.

III. RELATED WORK
A. INCAST IN TRADITIONAL STORAGE SYSTEMS
Nagle et al. [1] and Phanishayee et al. [5] reported the
first work related to Incast in a distributed storage cluster.
Nagle et al. [1] observed a throughput collapse in Panasas
ActiveScale storage cluster when the number of concurrent

10720 VOLUME 7, 2019



Y. A. Bangash et al.: Incast Mitigation in a Data Center Storage Cluster Through a Dynamic Fair-Share Buffer Policy

TABLE 1. Different techniques in the literature coping Incast.

storage servers are increased to 40. This resulted into buffer
overflow, which caused retransmission and latency. In addi-
tion, the latency degrades performance and throughput.
Phanishayee et al. [5] measured and analyzed TCP through-
put collapse (storage protocol uses TCP for transport) in
a cluster based storage system, and proposed their solu-
tion at the Ethernet level—enabling Ethernet Flow Con-
trol to prevent Incast. They further reported that TCP slow
start failed tackling Incast. Another attempt is done by
Chen et al. [16], where authors proposed limited number of
senders to handle Incast. Although, it solves the problem.
However, this approach fails scalability and practical use. In a
data center storage environment, it is difficult to predict the
number of active senders for a given time.

Zhang et al. [27], [28] have tackled Incast through address-
ing the block tail time out (BTTO, sender cannot send further
until all senders finished sending the data) and block head
time out (BHTO, when many senders send and some finishes
sending soon). They modified TCP behavior and prevented
these two timeouts (they claimed that these timeouts are the
real cause of Incast). A comprehensive overview, to under-
stand factors contributing to Incast, can be found at [29].
Performance evaluation of TCP congestion control can be
found at [30]. A list of mostly used Incast methods and their
brief description is presented in Table 1.

Alizadeh et al. [17], and Wu et al. [18] proposed DCTCP,
and ICTCP. These are two early window-based approaches
preventing Incast. DCTCP was designed to work in a data
center; it requires changes both to ECN enabled switch and
TCP at the sender nodes [31], [32]. DCTCP does not consider
application level priority. DCTCP uses ECN signal for con-
gestion notification—a simple mark at the ECN switch, and
an ECN echo at the receiver. Buffers allocation are controlled
from a sender node. DCTCP is limited in scalability as it
surrounds only 35 concurrent senders. In contrast to DCTCP,

ICTCP uses the receiver buffer size for controlling buffer allo-
cation. Both these methods use buffer policy at the sending
receiving node—host based solution. They lack a centralized
controller approach. Zhang et al. [33] proposed Adaptive
Marking Threshold (AMT) to proactively tune the marking
threshold for eliminating the queue delay in the data center
environment. They mentioned that the fixed ECN marking
fails to handle the queuing delay. This is a switch based
solution which lacks the centralized approach. Managing and
tunning individual switches in a large data center introduces
administration and maintenance overhead. Reducing Time
Out (TO) can also mitigate Incast. Vasudevan et al. [19]
proposed RTObased solution; they decreased the default TCP
time out, however, this technique leads to a fast retransmis-
sion which can saturate the network quickly. A very low
RTO increases premature times-outs [5], and, thus incurs
quick buffer exhaustion and Incast [1].

Zhang et al. [20] have shrunk the MTU value to mitigate
Incast. However, reducing MTU for long flows suffer perfor-
mance and link degradation. RTT based congestion control
mechanism is proposed by Mittal et al. [21]. They claim
RTT is a holistic signal compared to ECN.
Receiver-oriented Congestion Control (RCC) mechanism

is proposed by Xu et al. [34]. However, RCC is a receiver-
host based congestion control mechanism. This scheme did
not consider the advantages of SDN approach. Another
work is done by Huang et al. [35] where authors adjusted
the packet size to mitigate Incast. A recent work done by
Almasi et al. [36]. They proposed Explicit Incast Notification
(EIN) opposed to ECN. Authors claimed that as compared
to ECN, which is based on slow start, EIN is fast and accurate.
Their scheme is called Pulser, and the EIN is governed by
switch. The drawback of this approach is the decentralized
control mechanism which is incorporated by all connected
switches in the data center. Remote Direct Memory Access
approach is proposed by Xue et al. [37], where authors
explained that the approach drastically decreases the latency.
In this approach, TCP packets need not to traverse the whole
operating system stack.

B. INCAST IN CONTEMPORARY STORAGE SYSTEMS
Ghobadi et al. [25] presented openTCP, a software-defined
inspired way that augments DCTCP and other protocols to
prevent congestion. openTCP surrounds a general network,
while DyFaShBuP surrounds a storage network. The conges-
tion implementation policy in DyFaShBuP is another differ-
ence with openTCP. In our scheme, the congestion control
mechanism and dynamic fair-share buffer allocation for end-
to-end I/O path is dependent on the number of concurrent
connected servers, priority queues,WS, and bandwidth delay
product (BDP). An arbitrator mechanism handling Incast
is proposed by Munir et al. [13]. They used arbitrator at
each stage for feedback. Multiple arbitrators result arbitration
delay, and processing overhead.

Another SDN implemented method, SDTCP, is reported
by Lu and Zhu [38]; they proposed a technique where

VOLUME 7, 2019 10721



Y. A. Bangash et al.: Incast Mitigation in a Data Center Storage Cluster Through a Dynamic Fair-Share Buffer Policy

TABLE 2. Notations used in the proposed method.

a congestion signal is generated by a switch and forwarded
to the controller. DyFaShBuP handles the storage side, while
SDTCP worked on the network side. In SDTCP, the queue
size is checked all the times for buffer availability in all
switches. This results into a scalability issue. SDTCP handles
Incast for 50 senders. A switchwith ECNmechanism tackling
Incast is proposed by Lee et al. [23]. In their method, a switch
is an intelligent device and responsible to prevent Incast.
In a data center environment, managing multiple switches
through this scheme lacks manageability and proper mainte-
nance. As more switches are added, more installation and up-
gradation are needed. Another SDN data center switch based
method is proposed byHwang et al. [24]; they provided Incast
solution via SDN switch and not via SDN controller.

SDN controller based (OTCP) Incast solution is proposed
by Jouet et al. [26]. This approach surrounds data cen-
ter network’s aspect. Their proposed topology poses a sig-
nificant processing and traffic overhead on the controller.
Qin et al. [39] presented TCP with Acknowledgment Chang-
ing Rate (TCP-ACR) to mitigate Incast. Their congestion
control method is based on the changing rate of ACK, and the
experiment is only limited to 39 servers (a potential scalabil-
ity issue). Wang et al. [40] presented a solution (TCP-FIT)
for a heterogeneous network (both larger BDP and wireless
links).

All these different techniques provide different solution
sets depend on the application environment. However, none
discuss the Incast issue for storage network. The key notations
are summarized in Table 2.

IV. ANATOMY OF INCAST
We understand that Incast is not related to a particular topol-
ogy setup. It is an issue where multiple concurrent senders are
bombarding a single receiver whether it is a storage device,
network device, or any other communication entity. Incast is
dependent on BW, latency, buffer capacity, I/O stack, RAM,
and CPU. It surrounds the whole system. In this section,
we dissect Incast in details.

• Incast and buffer: Bechtolsheim et al. [41] proposed
and claimed that big data needs a big buffer, and
as a result, it solves the Incast. In contrast to [41],
Alizadeh et al. [17] claimed that big buffers provide
a small opportunity. A shallow buffer switch can-
not handle Incast, and thus, degrades the performance
(they build queues for long flows). As the buffers get
deeper, it leads to a higher latency. In addition, switches
with larger buffer are costly [5].

• Incast and switch port: Incast is also dependent on the
deployed switch architecture (port). Modern switches
have dedicated ports (port-based memory buffering) and
shared buffer ports (shared memory buffering). There is
a trade-off between these two. Shared buffers facilitate
better burst absorption, because a large dynamic buffer
pool can handle the burst as needed. However, a larger
shared buffer leaves a small capacity for dedicate ports.
A dynamic fair-share buffer policy is needed tackling
Incast. In contrast to shared buffer switch architecture,
a dedicated buffer guarantees equal space to each port,
and thus, provides a fair-share buffer. However, small
dedicated buffers lead to Incast—they cannot handle a
traffic burst for a short time. Storage systems contain
both long flow and short flow. The underlined switch
architecture should address these issues.

• Incast and line rate latency: If the deployed link latency
is high, storage system will face Incast. For 50ms line-
rate latency, a switch with 10Gbps needs 60MB of
buffer. Smaller the line-rate latency, higher will be the
throughput, and vice versa. Defining the exact amount
of buffer capacity is difficult. There are numerous
switch design issues (dedicated, shared, and hybrid) that
make it hard. Incast latency factors include: distance,
the deployed equipment’s performance, the congestion
algorithm, and the protocol.

• Incast and blocking and non-blocking switch architec-
ture: Device buffer capacity can be limited by hardware
architectures. A blocking architecture fails to meet the
full-duplexBW requirements. This case leads to a packet
loss. In contrast to blocking architecture, a non-blocking
architecture provides an extra internal buffer capacity
to meet the full-duplex BW requirements of its port.
It guarantees no packet loss; and it does not affect other
links in the deployed switch.

• Incast and high resolution timer: Due to a higher reso-
lution timer in many OSs, reducing RTO from 200ms
is not possible [5]. Reducing RTO helps TCP to enter
in the retransmission mode quickly to deal with the
congestion. However, RTO should not be decreased too
much. It increases the retransmissions drastically and
ultimately chokes the BW .

• Incast and BW : Incast is directly related to the
available BW . A smaller BW leads to Incast, while a
sufficient BW prevents it. However, predicting the opti-
mal BW and latency requirements for tenants are still
unsolved problems [42].

10722 VOLUME 7, 2019



Y. A. Bangash et al.: Incast Mitigation in a Data Center Storage Cluster Through a Dynamic Fair-Share Buffer Policy

• Incast, and long flow and short flow: A tremendous
amount of data flows in storage systems. These con-
sist of long and short flows. Short flow remains for a
very short time, while long flow takes more time. The
stripping behavior in a storage system can affect these
flows. FS and data block size should be practiced and
experimented for a better result.

• Wider stripping: The wider the stripping, the maxi-
mum is the performance [1]. However, a wider stripping
needs higher number of storage servers. Wider stripping
provides concurrent simultaneous data access. Without
dynamic fair-share buffer allocation, it leads to Incast.
Section V and VI elaborate more on wider stripping.

• Incast and BDP: BDP determines the amount of data
that a link occupies at a given time. It is directly
related to latency and throughput. If the BDP is less
than the TCP WS, the path BW is the limiting factor
for maximum throughput. In another case, if the TCP
WS is the limiting factor for throughput, we use mul-
tiple concurrent TCP connections to fill the pipe. In a
storage system, to prevent Incast, we should use a proper
relation between BDP and the underlined protocol WS.
When the network topology and routing change over
time, we should periodically check theWS for maximum
performance.

• Incast and WS: One of the most important performance
factor in our proposed algorithm is the use ofWS. It rep-
resents howmuch data can be sent from one storage host
to another without being acknowledged. It is the amount
of data on a link at a given time. A BDP is the theoretical
value for the TCP WS. WS cannot be greater than BDP.
Because of the OS and network implementation, tuning
an optimal TCP WS is a tedious job. Some misbehaved
WS may degrade storage performance.

• Incast and memory: Every TCP connection requires
a memory space. An increased WS demands more
memory on the server. All un-acknowledged packets
should be held in memory, which result in more mem-
ory demands. A faster main memory provides a faster
I/O access. Islam et al. [43] have introduced NVM
based burst buffer technique to improve I/O perfor-
mance. In their design, the communication buffer acts
as a storage buffer, which consequently increases write
performance. Although, they have not discussed stor-
age Incast, but their proposed method supports miti-
gating Incast in an extensive I/O storage cluster. For
a small scale storage cluster, burst buffer may not be
needed. However, the burst buffer will be a manda-
tory component for peak I/O rates in a massive storage
cluster [44].

• Incast and multiple TCP connections: Multiple TCP
connections provide the advantage of filling the pipe.
Lowering the WS than the available BDP under-utilizes
the link capacity. Using millions of TCP connections
require a considerable amount of memory. However,
onlymemorywill not help; a devicemust support greater

connections per second to get the full advantage of
memory.

• Incast, TCP, and storage protocol: To prevent Incast,
we should address all the entities involving in the com-
munication (e.g., iSCSI). The underlined storage must
be fast enough to handle the maximum IOPS. Any mis-
match results into Incast. Storage devices should not be
the bottleneck for the available link BW and vice versa.

• Incast and queue: This is related to switch architecture.
Multiple queues provide more space and better flow
control; however, it incurs more cost.

• Incast and concurrent senders: Incast is directly
proportional to the number of concurrent senders.
Chen et al. [16] limited the number of concurrent sender
to mitigate Incast. We should find a better solution
for concurrent senders to help the scalability factor of
storage system. In addition, the amount of traffic, size
of packets, and network diameter are also the affecting
factors towards Incast.

• Incast and file system: As stated that to prevent Incast,
we should consider the whole system, and not only stor-
age system or networking part. The underlining file sys-
tem (parallel and distributed) also contributes to Incast.
Poorly tuned multiple parallel I/O requests from multi-
ple servers can degrade performance [45], and lead to
Incast. Figure 2 shows it clearly. Although big data-
blocks and stripe size provides maximum throughput.
However, they increase pressure on the available buffer
capacity. In addition, the overall performance is limited
by I/O stack, disk latency, and stripping and spreading
mechanism.

• Incast and disk technology: I/O performance is still
far behind the computing power in modern data
centers [3]. The gap between I/O speed and computing
power decreases the overall I/O throughput. It is sug-
gested to use state of the art high access disk technology
to prevent Incast. Incast situation even becomes worse
when multiple I/O accesses are requesting multiple
I/O devices.

• Incast and NIC: The installed NIC must support a high
throughput to prevent Incast—we should not introduce
another bottleneck.
An abstract Figure 4 shows different stages that con-
tribute to Incast. Providing a dynamic fair-share buffer
for end-to-end I/O path and maximum I/O throughput
should understand the complex connectivity of modern
data centers. A high performance I/O path demands a
high performance system—both network and storage
must meet end-to-end I/O requirements.

V. ARCHITECTURE AND PROPOSED MODEL
INSPIRED BY SD CONCEPT
TCP Incast is extensively discussed in the literature. Our
main focus is the integration of software-defined con-
cept in a data center storage cluster while tackling Incast.

VOLUME 7, 2019 10723



Y. A. Bangash et al.: Incast Mitigation in a Data Center Storage Cluster Through a Dynamic Fair-Share Buffer Policy

FIGURE 4. Tackling Incast in end-to-end I/O path: Multiple factors
contribute to Incast, while handling an end-to-end I/O path.
Guaranteeing an end-to-end I/O path should consider all stages.

FIGURE 5. The abstract topology: A SDDC consists of Computing, Storage,
and Networking. The storage topology consists of SDS controller,
OpenFlow enabled switches, and 48 storage servers per rack.

We provide a protocol that can be scaled, configured, and
troubleshooted easily. The common topology is depicted
in Figure 5. In this figure, every switch collects statistics
of the designated rack’s servers and reports to the storage
controller for policy enforcements. The link BW between
storage controller and OpenFlow enabled switch is 10/40G,
while the link between storage server and OpenFlow enabled
switch is 10G/1G.We incorporated Top of Rack (ToR) design
(not a mandatory policy)

In DyFaShBuP, we model the most common packets in
OpenFlow protocol specification: Packet-In is a packet that
requests the SDS controller to handle a flow. Packet-Out
is the response from SDS controller to switch to send that
particular flow. Packet-Mod tells the switch to install a new
flow table entry. The Packet-Exp instructs the flow time-out
after a certain period of inactivity.

A. SDS CONTROLLER
SDS controller is the core entity in DyFaShBuP. It is a
high quality hardware that provides software-defined storage
services. It has 10GE/40GE/100GE ports according to the
storage demands. It has a secure communication channel to
interact with switches. Communication channel is protected
to ensure cryptographic components, e.g., confidentiality,
integrity, and availability. SDS controller also incorporates
meta data services and a global cache service. However,
these two concepts are out of scope of this work (our future
target). The advantage of global cache server is the success
hit. In such a case, data stripes will not be fetched from indi-
vidual storage nodes. Preventing Incast in a storage network,
the SDS controller responsibilities are as follows.
• It dynamically calculates the number of attached storage
nodes (based on IP or MAC address).

• It calculates the file system’s block-size and the FS
(file data to be stripped on), where FS=Block-size/no of
attached storage servers. For high performance, a wider
stripping is needed. Wider stripping provides multiple
concurrent I/O accesses simultaneously.

• Because the DyFaShBuP provides a global flow aware-
ness, it facilitates storage behavior observations and,
thus, helps defining cold nodes and hot nodes. Cold
nodes have less chances to be accessed while hot nodes
have maximum I/O access chances.

• Observing the overall storage and network behavior,
SDS controller defines a DyFaShBuP. The policy
includes: global flow awareness, dynamic fair-share
buffer allocation for end-to-end I/O path, and global fair-
shareBW utilization. This policy is distributed to storage
servers via OpenFlow enabled switch. Subsection V-D
is dedicated to discuss the most important contribution
of our method—the dynamic fair-share buffer allocation
for end-to-end I/O path.

• SDS controller adjusts the policy according to the under-
lined switch supported architecture (shared buffer, ded-
icated buffer, and the hybrid buffer).

• On the application request, it defines the buffer for long
flow, short flow, and PF .

• The extension of OpenFlow protocol provides to accom-
modate multiple TCP connections, and statistics. Upon
receiving these statistics, the SDS controller updates the
advertised window in the TCP header.

B. OPENFLOW ENABLED SWITCH
A high processing power enabled switch is recommended for
maximum I/O throughput in a data center storage cluster,
which can facilitate multiple concurrent I/O requests from
multiple servers. A hardware system should not be another
bottleneck when tackling Incast. In our proposed method,
the switch responsibilities are as under:
• DyFaShBuP uses both normal and priority queues.
The priority queue is used to prioritize a flow. The
SDS controller implements the policy, while the switch
executes it.

10724 VOLUME 7, 2019



Y. A. Bangash et al.: Incast Mitigation in a Data Center Storage Cluster Through a Dynamic Fair-Share Buffer Policy

• We have defined a policy table for handling storage
flows. This policy table consists of match-action entries.
When a miss action-match occurs, switch requests the
SDS controller to handle the new flow. SDS controller
defines a new policy and forwards to the switch. Further
research is needed whether to have multiple software
enabled policy tables or hardware policy tables. The
flow chart for policy table implementation is shown
in Figure 6.

• Our proposed switch consists of 48 ports. Each port
supports 1GE. The switch architecture is out of
scope of this work. However, we anticipate a shared
buffer and a dedicated buffer switch for the proposed
scheme.

• Each TCP session reserves a physical memory matching
the buffer size. Because of the switchmemory limitation,
we do not use unlimited TCP connections.

• In DyFaShBuP, triggering a congestion signal is not
the responsibility of a switch as in [38], but we
incorporate the central controller to tackle the con-
gestions. Another important point is the target flow
identification. We delegate this policy from switch to
controller. A centralized controller-based target flow
identification eases the management and maintenance.
Switch based methods lack this advantage. It leads
to multiple switch configuration, troubleshooting, and
maintenance.

• A dedicated port buffer can prevent head of line
blocking [27]. However, we use a dynamic buffer policy
to tackle Incast. We are not aiming to change the switch
architecture.

C. STORAGE SERVER
A storage server has all the traditional properties, e.g., storage
capacity, storage technology (HDD, SSD), and number of
supported NICs. NIC should not be the bottleneck. If the link
BW is 1Gbps, and the installed NIC supports 500Mbps or less
than 1Gbps, definitely, this bottleneck will result into Incast.

D. GLOBAL BUFFER DYNAMICS
An ideal congestion control scheme for DCNs should effi-
ciently use the network resources, e.g., BW , and buffer capac-
ity [30]. DyFaShBuP for end-to-end I/O path offers a unique
way to tackle Incast. It calculates the complete I/O route from
end-to-end system. All the communication entities are taken
into consideration while applying the global calculation for-
mula. It is a policy that prevents Incast whether the root cause
is TCP protocol itself, switch, or the end storage server. This
calculation results into a dynamic fair-share buffer allocation,
maximum overall I/O throughput, and a low latency.

A single end-to-end I/O request traverses multiple
I/O stages as shown in Figure 4. Enforcing policies at each
layer are hard for I/O [12], [46]. They have shown a general
I/O flow architecture, while we aim to prevent Incast via a
dynamic fair-share buffer allocation for end-to-end I/O path.
DyFaShBuP adjusts the WS across all I/O paths—from all

FIGURE 6. A simple flow chart demonstrating the global policy
implementation for storage flows.

sending file servers to the receiving file server. Different
stages are shown in Figure 4. These expose their statis-
tics to the switch, which is then forwarded to the SDS
controller. In addition, the switch collects other statistics
to enforce fair-share buffer for end-to-end I/O path: num-
ber of concurrent senders, file server receiving and sending
buffer capacity, switch buffer capacity, link BW and latency,
BDP, and the supported disk read and write operations’
speed. SDS, then defines the global buffer policy as shown
in Figure 6. Controller instructs all the CFS to adjust their
WS as directed—Buffer dynamics is the control policy of
SDS controller. This policy is not based on the receiver,
sender, or switch (the new approach). DyFaShBuP is com-
pletely software-based. We are not proposing any hardware
change. We are decoupling the TCP default window mecha-
nism and delegating it to the SDS controller. Different control
policies are shown in Table 3.

Our method eliminates the specific time granularity, e.g.,
some time interval granularity time (gt) to update the pol-
icy via OpenFlow enabled switch. Whenever a system’s
parameter changes, it is directly propagated to the SDS con-
troller, and the SDS controller implements the policy. A com-
mon granularity parameter gt can be defined to update the
global policy. However, gt incurs extra delay. Our dynamic
policy does not rely on gt . Compared to the send/receive
window based method, e.g., DCTCP and ICTCP that can
adjust the window size once detecting the congestion, our
scheme implements the policy prior to congestion detection.
Through our dynamic policy, the SDS controllers eliminate
the Incast mitigation delay—there is no gt interval to update
policy.

VOLUME 7, 2019 10725



Y. A. Bangash et al.: Incast Mitigation in a Data Center Storage Cluster Through a Dynamic Fair-Share Buffer Policy

TABLE 3. A dynamic fair-share buffer for end-to-end I/O path allocation
policy: Different functions are used to implement different policies.

DCTCP and ICTCP use end-system buffer policy. Either
the sender or the receiver governs the policy (WS adjust-
ments). The drawbacks of these two approaches are already
discussed. In addition, our approach is a decoupled-inspired
approach to mitigate Incast, while DCTCP and ICTCP
are host based approaches, and completely missing the
decoupled-architectural advantages. DyFaShBuP uses a cen-
tralized mechanism defining a dynamic fair-share buffer for
end-to-end I/O path. A buffer congestion mechanism used
by either end systems (DCTCP, ICTCP), or switched based
system, leads to a tremendous amount of communication
overhead (decentralized buffer coordination by end hosts).
We eliminated the extra communication through a centralized
SDS controller. Our scheme achieves the maximum overall
I/O throughput.

1) BANDWIDTH DELAY PRODUCT (BDP) CALCULATION
For the sake of understanding, we elaborate the bandwidth
delay product calculation for the fair share buffer manage-
ment as under, where, Bandwidth = BW , and delay = Delay.
BW is measured in bits per second, and Delay is measured
in seconds. BDP = BW ∗ Delay If we have 1Gbps link,
and 1ms Delay for that link, then the BDP is as follows:
BDP = 1∗109∗10−3 = 106bits = 125KBThis means, at one
particular time interval, i.e., for 1ms, the maximum bytes that
can be in transit on this link are 125KB. To fully utilize the
1Gbps link, the maximumWS must be 125KB. As this is the
maximum achievable BW , we cannot increase this size more
than 125 KB of (WS which is alway bounded by the BDP).
We can lower this value from 125KB, however, in that case,
we will be under utilizing the link bandwidth, which is not
an optimal choice. For hight throughput, we always use the

FIGURE 7. The software agent is responsible to collect different
information (IP, Buffer capacity, etc.), and share with SDS controller.

FIGURE 8. A small window size incurs bandwidth underutilization.
Increasing the window size guarantees the maximum available
throughput.

maximum supported WS in order to fully utilize the link
bandwidth. A graphical representation is given in Figure 8.

2) ALGORITHM OVERVIEW
The Algorithm 1 shows how dynamic fair share policy works
for all the concurrent storage servers. Initially, the program
accepts the number of storage servers as integers, delay inms,
and bandwidth in bits per second. The method will calculate
the bandwidth delay product and this whole product will be
divided by the number of concurrent file servers, which will
yield the window sizeWS. The SDS controller will distribute
this WS to all connected servers.

3) IMPLEMENTATION FEASIBILITY
As the proposed solution is wholly based on software via
a dynamic fair share policy, which is governed by the cen-
tralized SDS controller, its implementation is feasible from
a small to a big data center. There is no need to modify
the client TCP legacy implementation. A small size buffer
share policy agent can be installed on those servers which
will communicate with the centralized SDS controller for the
Window Size behavior and negotiation. The architecture is
shown in Figure 7. The agent will listen to the SDS con-
troller, and will fine tune the Windows size for that particular
server. DCTCP only applicable if the switch supports ECN.

10726 VOLUME 7, 2019



Y. A. Bangash et al.: Incast Mitigation in a Data Center Storage Cluster Through a Dynamic Fair-Share Buffer Policy

Algorithm 1 Fair Share Buffer Allocation in a Datacenter
Storage Cluster
Input: available BW in bps, delay in milisecond ,

number of attached storage servers
Output: BDP in bits or Kilo Bytes, window sizeWS in

KB
1 /* Number of attached storage servers n = 48, user can
input any number for n from 1 to 48. Number of
attached open flow enabled switches ns = user − input .
We assume user inputs 20 for this variable, so the
number of available switches are 20. We have
20 switches, and 48 servers attached to each switch. Note
that both n and ns can have run time values*/

2 n = 48, ns = 20,BW = x, delay = d,BDP = 0,WS =
0;

3 for k = 1; k ≤ ns; k ++ do
4 for i = 1; i ≤ n; i++ do
5 float BDP = x ∗ d /* bits or Kilo Bytes*/;
6 float WS = BDP/n;
7 distribute theWS to attached servers i connected

to switch k;
8 end
9 end

4) FAIR-SHARE BUFFER MANAGEMENT
It is crucial to have a sufficient buffer capacity to handle
micro-burst caused by many-to-one communication pattern.
The default TCP flow drops a packet due to the buffer over-
flow. We aim to maintain the smooth operation and pre-
vent TCP from sticking in the recovery mode. We have a
48 port switch, and 48 file servers are connected through
1GE. Each file server has 4 GBRAM. Switch supports shared
as well as dedicated buffers. We assume a 200 KB capacity
per port. We incorporate a latency of 1ms for data storage
network. DCTCP uses 250us latency for data center for a non-
congested network.

With such parameters, BDP is the limiting factor (WS is
always bounded by BDP). If the BDP is less than switch’s
dedicated per-port buffer capacity, then BDP is the bottle-
neck. We cannot use the full 200 KB port capacity with a
less BDP. For the maximum I/O throughput, BDP should
equal to buffer capacity. In the same way, if the underlined
protocol does not support a sufficient amount of WS, then
the WS can be the bottleneck, no matter how big is the link.
We have tackled both cases. For the link BW = 1Gbps,
and RTT = 1ms, the BDP = 125 KB. With the default
TCP windowing mechanism, the receiver notifies how much
data should be sent in the next window, or what will be
the next WS. DyFaShBuP uses the centralized controller for
calculations.

If 20 file servers are sending at one time to only one
server, the DyFaShBuP for end-to-end I/O path divides the
maximum buffer capacity by the number of outstandingCFS.
In this case, it yields 125KB/20 = 6.25 KB. This value

FIGURE 9. The general setup shows a centralized controller with
10/40Gbps connected to switches, which are further connected to
48 servers via 1/10Gbps.

suggests that all the CFS should use 6.25KB of window,
not more than that—otherwise the TCP Incast will hap-
pen. 125KB is the maximum buffer capacity that a receiver
can support at one-time instance. It is bounded by BDP.
As 125KB is supported by all links (because of BDP),
20 file server cannot fully utilize the whole BW . However,
we achieve the maximum overall I/O throughput. In fact,
the aim is the overall I/O throughput and preventing Incast.
BDP works only for a single TCP connection. We aggregate
the value for multiple connections. In the above example,
to fill the whole pipe with 125KB, all 20 senders should send
at one time with 6.25KBWS, and this proves our calculation.
Multiple factors govern the I/O throughput: CFS cannot send
more data at one time than the SDS controller advertised
buffer capacity; CFS cannot send more data than their sup-
ported WS; CFS cannot send more data than the BDP; and
CFS cannot send more data than the available data in the
sender buffer.

VI. PERFORMANCE ANALYSIS AND EXPERIMENTAL
RESULTS
In DyFaShBuP, the global buffer policy implementation pro-
vides both flow control and a fair-share BW utilization. The
implementation setup is shown in Figure 9.

A. INCAST SCENARIOS
THROUGHPUT VS CONCURRENT FILE SERVERS
Incast can be caused by different parameters as explained in
Section IV. In our proposed work, we are focusing on the
effect of concurrent file servers over throughput. That is the
case we only showed these experiments. Experiments over
other parameters are beyond the scope of this work; working
on those parameters are our future tasks.

In a production storage level, Incast spans over multiple
switches and racks. We categorize Incast into three scenarios.
• Within a rack (single switch): File server1 in
rack1 requests FSs from multiple file servers within the
same rack, and through the single switch.

VOLUME 7, 2019 10727



Y. A. Bangash et al.: Incast Mitigation in a Data Center Storage Cluster Through a Dynamic Fair-Share Buffer Policy

TABLE 4. Simulation parameters in DyFaShBuP.

• Single rack to single rack (two switches): File server in
rack1 receives FSs from all servers in rack2. In a real
world, file server1 in rack1 may receive from multiple
servers from rack1 and rack2 simultaneously.

• Single rack to multiple racks (more than two switches):
File server1 in rack1 can request FSs from multiple file
servers in different racks through multiple switches.

B. EXPERIMENTAL RESULTS
Different simulation parameters are shown in Table 4. NICs
in all file servers are fast enough to accommodate the overall
link throughput. All experiments were performed in Mat-
lab programming environment. We have run the program
100 times to validate our results. Results presented have
been averaged out over the course of simulation. As far as
the confidence is concerned, we run the program on Dell
e6440 Latitude, 8GB RAM, 256 GB Samsung SSD, and 1TB
western digital hard disk. In all these provided parameters
and our system specification, the reproducible results will
be same on other machine. However, a small variation in
reproducible result may occurs due to system’s specification
and other parameters.
• Single file server requests FSs frommultiple file servers
(same rack): We have done multiple experiments to
calculate the overall end-to-end I/O throughput when
a single switch governs the communication among
file servers. Figure 10 shows the experimental results.
In this case, the minimum WS is 2.6KB for all 48 CFS.
Maximum WS is 125KB for a single file server. The
Maximum I/O per link with 125KB WS is 1Gbps. Min-
imum I/O per link when all file servers are sending
concurrently is 21.30Mbps. We achieved the overall
I/O throughput near to the available link capacity—no
matter how many CFS are sending. Following values
are incorporated according to the available network
capacity: RTT = 1ms, BW = 1Gbps. To fully uti-
lize the receiver buffer (125KB), the SDS controller
uses 125KB WS. This WS should be equal or greater
than BDP for maximum I/O throughput. SDS controller
allocates a dynamic fair-share BW , and WS for end-to-
end I/O path preventing Incast, while at the same time,
achieves a maximum overall I/O throughput.

FIGURE 10. A Single file server requests FSs from multiple file servers.

FIGURE 11. A single file server requests FSs from multiple file servers
through a second switch.

• Single file server requests from multiple file servers
(A different rack, two switches): The single switch com-
munication for storage is the simplest one for Incast
understanding. A more realistic scenario can be seen
in Figure 11, where two switches are incorporated.
Minimum WS is 2.86KB for all 48 CFS. Maximum
WS is 137.50KB for a single file server. The Maximum
I/O per link with 137.50KBWS is 1Gbps. Minimum I/O
per link when all file servers are sending concurrently
is 23.43Mbps. In this case again, via the SDS global
buffer policy, we achieved the overall I/O throughput
near to the available link capacity—nomatter howmany
CFS are sending. For this case, we incorporated the
following values according to the available network
capacity. RTT = 1.1ms, BW for file servers link =
1Gbps, BW for switch to switch = 10Gbps. For the
end-to-end I/O throughput, SDS controller considers all
communicating entities, i.e., file server buffer capacity,
switch buffer capacity, RTT , and BW. For 1.1ms latency,

10728 VOLUME 7, 2019



Y. A. Bangash et al.: Incast Mitigation in a Data Center Storage Cluster Through a Dynamic Fair-Share Buffer Policy

FIGURE 12. A single file server requests FSs from multiple file servers
through multiple switches.

the BDP is 137.5 KB. For maximum I/O throughput,
file server supports 137.5 KB buffer (it can support
high buffer as well). The deployed switches have an
enough buffer capacity to accommodate the BDP. In this
case, the SDS controller assigns 137.5 KB of WS, and
distributes among all CFS to prevent Incast as shown
in Figure 11. In this case again, via the SDS global
buffer policy, we achieved the overall I/O throughput
near to the available link capacity—nomatter howmany
CFS are sending

• Single file server requests FSs frommultiple file servers
(different racks and multiple switches): We have done
experiments for the worst case of Incast where a single
file server requests from multiple file servers through
multiple switches and racks. The result of DyFaShBuP
for end-to-end I/O path can be seen in the Figure 12.
Minimum WS is 3.125KB for all 48 CFS; Maximum
WS is 150KB for a single file server. Maximum I/O
per link with 150KB WS is 1Gbps; Minimum I/O per
link when all file servers are sending concurrently is
25.60Mbps. Following values are incorporated accord-
ing to the available network capacity. RTT = 1.2ms,
BW for file servers link = 1Gbps, BW for switch to
switch = 10Gbps. File servers support the buffer capac-
ity bounded by BDP(150KB); the BDP is 150KB; and
the WS is as much as BDP to avoid Incast and link
under-utilization. SDS controller distributes theWS over
multiple CFS for fair-share BW and buffer allocation.
The DyFaShBuP prevents Incast as shown in Figure 12.
Different scenarios are shown in Figure 13.

C. PERFORMANCE ANALYSIS
As stated earlier, BDP governs the amount of data that can be
sent in the pipe at a given time. A sufficient BDP provides an
optimal value for the WS. Increasing TCP WS or reducing
latency provides higher link utilization. However, without
proper tuning, this approach leads to Incast. In DyFaShBuP,

FIGURE 13. Scenario 1 shows single file server requesting from multiple
file servers within the same rack. Scenario 2 and Scenario 3 are self
explanatory.

the automated WS tuning by the SDS controller facilitates
the optimal buffer capacity for different Incast scenarios as
illustrated in the Section VI-A. The global buffer policy
allocation always provides an end-to-end fair-share I/O BW
and a fair-share buffer preventing Incast in the data center
storage cluster—it considers the whole I/O path.

However, due to the complex data access pattern (small
vs big) in a data center storage cluster, data-blocks span
over multiple storage nodes can degrade I/O performance.
A small I/O choice may be suited for one situation, while
a big I/O will be better for another [47]. We observed that,
although, a small WS for 48 file servers achieves the line-
rate I/O throughout—not a goodput, however, it leads to
link-underutilization. To prevent this, we suggest a small file
(some threshold) should not be stripped over many storage
servers.

There should be a policy in a file system, e.g., that a
file less than X MB should not be stripped over N servers.
To understand data-layout (small vs big), it is important to
use an optimal MTU—the smallest amount of data that a
protocol can send in one packet—in the storage network.
The maximum MTU supported by an Ethernet interface,
excluding Ethernet frame header and trailer, is 1500 Bytes.
It includes 1460 Bytes for MSS, and 20 Bytes each for IP and
TCP header—a 40 Bytes overhead in each packet. Therefore,
a very small WS for a small file or a large file degrades the
I/O throughput. Sending a very small data size results into
a very large overhead, and sending a very large data results
into fragmentation. Figure 14 shows the impact ofWS and its
traffic overhead. However, a smallWS introduces link under-
utilization.

Our policy of fair share buffer dictates that whether we
use per port buffer architecture or shared buffer architecture,
the fair share policy will allocate an equal and fair amount
of bandwidth to all concurrent connections. It will not be
the case that one server or one connection will be utilizing

VOLUME 7, 2019 10729



Y. A. Bangash et al.: Incast Mitigation in a Data Center Storage Cluster Through a Dynamic Fair-Share Buffer Policy

FIGURE 14. Impact of WS and overhead: The aggregated overhead is
almost constant, 3400-3460Bytes or 2.75 % whether we use a small
WS or a big WS.

70% of the link bandwidth, and the other connection will be
using merely 30% of the link bandwidth. Even in the worst
case, if we have 100 servers, the bandwidth share for all these
100 server will be fair, i.e., equal for all. In case of 100 servers,
if one server is utilizing 5Mbps, all remaining servers will
also utilize 5Mbps. Our proposed method will work whether
we use a dedicated per port buffer switch architecture, or a
big shared physical buffer switch architecture.

Another important factor is the impact of the number of
CFS’ request on the single file server. Preventing Incast
needs a sufficient amount of RAM on the hosting file
server. A large WS packet stores in a RAM. It occupies a
space equal to its size. For example, a web server serving
10000 clients having BW capacity of 100Mbits with a 100ms
RTT requires 1.25 MB (BDP) space for each client on the
hosting server’s RAM —12 GB of RAM. For the same
example with 1000Mbits BW , each connection needs 8MB
of RAM space results into 78GB of RAM. This calculation
is valid when all 10000 clients are concurrently requesting
data. Figure 15 illustrates these cases comprehensively. For a
variable WS, as shown in this figure, the product still holds.
The WS, and CFS, both impact system’s memory.

In traditional networks, TCP Congestion Window (Cwnd)
and Receive Window (Rwnd) are two parameters that are
responsible for flow control. These parameters work together
to achieve flow control in a TCP network. Our proposed
method incorporates the dynamic fair share buffer policy,
which allocates equal size of buffer capacity to all concur-
rent file servers. In summary both congestion window, and
receiving window mechanisms are de-coupled from sender
and receiver and delegated to a centralized SDS controller
(because now we are in SDN environment).

D. SCALABILITY EVALUATION
DCTCP only applicable if the switch supports ECN; it fur-
ther needs the modification of TCP at sending system end.

FIGURE 15. Impact of WS and concurrent requesting clients: For a
constant WS, increasing number of concurrent clients demand
more RAM equals to WS times the number of CFS.

ICTCP uses the receiver end for Incast mitigation. How-
ever, in both of these cases, the mechanism is de-centralized
(sender and receiver coordination). The novelty of our work
is the centralized control mechanism to mitigate Incast. Both
ICTCP and DCTCP cannot scale beyond their allowed num-
ber of storage servers. In DCTCP the limit is merely 35 con-
current senders, while in ICTCP, the experiments are done for
48 servers under the same switch. Exceeding that number
will cause Incast, which in turn, will not be suitable for a
production environment. Even more, in ICTCP, the Incast
scenario is only for a single switch, and the connected
servers are also belong to the same single switch. In our
case, we have incorporated the same switch communication,
two switches communication, and more than two switches
communication, which is more appealing and practical. Our
scheme will not suffer from scaling problem because it is
based on SDN. Yes, there is some computing threshold of
a single SDN controller, where it will be saturated beyond
a maximum number of flows (single point of saturation
issue). For that, we suggest to deploy multiple SDS con-
trollers. And now the problem is of the controller’s com-
puting scalability, not of throughput; and of course, not our
algorithm.

DyFaShBuP provides scalability for hundreds of storage
servers. The analysis shows that our scheme achieves a
maximum end-to-end I/O throughput for multiple concurrent
senders, ranges from a single switch scenario to multiple
switches. However, the single point of failure —SDS con-
troller—should be backed-up with a stand-by SDS controller
to achievemaximum availability.Moreover, in a large parallel
file system where multiple SDS controllers, switches, and
storage servers are communicating with each other, predict-
ing a failure is considered as a false-negative alarm [48].
Developing an efficient fault tolerance mechanism needs
better perception and understanding of the failure prediction
properties.

10730 VOLUME 7, 2019



Y. A. Bangash et al.: Incast Mitigation in a Data Center Storage Cluster Through a Dynamic Fair-Share Buffer Policy

TABLE 5. Major findings and their description.

TABLE 6. Different comparison: Different congestion policies, scope visibility, and deployment comparison among DCTCP, ICTCP, and DyFashBuP.

E. DISCUSSION
The dynamic buffer policy provides a fair-share end-to-end
I/O buffer allocation, andmitigates buffer pressure and Incast.
This leads to a minimum latency in a storage network. The
target storage network for the proposed scheme is definitely
the SDS environment—the new storage paradigm. However,
only a dynamic buffer policy is not enough. A proper under-
standing of striping and spreading size, block size, read and
write latency of disk technology, and delay caused by the
protocol stack is required to mitigate Incast in a storage end-
to-end I/O path. Avoiding striping over a large number of
servers may reduce Incast. However, in our method, wider
striping does not cause Incast. Wider striping introduces link-
underutilization if the WS is very small. We recommend a
file system policy to stripe a file of some threshold size to
avoid link under-utilization. Key major findings are shown
in Table 5. Incast techniques’ comparison is shown in Table 6.

Unlimited number of control messages and events are gen-
erated in any network at high-speed are enough to overload

any centralized controller [49]. To guard against controller’s
failure, a backup policy should be implemented to provide
maximum availability. However, multiple SDS controllers
lead to a synchronization problem.

For all experiments, we assumed an ideal lossless path.
Considering the path loss and protocol overhead, the actual
throughput yields less than the available BW . For 1Gbps,
the loss and protocol overhead always result between
24 and 27 Mbps.

We have shown the software solution towards Incast. How-
ever, an equal emphasis should be on the hardware aspect.
Inside the physical network switch, we have two types of
buffers: port based buffer, and shared buffer. In a port based
buffer, all incoming packets use the per port buffer linked to
that port. In the shared buffer architecture, all ports inside a
switch use a common shared pool of memory. Per port buffer
is fast but expensive; shared buffer is cheap but slow. It is
the job of data center administrator to choose the best choice
when talking Incast. It depends on the particular application

VOLUME 7, 2019 10731



Y. A. Bangash et al.: Incast Mitigation in a Data Center Storage Cluster Through a Dynamic Fair-Share Buffer Policy

that a data center uses. Other challenges related to preventing
Incast are: number of SDS controllers and their synchro-
nization, different storage topologies, the single controller
reliability and resilience, an optimal value for striping and
spreading, and a hybrid buffer approach (dedicated vs shared
memory).

VII. CONCLUSION
I/O throughput collapse in a storage network depends on
the details of the protocol implementation, available BW ,
link quality, network switches (especially buffer sizes), and
system configuration (e.g., the number of servers over which
data is stripped). Different techniques have been proposed to
mitigate Incast, e.g., reducing TO, limiting number of CFS,
and receiver and sender coordination. We have proposed a
whole new scheme mitigating Incast in a storage end-to-end
I/O path through the centralized SDN inspired way. However,
due to the complex connectivity in data centers, additional
research is needed in this area to find a solution that fits to all
situations.

REFERENCES
[1] D. Nagle, D. Serenyi, and A. Matthews, ‘‘The Panasas activescale storage

cluster—Delivering scalable high bandwidth storage,’’ inProc. ACM/IEEE
Conf. Supercomput. (SC), Nov. 2004, p. 53.

[2] Y. Chen, R. Griffit, D. Zats, and R. H. Katz, ‘‘Understanding TCP
incast and its implications for big data workloads,’’ Univ. California
Berkeley, Berkeley, CA, USA, Tech. Rep., Jun. 2012, vol. 37, no. 3.
[Online]. Available: https://www.usenix.org/publications/login/june-
2012/understanding-tcp-incast

[3] H. Song, Y. Yin, X.-H. Sun, R. Thakur, and S. Lang, ‘‘Server-side I/O
coordination for parallel file systems,’’ in Proc. Int. Conf. High Perform.
Comput., Netw., Storage Anal., Nov. 2011, pp. 17:1–17:11.

[4] Y. Zhang and N. Ansari, ‘‘On architecture design, congestion notification,
TCP incast and power consumption in data centers,’’ IEEE Commun.
Surveys Tuts., vol. 15, no. 1, pp. 39–64, 1st Quart., 2013.

[5] A. Phanishayee et al., ‘‘Measurement and analysis of TCP throughput
collapse in cluster-based storage systems,’’ in Proc. USENIX Conf. File
Storage Technol. (FAST), vol. 8, Feb. 2008, pp. 1–14.

[6] K. Phemius and M. Bouet, ‘‘Monitoring latency with OpenFlow,’’ in Proc.
9th Int. IEEE Conf. Netw. Service Manage., Oct. 2013, pp. 122–125.

[7] M. Mayer. (Nov. 2006). Marissa Mayer at Web 2.0. [Online]. Available:
http://glinden.blogspot.com/2006/11/marissa-mayer-at-web-20.html

[8] S. Stefanov. (Dec. 2008). YSlow 2.0. [Online]. Available: http://www.
slideshare.net/stoyan/yslow-20-presentation

[9] N. McKeown et al., ‘‘OpenFlow: Enabling innovation in campus net-
works,’’ ACM SIGCOMM Comput. Commun. Rev., vol. 38, no. 2,
pp. 69–74, Apr. 2008.

[10] D. Kreutz, F. Ramos, P. E. Veríssimo, C. E. Rothenberg, S. Azodolmolky,
and S. Uhlig, ‘‘Software-defined networking: A comprehensive survey,’’
Proc. IEEE, vol. 103, no. 1, pp. 14–76, Jan. 2015.

[11] K. Nichols and V. Jacobson, ‘‘A modern AQM is just one piece of the
solution to bufferbloat,’’ACMQueueNetw., vol. 10, no. 5, pp. 20:20–20:34,
May 2012.

[12] I. Stefanovici, B. Schroeder, G. O’Shea, and E. Thereska, ‘‘sRoute: Treat-
ing the storage stack like a network,’’ in Proc. 14th USENIX Conf. File
Storage Technol. (FAST), Feb. 2016, pp. 197–212.

[13] A. Munir, G. Baig, S. M. Irteza, I. A. Qazi, A. X. Liu, and F. R. Dogar,
‘‘Friends, not foes: Synthesizing existing transport strategies for data
center networks,’’ SIGCOMM Comput. Commun. Rev., vol. 44, no. 4,
pp. 491–502, Aug. 2014.

[14] R. Riggio, T. Rasheed, andM. K.Marina, ‘‘Poster: Programming software-
defined wireless networks,’’ in Proc. 20th Annu. Int. Conf. Mobile Comput.
Netw., Sep. 2014, pp. 413–416.

[15] S. Shin, V. Yegneswaran, P. Porras, and G. Gu, ‘‘AVANT-GUARD: Scal-
able and vigilant switch flow management in software-defined networks,’’
in Proc. ACM SIGSAC Conf. Comput. Commun. Secur., Nov. 2013,
pp. 413–424.

[16] K. Chen, H. Zheng, Y. Zhao, and Y. Guo, ‘‘Improved solution to TCP
incast problem in data center networks,’’ in Proc. Int. Conf. Cyber-Enabled
Distrib. Comput. Knowl. Discovery (CyberC), Oct. 2012, pp. 427–434.

[17] M. Alizadeh et al., ‘‘Data center TCP (DCTCP),’’ ACM SIGCOMM Com-
put. Commun. Rev., vol. 40, no. 4, pp. 63–74, Oct. 2010.

[18] H. Wu, Z. Feng, C. Guo, and Y. Zhang, ‘‘ICTCP: Incast congestion control
for TCP in data-center networks,’’ IEEE/ACM Trans. Netw., vol. 21, no. 2,
pp. 345–358, Apr. 2013.

[19] V. Vasudevan et al., ‘‘Safe and effective fine-grained TCP retransmis-
sions for datacenter communication,’’ SIGCOMMComput. Commun. Rev.,
vol. 39, no. 4, pp. 303–314, Aug. 2009.

[20] P. Zhang, H. Wang, and S. Cheng, ‘‘Shrinking MTU to mitigate TCP
incast throughput collapse in data center networks,’’ in Proc. 3rd Int. Conf.
Commun. Mobile Comput. (CCMC), Apr. 2011, pp. 126–129.

[21] R. Mittal et al., ‘‘TIMELY: RTT-based congestion control for the datacen-
ter,’’ ACM SIGCOMMComput. Commun. Rev., vol. 45, no. 4, pp. 537–550,
2015.

[22] Y. Zhang and N. Ansari, ‘‘On mitigating TCP incast in data center net-
works,’’ in Proc. IEEE INFOCOM, Apr. 2011, pp. 51–55.

[23] C. Lee, Y. Nakagawa, K. Hyoudou, S. Kobayashi, O. Shiraki, and
T. Shimizu, ‘‘Flow-Aware congestion control to improve throughput under
TCP incast in datacenter networks,’’ in Proc. 39th IEEE Conf. Comput.
Softw. Appl. (COMPSAC), vol. 3, Jul. 2015, pp. 155–162.

[24] J. Hwang, J. Yoo, S. H. Lee, and H. W. Jin, ‘‘Scalable congestion control
protocol based on SDN in data center networks,’’ in Proc. IEEE Global
Commun. Conf. (GLOBECOM), Dec. 2015, pp. 1–6.

[25] M. Ghobadi, S. H. Yeganeh, and Y. Ganjali, ‘‘Rethinking end-to-end
congestion control in software-defined networks,’’ in Proc. 11th ACM
Workshop Hot Topics Netw. (HotNets-XI), NewYork, NY, USA, Oct. 2012,
pp. 61–66.

[26] S. Jouet, C. Perkins, and D. Pezaros, ‘‘OTCP: SDN-managed congestion
control for data center networks,’’ in Proc. IEEE/IFIP Symp. Netw. Oper.
Manage., Apr. 2016, pp. 171–179.

[27] J. Zhang, F. Ren, L. Tang, and C. Lin, ‘‘Modeling and solving TCP incast
problem in data center networks,’’ IEEE Trans. Parallel Distrib. Syst.,
vol. 26, no. 2, pp. 478–491, Feb. 2015.

[28] J. Zhang, F. Ren, and C. Lin, ‘‘Modeling and understanding TCP
incast in data center networks,’’ in Proc. IEEE INFOCOM, Apr. 2011,
pp. 1377–1385.

[29] Y. Chen, R. Griffith, J. Liu, R. H. Katz, and A. D. Joseph, ‘‘Understanding
TCP incast throughput collapse in datacenter networks,’’ in Proc. 1st
ACM Workshop Res. Enterprise Netw. (WREN), New York, NY, USA,
Aug. 2009, pp. 73–82.

[30] T. A. N. Nguyen, S. Gangadhar, and J. P. G. Sterbenz, ‘‘Performance
evaluation of TCP congestion control algorithms in data center networks,’’
in Proc. 11th Int. Conf. Future Internet Technol. (CFI), New York, NY,
USA, Jun. 2016, pp. 21–28.

[31] W. Bai, L. Chen, K. Chen, and H. Wu, ‘‘Enabling ECN in multi-service
multi-queue data centers,’’ in Proc. 13th Usenix Conf. Netw. Syst. Design
Implement. (NSDI), Berkeley, CA, USA, Mar. 2016, pp. 537–549.

[32] H. Wu, J. Ju, G. Lu, C. Guo, Y. Xiong, and Y. Zhang, ‘‘Tuning ECN for
data center networks,’’ in Proc. 8th Int. Conf. Emerg. Netw. Exp. Technol.
(CoNEXT), New York, NY, USA, Jan. 2012, pp. 25–36.

[33] T. Zhang, J. Wang, J. Huang, Y. Huang, J. Chen, and Y. Pan, ‘‘Adaptive
marking thresholdmethod for delay-sensitive TCP in data center network,’’
J. Netw. Comput. Appl., vol. 61, pp. 222–234, Feb. 2016.

[34] L. Xu, K. Xu, Y. Jiang, F. Ren, and H. Wang, ‘‘Throughput optimization
of TCP incast congestion control in large-scale datacenter networks,’’
Comput. Netw., vol. 124, pp. 46–60, Sep. 2017.

[35] J. Huang, Y. Huang, J. Wang, and T. He, ‘‘Adjusting packet size to mitigate
TCP incast in data center networks with cots switches,’’ IEEE Trans. Cloud
Comput., to be published.

[36] H. Almasi, H. Rezaei, M. U. Chaudhry, and B. Vamanan. (2018). ‘‘Pulser:
Fast congestion response using explicit incast notifications for datacenter
networks.’’ [Online]. Available: https://arxiv.org/abs/1809.09751

[37] J. Xue, M. U. Chaudhry, B. Vamanan, T. N. Vijaykumar, and
M. Thottethodi, ‘‘Fast congestion control in RDMA-based datacenter net-
works,’’ in Proc. ACM SIGCOMM Conf. Posters Demos, 2018, pp. 24–26.

[38] Y. Lu and S. Zhu, ‘‘SDN-based TCP congestion control in data center
networks,’’ in Proc. IEEE 34th Int. Perform. Comput. Commun. Conf.
(IPCCC), Dec. 2015, pp. 1–7.

[39] Y. Qin, W. Yang, Y. Ye, and Y. Shi, ‘‘Analysis for TCP in data cen-
ter networks: Outcast and incast,’’ J. Netw. Comput. Appl., vol. 68,
pp. 140–150, Jun. 2016.

10732 VOLUME 7, 2019



Y. A. Bangash et al.: Incast Mitigation in a Data Center Storage Cluster Through a Dynamic Fair-Share Buffer Policy

[40] J. Wang, J. Wen, J. Zhang, Z. Xiong, and Y. Han, ‘‘TCP-FIT: An improved
TCP algorithm for heterogeneous networks,’’ J. Netw. Comput. Appl.,
vol. 71, pp. 167–180, Aug. 2016.

[41] A. Bechtolsheim, L. Dale, H. Holbrook, and A. Li, ‘‘Why big data needs
big buffer switches,’’ Arista, Santa Clara, CA, USA, White Paper,
Mar. 2016. [Online]. Available: https://www.arista.com/assets/data/pdf/
Whitepapers/BigDataBigBuffers-WP.pdf

[42] J. C. Mogul and R. R. Kompella, ‘‘Inferring the network latency require-
ments of cloud tenants,’’ in Proc. 15th USENIX Conf. Hot Topics Oper.
Syst. (HOTOS), Berkeley, CA, USA, May 2015, p. 24.

[43] N. S. Islam, M. Wasi-ur-Rahman, X. Lu, and D. K. Panda, ‘‘High perfor-
mance design for HDFS with byte-addressability of NVM and RDMA,’’
in Proc. Int. Conf. Supercomput. (ICS), New York, NY, USA, Jun. 2016,
pp. 8:1–8:14.

[44] N. Liu et al., ‘‘On the role of burst buffers in leadership-class storage
systems,’’ in Proc. IEEE 28th Symp. Mass Storage Syst. Technol. (MSST),
Apr. 2012, pp. 1–11.

[45] B. Behzad, S. Byna, and M. Snir, ‘‘Pattern-driven parallel I/O tuning,’’ in
Proc. 10thWorkshop Parallel Data Storage (PDSW), NewYork, NY, USA,
Nov. 2015, pp. 43–48.

[46] E. Thereska et al., ‘‘IOFlow: A software-defined storage architecture,’’ in
Proc. 24th ACM Symp. Operat. Syst. Princ. (SOSP), New York, NY, USA,
Oct. 2013, pp. 182–196.

[47] H. Song, Y. Yin, Y. Chen, and X.-H. Sun, ‘‘Cost-intelligent application-
specific data layout optimization for parallel file systems,’’ Cluster Com-
put., vol. 16, no. 2, pp. 285–298, Jun. 2013.

[48] M. S. Bouguerra, A. Gainaru, and F. Cappello, ‘‘Failure prediction: What
to do with unpredicted failures,’’ in Proc. 28th IEEE Int. Symp. Parallel
Distrib. Process., vol. 2, May 2013. [Online]. Available: https://scholar.
google.com.pk/citations?user=6mnFFwYAAAAJ&hl=en&oi=sra

[49] M. Ambrosin, M. Conti, F. De Gaspari, and R. Poovendran, ‘‘LineSwitch:
Efficiently managing switch flow in software-defined networking while
effectively tackling DoS attacks,’’ in Proc. 10th ACM Symp. Inf., Comput.
Commun. Secur., Apr. 2015, pp. 639–644.

YAWAR ABBAS BANGASH received the
B.S. degree in software engineering from the
NWFP University of Engineering and Technology
Peshawar, Mardan Campus, in 2008, the M.S.
degree in computer engineering from the Wuhan
university of technology, Wuhan, China, in 2014,
and the Ph.D. degree from the Huazhong Univer-
sity of Science and Technology, China, in 2017.
From 2008 to 2012, he was with Huawei Orga-
nization Pakistan Ltd., with the Higher Educa-

tion Commission Project PERN2, and with the Baluchistan Education
Foundation on different positions in networking sector. He is currently an
Assistant Professor with the Department of Computer Software Engineering,
Military College of Signals, National University of Sciences and Technology,
Pakistan. His research interests include security in data communications,
software-defined networks, wireless sensor networks, and storage systems.

TAUSEEF RANA received the B.Eng. and M.Sc.
degrees from London South Bank University,
and the Ph.D. degree from The University of
Manchester. He is currently serving as an Assis-
tant Professor with the Computer Software Engi-
neering Department, MCS (a constituent college),
National University of Sciences and Technology,
Pakistan.

HAIDER ABBAS received the M.S. degree in
engineering and management of information sys-
tems and the Ph.D. degree in information secu-
rity from the KTH-Royal Institute of Technology,
Stockholm, Sweden, in 2006 and 2010,
respectively. His professional career consists of
activities ranging from R&D and Industry Consul-
tations (Government and Private), through multi-
national research projects, research fellowships,
doctoral studies advisory services, International

Journal Editorships, the Conferences/Workshops Chair, an Invited/Keynote
Speaker, a Technical Program Committee Member, and a Reviewer for
several international journals and conferences. He is currently an Associate
Professor with the Department of Information Security, Military College
of Signals, National University of Sciences and Technology, Pakistan. He
is also a Cyber Security Professional, an Academician, a Researcher, and
an Industry Consultant who took professional trainings and certifications
from theMassachusetts Institute of Technology, USA; StockholmUniversity,
Sweden; the Stockholm School of Entrepreneurship, Sweden; IBM, USA;
and EC-Council. He is also an Adjunct Faculty and a Doctoral Studies
Advisor with Florida Institute of Technology, USA.

In recognition of his services to the international research community and
excellence in professional standing, he was a recipient of one of the youngest
Fellows of The Institution of Engineering and Technology, U.K.; a Fellow of
the British Computer Society, U.K., and a Fellow of the Institute of Science
and Technology, U.K. He has also been elected to the grade of a Senior
Member of the Institute of Electrical and Electronics Engineers, USA.

MUHAMMAD ALI IMRAN (M’03–SM’12) is
currently a Professor of wireless communication
systems with research interests in self-organized
networks, wireless networked control systems, and
wireless sensor systems. He also heads the Com-
munications, Sensing and Imaging CSI research
group, University of Glasgow. He is also an Affil-
iate Professor with The University of Oklahoma,
USA, and a Visiting Professor with the 5G Inno-
vation Centre, University of Surrey, U.K. He has

over 18 years of combined academic and industry experience with several
leading roles in multi-million pounds funded projects. He has authored/co-
authored over 400 journal and conference publications. He was an Editor of
two books and has authored over 15 book chapters. He holds 15 patents. He
has successfully supervised over 40 postgraduate students at Doctoral level.
He has been a Consultant to international projects and local companies in the
area of self-organized networks. He is a Fellow of IET and a Senior Fellow
of HEA.

ADNAN AHMED KHAN was born in 1971. He
received the degree in telecommunications engi-
neering from the University of Engineering and
Technology (UET), Lahore, Pakistan, in 1993, and
the M.S. and Ph.D. degrees in computer engineer-
ing from the Centre of Advanced Studies in Engi-
neering Islamabad, UET, Taxila, in 2005 and 2009,
respectively. He is currently the Head of Computer
Software Engineering with the College of Signals,
National University of Sciences and Technology,

Pakistan. He has published a number of research papers in renowned confer-
ences and journals. His research interests include multi-input multi-output
wireless communications systems, software-defined radios, cognitive radios,
satellite communications systems, and artificial intelligence.

VOLUME 7, 2019 10733


	INTRODUCTION
	BACKGROUND
	RELATED WORK
	INCAST IN TRADITIONAL STORAGE SYSTEMS
	INCAST IN CONTEMPORARY STORAGE SYSTEMS

	ANATOMY OF INCAST
	ARCHITECTURE AND PROPOSED MODEL INSPIRED BY SD CONCEPT
	SDS CONTROLLER
	OPENFLOW ENABLED SWITCH
	STORAGE SERVER
	GLOBAL BUFFER DYNAMICS
	BANDWIDTH DELAY PRODUCT (BDP) CALCULATION
	ALGORITHM OVERVIEW
	IMPLEMENTATION FEASIBILITY
	FAIR-SHARE BUFFER MANAGEMENT


	PERFORMANCE ANALYSIS AND EXPERIMENTAL RESULTS
	INCAST SCENARIOS
	EXPERIMENTAL RESULTS
	PERFORMANCE ANALYSIS
	SCALABILITY EVALUATION
	DISCUSSION

	CONCLUSION
	REFERENCES
	Biographies
	YAWAR ABBAS BANGASH
	TAUSEEF RANA
	HAIDER ABBAS
	MUHAMMAD ALI IMRAN
	ADNAN AHMED KHAN


