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GWAS and colocalization analyses implicate
carotid intima-media thickness and carotid
plaque loci in cardiovascular outcomes
Nora Franceschini1, Claudia Giambartolomei et al.#

Carotid artery intima media thickness (cIMT) and carotid plaque are measures of subclinical

atherosclerosis associated with ischemic stroke and coronary heart disease (CHD). Here, we

undertake meta-analyses of genome-wide association studies (GWAS) in 71,128 individuals

for cIMT, and 48,434 individuals for carotid plaque traits. We identify eight novel suscept-

ibility loci for cIMT, one independent association at the previously-identified PINX1 locus, and

one novel locus for carotid plaque. Colocalization analysis with nearby vascular expression

quantitative loci (cis-eQTLs) derived from arterial wall and metabolic tissues obtained from

patients with CHD identifies candidate genes at two potentially additional loci, ADAMTS9 and

LOXL4. LD score regression reveals significant genetic correlations between cIMT and plaque

traits, and both cIMT and plaque with CHD, any stroke subtype and ischemic stroke. Our

study provides insights into genes and tissue-specific regulatory mechanisms linking ather-

osclerosis both to its functional genomic origins and its clinical consequences in humans.
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Atherosclerosis is characterized by an accumulation of
lipid-rich and inflammatory deposits (plaques) in the sub-
intimal space of medium and large arteries. Plaque

enlargement leads to blood flow limitation, organ ischemia, and/
or tissue necrosis. Plaque rupture can lead to abrupt vascular
occlusion, which underlies clinical cardiovascular events,
including myocardial infarction and ischemic stroke. Coronary
heart disease (CHD) accounts for one in seven deaths, and stroke
accounts for one in 20 deaths in the US1. Because atherosclerosis
has a long pre-clinical phase, early detection of atherosclerosis
using non-invasive methods may help identify individuals at risk
for atherosclerotic clinical events2, and provides an opportunity
for prevention. Subclinical atherosclerosis can be detected by B-
mode ultrasound measurement of common carotid artery intima-
media thickness (cIMT) or carotid plaques1.

Subclinical and clinical atherosclerosis has known genetic
components3. Genome-wide association studies (GWAS) of
subclinical atherosclerosis have previously identified three loci
significantly associated with cIMT at ZHX2, APOC1, and PINX1,
and two loci associated with common carotid artery plaque at
PIK3CG and EDNRA4. An exome-wide-association study iden-
tified significant associations of the APOE ε2 allele with cIMT and
coronary artery calcification5. The APOE single nucleotide poly-
morphism (SNP) rs7412 is in linkage disequilibrium (LD) with
the APOC1 variant, thus representing the same signal. Additional
GWAS-identified associations were reported for carotid plaque at
the 9p21 and SFXN2 loci6, and for cIMT at the CFDP1-
TMEM170A locus7. However, these prior studies were of limited
sample size and genomic coverage, and failed to investigate the
etiological role that subclinical atherosclerosis may have on
atherosclerotic clinical events.

Herein, we perform a large meta-analysis of GWAS of sub-
clinical atherosclerosis by analyzing 1000 Genomes imputed
genotype data obtained from collaborations between the Cohorts
for Heart and Aging Research in Genomic Epidemiology
(CHARGE) consortium8 and the University College London-
Edinburgh-Bristol (UCLEB) consortium9. One of the greatest
challenges in the translation of GWAS findings to biological
understanding is related to the limited access to RNA expression
data from disease-relevant tissues. Consequently, we sought to
reliably identify the tissue-specific gene regulatory functions
responsible for the GWAS signals by prioritizing candidate genes
for established and novel loci of cIMT and carotid plaque using
statistical methods for colocalization10. These methods integrate
identified loci with expression quantitative loci (eQTLs) inferred

from cardiovascular disease-relevant genetics of RNA expression,
the Stockholm-Tartu Atherosclerosis Reverse Network Engi-
neering Task (STARNET) study, where arterial wall and
metabolic-related RNA samples were collected from up to 600
patients with CHD11. We also evaluate the relationships of cIMT
and carotid plaque with clinically apparent CHD and stroke using
summary data from two large consortia. In summary, our study
sequentially assesses the genetic epidemiology and tissue-specific
patterns of gene regulation involved in the formation of sub-
clinical atherosclerosis traits across cardiovascular disease-related
tissues.

Results
Study description. The study design is shown in Fig. 1. We
undertook meta-analysis of GWAS in individuals of European
ancestry for cIMT (up to 71,128 participants from 31 studies) and
carotid plaque (up to 48,434 participants from 17 studies; 21,540
with defined carotid plaque) (Supplementary Table 1). cIMT and
plaque were evaluated using high-resolution B-mode ultra-
sonography and reading protocols as previously reported4. Car-
otid plaque was defined by atherosclerotic thickening of the
common carotid artery wall or the proxy measure of luminal
stenosis greater than 25% (Supplementary Table 2). Each cohort
performed association analyses using standardized protocols
(Methods) for variants imputed based on the 1000 Genomes
Project (1000G) phase 1 v3 reference. Extensive quality control
(QC) was applied to data, and there was little evidence for
population stratification in any of the studies for either trait
(Supplementary Table 3). The study-specific results were com-
bined using fixed-effect meta-analyses, given the low hetero-
geneity across studies (0% heterogeneity)12.

GWAS meta-analyses of cIMT and carotid plaque. For cIMT,
11 loci had at least one SNP association that reached the genome-
wide association threshold (p < 5 × 10−8), of which eight were
newly described and three have been previously reported
(Table 1). The closest genes for the eight loci were: 1q32.2
intergenic (rs201648240), ATP6AP1L (rs224904), AIG1
(rs6907215), PIK3CG (rs13225723), MCPH1 (rs2912063),
SGK223 (rs11785239), VTI1 (rs1196033), and CBFA2T3
(rs844396). For three loci previously reported, the closest genes
were ZHX2 (rs148147734), PINX1 (rs200482500), and APOE
(rs7412).

The PIK3CG is a newly described locus for cIMT, but has been
previously reported in a GWAS of carotid plaque4. The two
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Fig. 1 Overall study design. a GWAS meta-analyses of cIMT and carotid plaque for gene discovery. b Local and genome-wide shared genetic basis using
gene expression and clinical outcomes GWAS data
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signals on chromosome 8 near MCPH1 (rs2912063) and SGK223
(rs11785239) were confirmed to be independent through
conditional analysis (Supplementary Table 4). At the PINX1
locus, the lowest association p-value variant (rs200482500) was
not in LD with the previously reported associated variant in the
region (rs6601530, r2= 0.0, Table 1), thus representing an
independent signal at this locus. Two additional loci for cIMT
had an SNP that reached suggestive evidence for association (p <
1.0 × 10−7) including an SNP nearby APOB (rs515135) and an
intronic low frequency variant at ATG4B (rs139302128, minor
allele frequency [MAF] = 0.03) (Supplementary Table 5).

The GWAS meta-analysis for carotid plaque identified five loci,
of which one has not been previously described (nearby gene
LDLR) (Table 1). At four known loci associated with carotid
plaque (nearby genes EDNRA, PIK3CG, CFDP1-TMEM170A, and
at the 9p21 region), the most significantly associated variants
were in LD with the previously reported SNPs (Table 1)4,6,7,
indicating that these SNPs mark the same association at each
locus. Two suggestive loci (p < 10−7) were also identified nearby
the genes TMCO5B and STEAP2-AS1 (Supplementary Table 5).
Conditional analyses confirmed the presence of a single
independent signal at each locus. Manhattan and QQ plots from
the meta-analysis of cIMT and carotid plaque are shown in
Supplementary Figure 1 and regional plots in Supplementary
Figure 2. Forest Plots for all loci are shown in Supplementary
Figure 3.

Regulatory annotations of GWAS SNPs for cIMT/carotid
plaque. To better define potentially causal variants within the
identified genetic risk loci, we jointly analyzed the GWAS data
with functional genomic information such as annotations on
active transcription sites or open chromatin regions (i.e., per-
formed a fine-mapping functional genome-wide association
analysis using fGWAS13). Only variants in the PINX1 region were

found to have a high probability that its association with cIMT is
driven by SNPs that fall within transcription sites in adipose-
derived mesenchymal stem cells at a DNaseI-hypersensitive site
(Supplementary Figure 4), a finding that provides a down-stream
mechanistic explanation for the cIMT signal in the PINX1 locus.

To further explore the regulatory functions of variants in the
identified loci for cIMT and carotid plaque, we investigated
whether the identified lead SNPs were also eQTLs using vascular
RNAseq data from GTEx (aorta, coronary and tibial arteries,
heart atrial appendage, and heart left ventricle) and from the
coronary artery disease cohort of STARNET (i.e., from the
atherosclerotic-lesion-free internal mammary artery [MAM] and
atherosclerotic aortic root [AOR]). Lead SNP associated with
cIMT and carotid plaque (rs13225723) in the PIK3CG locus was
found to be vascular-specific eQTLs for CCDC71L and PRKAR2B
in GTEx aorta as well as in STARNET AOR and MAM tissues
(Table 2, Fig. 2), suggesting that the genetic regulation of these
two genes are responsible for risk variation in cIMT and carotid
plaque development in this locus.

Colocalization analysis of GWAS data and STARNET eQTLs.
To identify further candidate genes in tissues affected by ather-
osclerosis that had strong evidence of sharing the same variant for
cIMT and carotid plaque as found in our GWAS, we conducted
pairwise colocalization analysis of these genetic variants with cis-
eQTLs in the STARNET study10.

The pairwise colocalization analysis is based on coloc, a
Bayesian statistical methodology that tests pairwise colocalization
of SNPs in GWAS with eQTLs and, in this fashion, generates
posterior probabilities for each locus weighting the evidence for
competing hypothesis of either no colocalization or sharing of a
distinct SNP at each locus10. We used summary statistics from all
SNPs within a 200-kb window around each gene covered by the
eQTL datasets (N= 18,705, see Methods), and analyzed each

Table 1 Loci significantly associated with cIMT and plaque GWAS

SNP Chr:position Nearest coding
gene

Alleles (effect/
other)

Effect allele
freq.

Beta (SE) p N

Newly identified loci for cIMT
rs201648240 1:208953176-indel LINC01717 −/AA 0.83 −0.0062 (0.0011) 4 × 10−9 54,752
rs224904 5:81637916 ATP6AP1L C/G 0.95 −0.0088 (0.0016) 5 × 10−8 68,962
rs6907215 6:143608968 AIG1 T/C 0.60 −0.0040

(0.0007)
5 × 10−8 64,586

rs13225723 7:106416467 PIK3CG A/G 0.22 0.0052 (0.0009) 3 × 10−9 68,070
rs2912063 8:6486033 MCPH1 A/G 0.71 0.0045 (0.0008) 9 × 10−9 67,401
rs11785239 8:8205010 SGK223 T/C 0.65 −0.0043

(0.0008)
9 × 10−9 67,107

rs11196033 10:114410998 VTI1A A/C 0.48 0.0042 (0.0008) 4 × 10−8 57,995
rs844396 16:88966667 CBFA2T3 T/C 0.30 −0.0051 (0.0009) 6 × 10−9 50,377
Newly identified loci for plaque
rs200495339 19:11189298-indel LDLR −/G 0.11 −0.1023 (0.0179) 1 × 10−8 36,569
Known loci for cIMT
rs148147734a 8:123401537-indel ZHX2 −/G 0.54 0.0050 (0.0007) 3 × 10

−11
58,141

rs200482500a 8:10606223-indel PINX1 −/GTACC 0.52 0.0056 (0.0008) 7 × 10−12 58,141
rs7412a 19:45412079 APOE T/C 0.08 −0.0119 (0.0015) 1 × 10−14 44,607
Known loci for plaque
rs11413744b 4:148395284-indel EDNRA −/T 0.86 −0.1586 (0.0253) 4 × 10

−10
39,577

rs17477177b 7:106411858 PIK3CG T/C 0.79 −0.1305 (0.0197) 4 × 10−11 47,863
rs9632884b 9:22072301 9p21 C/G 0.48 0.1127 (0.0163) 5 × 10−12 45,943
rs113309773b 16:75432686-indel CFDP1- TMEM170A −/C 0.46 −0.1259 (0.0194) 9 × 10−11 37,104

p= p-values of association from linear regression analysis, N= total number in meta-analyses
aPublished cIMT SNP in LD with our most significant SNP: rs11781551 (r2= 0.95 with rs148147734), rs6601530 (r2= 0 with rs200482500), and rs445925 (r2= 0.60 with rs7412)
bPublished plaque SNP in LD with our most significant SNP: rs1878406 (r2= 0.98 with rs11413744), rs17398575 (r2= 0.8 with rs17477177), rs9644862 (r2= 0.79 with rs9632884), and rs4888378 (r2

= 0.94 with rs113309773)
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eQTL-GWAS dataset pair (Supplementary Table 6). A posterior
probability of ≥75% was considered strong evidence of the tissue-
specific eQTL-GWAS pair influencing both the expression and
GWAS trait at a particular region. Results for this analysis are
shown in Table 3 and Supplementary Figure 5. The strongest
evidence for an effect on gene expression within the regions
identified in our standard GWAS meta-analysis was for the
CCDC71L and PRKAR2B genes at the previously described
chromosome 7 cIMT locus (PIK3CG in Table 2, Fig. 2). These
genes showed evidence of colocalization for both cIMT and
carotid plaque in AOR and MAM tissues (Table 3, Fig. 3).
CCDC71L had the highest probability (>95%) for colocalization
for cIMT, and MAM and AOR tissue eQTLs, and for carotid
plaque, and MAM and AOR tissue eQTLs. We found a low
probability of colocalization of the SNP with the PIK3CG gene
expression (<1%).

Table 2 Gene expression results for significant SNPs in GTEx and STARNET tissues

SNP eQTLa (Gene, p) GTEx eQTLa (Gene, p) STARNET tissues

AORb HEART (ATR/VEN)c AOR MAM

rs201648240 CAMK1G, 0.0094
AL031316.1, 0.0040

CD34,0.00532
TRAF3IP3, 0.0097

rs6907215 AL023584.1, 0.005384704 (VEN) ENSG00000217648,
0.00046

ENSG00000217648, 0.8 × 10−5

rs13225723 AC005050.1, 1 × 10−10

ENSG00000177820.5, 7.0 × 10−5

CCDC71L, 5 × 10−6

PRKAR2B, 4 × 10−8

PIK3CG, 10 × 10−3

CCDC71L, 6 × 10−36

PRKAR2B, 7 × 10−7

SYPL1, 0.0043

CCDC71L, 3 × 10−33

PRKAR2B, 6 × 10−8

NAMPT, 6 × 10−6

rs2912063 MCPH1, 0.0041 ENSG00000271743.1, 0.0093
(VEN)

MCPH1-AS1, 0.0020

rs11785239 AC022784.1, 0.0078 (VEN) ERI1, 0.0069 PPP1R3B, 0.0036
rs844396 ENSG00000141012.8, 0.003

AC092384.2, 0.001
CBFA2T3, 1 × 10−7

ZNF469, 0.004 (ATR)
AC092384.3, 5 × 10−6 (ATR)
AC092384.1, 0.002 (ATR)
CBFA2T3, 0.0004 (ATR)
ZNF469, 0.002 (VEN)
AC138028.4, 0.001 (VEN)
ENSG00000224888.3, 0.009
(VEN)
PIEZO1, 0.0004 (VEN)
GALNS, 0.004 (VEN)

RPL13, 0.0024
ZNF276, 0.0070
TRAPPC2L, 0.0091

TRAPPC2L, 0.0040
ZNF276, 0.0059

rs200495339 ENSG00000267105.1, 0.0005
(VEN)

rs148147734 DERL1, 0.0082
rs200482500 AF131215.6, 0.005

AF131215.5, 0.001
AF131215.5, 0.002 (ATR)
AF131215.6, 0.003 (VEN)
AF131215.5, 0.004 (VEN)

rs7412 ENSG00000267163.1, 0.007
rs11413744 PRMT9, 0.004
rs17477177 ENSG00000267052.1, 6 × 10−11

ENSG00000177820.5, 5 × 10−6

CCDC71L, 4 × 10−7

PRKAR2B, 2 × 10−8

BCAP29, 0.002 (ATR) CCDC71L, 2 × 10−37

PRKAR2B, 6 × 10−7

SYPL1, 0.0091

CCDC71L,1 × 10−33

PRKAR2B, 2 × 10−8

NAMPT, 1 × 10−5

rs9632884 DMRTA1, 0.007 (ATR) CDKN2B, 2 × 10−3 CDKN2B, 2 × 10−3

rs113309773 BCAR1, 6 × 10−11

ENSG00000261783.1, 2 × 10−16

GABARAPL2, 0.004

ENSG00000261783.1, 1 × 10−5

(ATR)
ENSG00000166822.8, 0.005
(ATR)
ENSG00000261783.1, 0.0003
(VEN)

ZFP1, 4 × 10−4

AC009078.2, 0.002
BCAR1, 3 × 10−12

CFDP1, 0.002
TMEM170A, 0.009

p= p-values of association from linear regression analysis
aThe lead SNP from GWAS is considered an eQTL if the cis-association has a nominal p-value of association <0.01. Multiple but not all lead SNPs reach genome-wide significance (p < 10−4).
bThis includes aorta (AOR)
cThis includes heart atrial (ATR) and heart left ventricle (VEN)
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The eQTL associations at two additional loci (ADAMTS9,
LOXL4) in MAM or AOR showed evidence of colocalization with
cIMT or carotid plaque, although GWAS association p-values at
these loci did not meet the genome-wide significance threshold
(Table 3, Supplementary Figure 5). Albeit with weaker magni-
tudes, the expression of these two genes were also associated with
the top colocalizing SNPs as detected in RNAseq data in GTEx
aorta (rs17676309, chr3:64730121, ADAMTS9, p= 0.0003 and
rs55917128, chr10:100023359, LOXL4, p= 0.0005).

Colocalization of CHD and stroke GWAS and STARNET
eQTLs. We next assessed if the four genes (CCDC71L, PRKAR2B,
ADAMTS9, LOXL4) identified through colocalization of cIMT/
carotid plaque with tissue-specific eQTLs also showed evidence
for colocalization with CHD and stroke traits (Supplementary
Data 1 and Supplementary Figure 6). We used GWAS summary
data for CHD (CARDIoGRAMPlusC4D), and stroke subtypes
(MEGASTROKE) and AOR and MAM STARNET tissue eQTLs
for these analyses. CCDC71L and PRKAR2B had suggestive evi-
dence of sharing the same variant with large vessel disease stroke
in both AOR and MAM tissues (probability of colocalization
≥20%, Supplementary Data 1). In contrast, there was strong
evidence (≥75%) to reject a shared variant for CHD and eQTLs at
this locus, thus suggesting there is atherosclerotic outcome spe-
cificity at vascular level for this locus (Supplementary Figure 5).
Three of these genes, CCDC71L, PRKAR2B, and ADAMTS9,
showed evidence for shared genetic influences of cIMT or carotid
plaque on CHD/stroke outcomes when testing the joint associa-
tion using moloc, a multiple-trait extension of coloc14 (Supple-
mentary Table 7). We also highlight the expression of KIAA1462
gene in MAM, carotid plaque/cIMT, and CHD, which were
positively correlated (Supplementary Figure 7). This gene has
suggestive evidence of pairwise colocalization with carotid plaque
(67% of probability of shared variant between carotid plaque and
eQTL in MAM), as well as a high probability of shared variant
between MAM eQTL expression of this gene, GWAS carotid
plaque or cIMT, and CHD traits (Supplementary Table 7). We
note, however, that the GWAS signal for outcomes across the
datasets did not reach genome-wide significance and larger
sample sizes may be needed to strengthen the evidence for
involvement in disease outcomes.

Genetic correlations of cIMT/carotid plaque and clinical out-
comes. To provide etiological insights into the role of measures of

subclinical atherosclerosis and major atherosclerotic disease
outcomes such as CHD and ischemic stroke, we quantified the
genetic correlation using cross-trait LD score regression, a
method that estimates genetic correlation across different traits
using summary level data15. We used summary statistics between
cIMT/carotid plaque with CHD and stroke meta-analysis of
GWAS. Both cIMT and carotid plaque had positive significant
genetic correlations with CHD (all p < 0.05 after adjusting for
multiple testing), though the magnitude of the correlation was
twice as strong for carotid plaque (0.52) as for cIMT (0.20)
(Table 4). There was also evidence for genetic correlations
between cIMT with any stroke and ischemic stroke subtype.

Pathway analysis and druggability. Gene Ontology (GO) ana-
lyses of genes identified in the loci for cIMT and carotid plaque
according to our meta-analysis of GWAS (Table 1 and Supple-
mentary Table 5) and in the colocalization analyses (Table 3,
Supplementary Table 7) showed that cIMT genes are enriched in
lipoprotein-related terms and cholesterol efflux, whereas carotid
plaque genes are enriched in terms associated with fibroblast
apoptosis (Supplementary Figure 8). Analysis of the cIMT genes
using a GO Slim additionally identified several of the genes that
were associated with terms describing cardiovascular develop-
ment, cell adhesion, and immune processes, processes already
considered relevant to atherosclerosis. Specifically, there is cor-
roborating evidence from GO that CCDC71L, PRKAR2B, and
TWIST1 are associated with cIMT/carotid plaque as they are
involved in lipid metabolism, with similar support that
ADAMTS9, CDH13, and KIAA1462 are associated with cIMT or
carotid plaque risk as they are all involved in cell adhesion and,
together with TWIST1, in cardiovascular system development
(Supplementary Data 2).

From the loci associated with cIMT and carotid plaque, we
identified seven genes (ATG4B, ALPL, LDLR, APOB, EDNRA,
APOE, and ADAMTS9) whose encoded proteins are targets at
various stages of the drug development process (Supplementary
Tables 8 and 9). ADAMTS9 gene encodes a protein likely to be
druggable16. ATG4B, ALPL, and LDLR are proteins being targeted
by compounds in pre-clinical phase (tier 2), while APOB and
EDNRA are proteins targeted by drugs in clinical phase or
licensed (tier 1). APOB is the target of an approved FDA drug for
treatment of familial hypercholesterolemia. EDNRA gene encodes
for endothelin A receptor, against which several antagonists have
been developed for the treatment of pulmonary arterial

Table 3 Colocalization of cIMT and plaque with eQTLs in tissues from patients with CHD in STARNET tissues for genes/tissues
combinations that have more than 75% probability to share the same associated variant

Region (chr:start-stop) Trait Gene SNP with best joint probability p, BETA (SE), Tissue posterior probability (PPA)a Direction of effect GWAS/eQTL

cIMT /plaque GWAS AOR eQTL MAM eQTL

chr3:63561280-65833136 cIMT ADAMTS9 rs17676309 (T/C) 2 × 10−6,
-0.0035 (0.0007)

2 × 10−25,
−0.65 (0.06)
PPA=0.93

1 × 10−23,
−0.61 (0.06)
PPA=0.89

−/−

chr10:99017729-101017321 cIMT LOXL4 rs55917128 (T/C) 5 × 10−7,
0.0037 (0.0007)

6 × 10−8,
0.33 (0.06)
PPA=0.79

+/+

chr7:105299372-107743409 cIMT CCDC71L
PRKAR2B

rs12705390 (A/G) 5 × 10−9,
0.0049 (0.0008)

2 × 10−37,
0.81 (0.06)
PPA=0.97
6 × 10−7,
0.34 (0.07)
PPA=0.93

1 × 10−33,
0.755 (0.06)
PPA=0.97
2 × 10−8,
0.368 (0.06)
PPA=0.96

+/+
+/+

Plaque CCDC71L
PRKAR2B

rs12705390 (A/G) 4 × 10−8,
0.12 (0.022)

2 × 10−37,
0.80 (0.06)
PPA=0.97
6 × 10−7,
0.33 (0.07)
PPA=0.93

1 × 10−33,
0.75 (0.06)
PPA=0.97
2 × 10−8,
0.37 (0.06)
PPA=0.96

+/+
+/+

PPA posterior probability of sharing same SNP higher than 75%, cIMT common carotid artery intima-media thickness, AOR aorta, MAM mammary artery
aThis signal reaches genome-wide significance in cIMT/plaque, and reaches a high probability of being mediated by the genes in AOR and MAM
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hypertension or which are in advanced clinical phase develop-
ment for non-small cell lung cancer and diabetic nephropathy.

Discussion
We provide results of a large meta-analysis of GWAS of sub-
clinical atherosclerosis and we integrate our results with tissue-
specific gene expression data using eQTLs from both the early
(MAM) and late advanced (AOR) atherosclerotic arterial wall
from the STARNET study to enable reliable discovery of genes
with biological evidence of an increased probability for conferring
inherited risk of atherosclerosis development. Our discovery
approach using GWAS meta-analyses identified 16 loci sig-
nificantly associated with either cIMT or carotid plaque, of which
nine are novel.

The integration of GWAS and tissue-specific cis-eQTLs for the
joint analyses of tissue-specific eQTLs from CHD patients iden-
tified two potentially additional loci colocalizing with cIMT or
carotid plaque: chr3:63561280-65833136 (ADAMTS9),
chr10:99017729-101017321 (LOXL4). ADAMTS9 is a metallo-
proteinase involved in thrombosis and angiogenesis and has been
associated with cardiometabolic traits (waist-to-hip ratio, waist
circumference, and type 2 diabetes) in GWAS, and with coronary
artery calcification in a gene-by-smoking interaction GWAS17,18.
LOXL4 encodes a lysyl oxidase involved in crosslinks of collagen
and elastin in the extracellular matrix. This family of proteins are
involved in the development of elastic vessels and mechanical
strength of the vessel wall, and their inhibition was associated
with the development of abdominal aortic aneurysms and more
severe atherosclerosis in experimental models19.
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Fig. 3 Association results at the CCDC71L locus (chromosome 7), showing a high posterior probability of a shared variant for cIMT and carotid plaque in
AOR and MAM eQTLs. −log10(p) SNP association p-values for cIMT (plot A) and carotid plaque (plot B), and eQTL in AOR (plot C) and eQTL in SF (plot
D). Association results in SF tissue have a low probability of a shared signal with cIMT and carotid plaque, possibly indicating a different mechanism in this
tissue. eQTLs in MAM are identical to AOR and not shown. The p-values were calculated by fitting a linear regression model with cIMT or plaque as
dependent variable and imputed SNPs as independent variables. Each dot is an SNP and the color indicates linkage disequilibrium (r2) with the best hit (in
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Some loci identified in our meta-analysis of GWAS include
genes in known pathways for atherosclerosis, including LDLR,
which is related to lipid pathways and CHD, and identified for
associations with carotid plaque in our study. For most of the loci,
however, the underlying gene implicated in signals are unknown.
Our colocalization approach found both CCDC71L and
PRKAR2B as the most likely genes at the chromosome 7 locus,
where PIK3CG was previously the suggested gene. This finding is
in agreement with a targeted sequencing study of subclinical
atherosclerosis15. An additional SNP (rs342286) at this locus has
been associated with platelets volume and reactivity, and cardi-
ovascular traits. However, rs342286 is not in LD with our most
significant SNP and it is not associated with cIMT or carotid
plaque in our studies (p= 0.49 and 0.01, respectively). Of interest,
the variant we identified in this study showed evidence for
colocalization with cIMT/carotid plaque and large vessel disease
stroke but not CHD, therefore showing tissue and outcome-
specificity. CCDC71L has unknown function. PRKAR2B codes for
one of the several regulatory subunits of cAMP-dependent pro-
tein kinase and its expression is ubiquitous. In vitro studies have
shown that adenosine-induced apoptosis of arterial smooth
muscle cells involves a cAMP-dependent pathway20.

Measures of cIMT and carotid plaque reflect vascular patho-
physiologic and atherosclerosis processes, respectively, with car-
otid plaque more strongly reflecting atherosclerotic clinical
events. An important contribution of this study is the supporting
evidence for overall genetic correlations of CHD and stroke (any
cause and ischemic stroke) with subclinical atherosclerosis traits,
estimated using LD score methods. Further highlighting the
potential biological relevance of our findings, the genetic corre-
lations estimates for CHD were stronger for carotid plaque than
for cIMT. However, cIMT and carotid plaque GWAS were cor-
related, and the genetic correlations estimates with stroke were
similar for cIMT or carotid plaque, and not significant for carotid
plaque. The colocalization analyses provided additional insights
in the relationships between subclinical atherosclerosis, clinical
outcomes, and tissue-specific regulation at specific genomic
regions. For example, our suggestive top gene association in
multi-trait colocalization for KIAA1462 included MAM eQTLs,
carotid plaque, and CHD, supporting the shared genetic effects at
this locus of atherosclerosis in carotid and coronary arteries.
KIAA1462 has been previously reported in the same locus iden-
tified by GWAS for CHD21. This gene encodes a protein involved
in cell–cell junctions in endothelial cells22, which was recently
shown to be involved in pathologic angiogenic process in in vitro
and in vivo experimental models23. These findings suggest that

there may be important differences in vascular bed regulation at
distinctive regions for atherosclerotic cardiovascular and stroke
outcomes that may help to identify genes and specific targets for
CHD or stroke prevention and treatment.

Additional studies in diverse and large samples across the
multiple datasets are needed to explore these results further. As
more summary statistics become available for other clinical end-
points beyond stroke and CHD (both in terms of larger sample
size and richer genome coverage), and as further refinements in
clinical phenotypes emerge (e.g. from CHD to acute coronary
syndrome sub-components), strategies to integrate this knowl-
edge using methods such as moloc10 and eCAVIAR24 will con-
tinue to be essential for harnessing genome-wide findings in the
drug-discovery process.

In summary, our study is a large GWAS meta-analysis of cIMT
and carotid plaque. Through a sequential approach of discovery
and colocalization studies, we provide deeper insights into disease
causal genes of subclinical cIMT and carotid plaque formation.
We confirmed three loci and identified nine novel loci in the
meta-analyses of cIMT and carotid plaque. Additionally, we
provide strong evidence for the role of three novel genes from our
integrative analysis of GWAS and eQTL data. Moreover, the
identified correlations with CHD and stroke highlight novel
biological pathways that merit further assessments as novel tar-
gets for drug development.

Methods
Ethics statement. All human research was approved by the relevant institutional
review boards for each study, and conducted according to the Declaration of
Helsinki. All participants provided written informed consent.

Populations and phenotypes. The discovery GWAS in this study consists of a
collaboration between the CHARGE 8 and the UCLEB consortia9, for genetic
studies of cIMT and carotid plaque among individuals of European ancestry
(Supplementary Note 1). All studies followed standardized protocols for phenotype
ascertainment and statistical analyses. The descriptive characteristics of partici-
pating studies are shown in Supplementary Table 1.

cIMT and carotid plaque measures were evaluated using high-resolution B-
mode ultrasonography and reading protocols as previously reported4. We used
data from the baseline examination or the first examination in which carotid
ultrasonography was obtained. cIMT was defined by the mean of the maximum of
several common carotid artery measurements, measured at the far wall or the near
wall. For most studies, this was an average of multiple measurements from both the
left and right arteries. We also examined a carotid plaque phenotype, defined by
atherosclerotic thickening of the carotid artery wall or the proxy measure of
luminal stenosis greater than 25% (Supplementary Table 2).

Genotyping, imputation, and study-level quality control. Genotyping arrays and
QC pre-imputation are shown in Supplementary Table 3. Each GWAS study

Table 4 Genetic correlation between CHD and stroke traits with cIMT and plaque, and cIMT with plaque using LD score and
meta-GWAS

Cardiovascular disease trait Subclinical atherosclerosis trait Genetic correlation SE z p

CHDa cIMT 0.20 0.05 4.1114 4 × 10−5

Any stroke cIMT 0.30 0.07 4.2301 2.3 × 10−5

Ischemic strokeb cIMT 0.31 0.07 4.646 3.4 × 10−6

Cardio-embolic strokeb cIMT 0.10 0.09 1.0729 0.28
Small vessel disease strokeb cIMT 0.33 0.18 1.8728 0.06
CHDa Carotid plaque 0.52 0.08 6.4263 1.3 × 10−10

Any strokeb Carotid plaque 0.28 0.10 2.7097 0.007
Ischemic strokeb Carotid plaque 0.27 0.10 2.6578 0.008
Cardio-embolic strokeb Carotid plaque 0.06 0.14 0.4684 0.64
Small vessel disease strokeb Carotid plaque −0.03 0.24 −0.1344 0.89
Plaque cIMT 0.40 0.10 3.9667 7.3 × 10−5

aCARDIoGRAMPlusC4D
bMEGASTROKE consortium. Unable to estimate the genetic correlations with large vessel disease
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conducted genome-wide imputation using a Phase 1 integrated (March 2012
release) reference panel from the 1000G Consortium using IMPUTE225 or MaCH/
minimac26, and used Human Reference Genome Build 37. Sample QC was per-
formed with exclusions based on call rates, extreme heterozygosity, sex dis-
cordance, cryptic relatedness, and outlying ethnicity. SNP QC excluded variants
based on call rates across samples and extreme deviation from Hardy–Weinberg
equilibrium (Supplementary Table 3). Non-autosomal SNPs were excluded from
imputation and association analysis.

Pre-meta-analysis GWAS study-level QC was performed using EasyQC
software27. This QC excluded markers absent in the 1000G reference panel; non A/
C/G/T/D/I markers; duplicate markers with low call rate; monomorphic SNPs and
those with missing values in alleles, allele frequency, and beta estimates; SNPs with
large effect estimates or standard error (SE) ≥10; and SNPs with allele frequency
difference >0.3 compared to 1000G reference panel. There was a total of 9,574,088
SNPs for the cIMT meta-analysis and 8,578,107 SNPs for the carotid plaque meta-
analysis.

Statistical analyses. Within each study, we used linear and logistic regression to
model cIMT and carotid plaque, respectively, and an additive genetic model (SNP
dosage) adjusted for age, sex, and up to 10 principal components. We combined
summary estimates from each study and each trait using an inverse variance
weighted meta-analysis. Additional filters were applied during meta-analyses
including imputation quality (MACH r2 < 0.3 and IMPUTE info <0.4), a minor
allele frequency (MAF) <0.01, and SNPs that were not present in at least four
studies. The genome-wide significance threshold was considered at p < 5.0 × 10−8.

To assess the evidence for independent associations at each locus attaining
genome-wide significance, we performed conditional analysis in a 1-Mb genomic
interval flanking the lead SNP using GCTA28. This approach uses summary meta-
analysis statistics and a LD matrix from an ancestry-matched sample to perform
approximate conditional SNP association analysis. The estimated LD matrix was
based on 9713 unrelated individuals of European ancestry from the ARIC study,
which was genotyped using an Affymetrix 6.0 array and imputed to the 1000G
panel using IMPUTE225.

Gene expression analysis using GTEx. GTEx Analysis V6 (dbGaP Accession
phs000424.v6.p1) eQTL results were downloaded from GTEx portal for 44 tissues,
and then mapped to SNPs listed in Table 1. We used a false discovery rate (FDR) of
≤0.05.

Colocalization analyses using eQTLs. We integrated our GWAS results with cis-
eQTL data using a Bayesian method (coloc)10. This method evaluates whether the
GWAS and eQTL associations best fit a model in which the associations are due to
a single shared variant (summarized by the posterior probability). We used gene
expression datasets from multiple tissues from patients with CHD of the STAR-
NET study, including blood, MAM, AOR, subcutaneous fat (SF), visceral fat
(VAF), skeletal muscle (SKLM), and liver (LIV) obtained from 600 patients during
open heart surgery11. Pairwise colocalization was tested between these expression
disease tissue datasets and GWAS results from our cIMT/carotid plaque GWAS
meta-analysis. We used GWAS and eQTL summary statistics of SNPs within a
200-kb window around each gene covered by the eQTL datasets. A posterior
probability of colocalization ≥0.75 was considered a strong evidence for a causal
gene. Next, we reported the gene(s) in the STARNET datasets that had the
strongest evidence of sharing the same variant with cIMT or carotid plaque
genome-wide. In an alternative analysis, we also tested loci with an SNP that
reached a threshold of significant or suggestive genome-wide significance for cIMT
or carotid plaque (reported in Table 1, Supplementary Table 5). For each region
200kb around the SNP with the lowest association p-value, we report the gene with
the highest probability of being responsible for the GWAS signal (Supplementary
Table 6).

Pairwise colocalization for these genes was also tested for publicly available
GWAS for CHD case-controls (CARDIoGRAMPlusC4D) and stroke case-controls
(MEGASTROKE consortium). The MEGASTROKE dataset uses genotypes
imputed to the 1000G phase I haplotype panel. The European ancestry sample used
to generate these results consisted of 40,585 stroke cases and 406,111 controls from
15 cohorts and two consortia: the METASTROKE and CHARGE consortia29. The
phenotypes used in this analysis were any stroke (n= 39,067 cases, total n=
442,142), ischemic stroke (IS, n= 32,686 cases, total n= 423,266), and etiologic
stroke subtypes:cardioembolic stroke (CE, n= 6,820 cases, total n= 314,368), large
vessel disease (n= 4,113, total n= 202,263), and small vessel disease (SVD, n=
4,975, total n= 242,250). To explore multi-trait colocalizations, we used moloc14

with prior probabilities of 10−4 for GWAS/GWAS/eQTL, 10−6 for GWAS+eQTL/
GWAS or GWAS+GWAS/eQTL, and 10−7 for colocalization of all three
association signals.

Functional annotation and epigenetic enrichment analyses. From the Epigen-
ome Roadmap Project30,31, we obtained regulatory information using broad classes
of chromatin states (n= 127 tissues) capturing promoter-associated, transcription-
associated, active intergenic, and large-scale repressed and repeat-associated states.

From ENCODE32, we obtained chromatin states, uniformly processed transcrip-
tion factor (TF) Chip assays and DNaseI Hypersensitivity sites (DHS) for nine cells
lines. From FANTOM533, we used information from expression of enhancers in
each tissue (n= 112), and enhancers that are positively differentially expressed
against any other tissue (n= 110).

We used fGWAS13 to identify genomic annotations that are enriched within the
cIMT results and to select the variants with support for a functional role based on
the most informative annotations. We only considered cIMT for these analyses
because of the small number of identified loci for carotid plaque. We first estimated
the enrichment parameters for each annotation individually and identified the set
of annotations with significant marginal associations. We then applied 10-fold
cross-validation likelihood and forward selection to identify the set of annotations
that significantly improve the model fit, and reverse selection of each annotation
included in the model, as suggested in the fGWAS workflow. We reported the
model with the highest cross-validation likelihood and SNPs that have regional
posterior probability of association (PPA) >0.9 and directly overlap the genomic
annotations considered.

Overall genetic correlation analysis. Genetic correlation between cIMT/carotid
plaque, CHD, and stroke traits were calculated using LD score regression approach
LD-score, which uses GWAS summary statistics and is not affected by sample
overlap. This method relies on the fact that the χ2 association statistic for a given
SNP includes the effects of all SNPs that are in LD with it and it calculates genetic
correlation by partitioning the SNP heritabilities15. Genetic correlations between
stroke traits (IS, CE, large vessel disease, and SVD) and cIMT and carotid plaque
were calculated using software available at http://github.com/bulik/ldsc with
GWAS summary statistics for our cIMT/carotid plaque GWAS, CARDIO-
GRAMPlusC4D data, and stroke GWAS. We used the LD-scores15, which are
based on the 1000 Genomes European population and estimated within 1-cM
windows. Based on ten tests performed (two subclinical traits and five outcomes),
we set the significance threshold to p= 0.005.

PATHWAY ANALYSES. Methods for GO Slim: The Ensembl identifiers of all
protein-coding genes identified as in LD with the 12 variants for cIMT and 15
variants for carotid plaque (including variants from main and suggestive signals,
Table 1 and Supplementary Table 5), and five genes for which there is strong
evidence of colocalization (Table 3), were mapped to UniProt accession numbers,
using the UniProt ID mapping service (http://www.uniprot.org/uploadlists/). A GO
Slim analysis was performed on this list using QuickGO (www.ebi.ac.uk/QuickGO)
and the Generic GO Slim. The GO terms used in the final slim analysis were
further refined by adding/removing GO terms to provide more detailed
information about the processes covered.

Methods for GO term enrichment analysis: The VLAD gene list analysis and
visualization tool (http://proto.informatics.jax.org/prototypes/vlad/) was used to
perform a GO term enrichment analysis on the same UniProt accessions as listed
for the GO Slim. The background annotation set was obtained from the
goa_human.gaf file (dated 21 November 2017, downloaded from ftp://ftp.ebi.ac.uk/
pub/databases/GO/goa/HUMAN/) and the ontology data was obtained from the
go-basic.obo file provided in the VLAD tool (analysis run 28 November 2017).

The LD block around top SNPs associated with cIMT and carotid plaque was
constructed using LD information from the 1000 Genomes panel, as previously
outlined in Finan et al.16. Briefly, the boundaries of the LD region were defined as
the positions of the variants furthest upstream and downstream of a GWAS SNP
with an r2 value of ≥0.5 and within a 1-Mbp flank on either side of the GWAS
variant. Associated variants that were not present in the 1000 Genomes panel that
were not in LD with any other variants were given a nominal flank of 2.5 kbp on
either side of the association. Gene annotations using Ensembl version 79 were
then overlapped to the LD region.

Druggable genes. We examined the druggability status for the nearest coding
genes identified in our GWAS analysis on cIMT and carotid plaque, including
significant (novel and replicated) and suggestive ones, as well as genes identified
through colocalization analysis. The druggable gene set was calculated using the
previously described criteria: novel targets of first-in-class drugs licensed since
2005; the targets of drugs currently in late phase clinical development; pre-clinical
phase small molecules with protein binding measurements reported in the
ChEMBL database; and genes encoding secreted or plasma membrane proteins that
are targets of monoclonal antibodies and other bio-therapeutics16. We defined
three tiers of druggable gene sets based on their drug development. In Tier 1, 1427
genes were targets of approved small molecules and biotherapeutic drugs and
clinical-phase drug candidates. Tier 2 comprised 682 genes encoding targets with
known bioactive drug-like small molecule binding partners and those with sig-
nificant sequence similarity to approved drug targets. Tier 3 contained 2370 genes
encoding secreted or extracellular proteins, proteins with more distant similarity to
approved drug targets, and druggable genes not included in Tier 1 or 2 such as
GPCRs, nuclear hormone receptors, ion channels, kinases, and phosphodiesterases.

URLs. For GTEx, see http://gtexportal.org/. For Coloc, see https://cran.r-project.
org/web/packages/coloc/coloc.pdf. For, Moloc, see https://github.com/clagiamba/
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moloc/blob/master/man/moloc-package.Rd. For CARDIoGRAMPlusC4D, see
www.cardiogramplusc4d.org/. For LD scores, www.broadinstitute.org/~bulik/
eur_ldscores/. For UniProt ID, www.uniprot.org/uploadlists/. For QuickGO,
www.ebi.ac.uk/QuickGO. For VLAD tool, see http://proto.informatics.jax.org/
prototypes/vlad/.

Data availability
All relevant summary statistics data that support the findings of this study have
been deposit in the database of Genotypes and Phenotypes (dbGaP) under the
CHARGE acquisition number (https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/
study.cgi?study_id=phs000930.v6.p1; accession phs000930.v6.p1). GWAS data for
most US studies are already available in dbGAP.
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