
Gastroenterology 2019;156:1354–1367

CLINICAL
AT
Treatment of Active Crohn’s Disease With an Ordinary
Food-based Diet That Replicates Exclusive Enteral Nutrition

Vaios Svolos,1 Richard Hansen,2 Ben Nichols,1 Christopher Quince,3 Umer Z. Ijaz,4

Rodanthi T. Papadopoulou,1 Christine A. Edwards,1 David Watson,5 Adel Alghamdi,5

Asker Brejnrod,6 Cecilia Ansalone,7 Hazel Duncan,2 Lisa Gervais,2 Rachel Tayler,2

Jonathan Salmond,8 Daniele Bolognini,9 Robert Klopfleisch,10 Daniel R. Gaya,11

Simon Milling,7 Richard K. Russell,2 and Konstantinos Gerasimidis1

1Human Nutrition, School of Medicine, Dentistry & Nursing, College of Medical, Veterinary and Life Sciences, University of
Glasgow, Glasgow Royal Infirmary, Glasgow, United Kingdom; 2Department of Paediatric Gastroenterology, Hepatology and
Nutrition, Royal Hospital for Children, Glasgow, United Kingdom; 3Warwick Medical School, University of Warwick, Warwick,
United Kingdom; 4School of Engineering, University of Glasgow, Glasgow, United Kingdom; 5Strathclyde Institute of Pharmacy
and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom; 6Novo Nordisk Foundation Center for Basic
Metabolic Research, University of Copenhagen, Copenhagen, Denmark; 7Institute of Infection, Immunity and Inflammation,
College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom; 8Queen Elizabeth
University Hospital, Glasgow, United Kingdom; 9Centre for Translational Pharmacology, Institute of Molecular, Cell and
Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom;
10Institute of Veterinary Pathology, Freie Universitaet, Berlin, Germany; and 11Department of Gastroenterology, Glasgow Royal
Infirmary, Glasgow, United Kingdom
BACKGROUND & AIMS: Exclusive enteral nutrition (EEN) is
the only established dietary treatment for Crohn’s disease (CD),
but its acceptability is limited. There is a need for novel dietary
treatments for CD. METHODS: We evaluated the effects of an
individualized food-based diet (CD-TREAT), with similar
composition to EEN, on the gut microbiome, inflammation, and
clinical response in a rat model, healthy adults, and children
with relapsing CD. Twenty-five healthy adults randomly
received EEN or CD-TREAT for 7 days, followed by a 14-day
washout period, followed by the alternate diet. Fecal micro-
biome and metabolome were assessed before and after each
diet. HLA-B7 and HLA-B27 transgenic rats with gut inflamma-
tion received EEN, CD-TREAT, or standard chow for 4 weeks.
Fecal, luminal, and tissue microbiome, fecal metabolites, and
gut inflammation were assessed. Five children with active CD
activity received CD-TREAT and their clinical activity and cal-
protectin were evaluated after 8 weeks of treatment. RESULTS:
For healthy adults, CD-TREAT was easier to comply with and
more acceptable than EEN. CD-TREAT induced similar effects to
EEN (EEN vs CD-TREAT) on fecal microbiome composition,
metabolome, mean total sulfide (increase 133.0 ± 80.5 vs 54.3
± 47.0 nmol/g), pH (increase 1.3 ± 0.5 vs 0.9 ± 0.6), and the
short-chain fatty acids (mmol/g) acetate (decrease 27.4 ± 22.6
vs 21.6 ± 20.4), propionate (decrease 5.7 ± 7.8 vs 5.2 ± 7.9),
and butyrate (decrease 7.0 ± 7.4 vs 10.2 ± 8.5). In the rat
model, CD-TREAT and EEN produced similar changes in bac-
terial load (decrease 0.3 ± 0.3 log10 16S rRNA gene copies per
gram), short-chain fatty acids, microbiome, and ileitis severity
(mean histopathology score decreases of 1.25 for EEN [P ¼
.015] and 1.0 for CD-TREAT [P ¼ .044] vs chow). In children
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WHAT YOU NEED TO KNOW

BACKGROUND AND CONTEXT

Exclusive enteral nutrition is an effective treatment for
patients with Crohn’s disease. This study aimed to
develop a nutritional therapy program that involved a
less-restrictive diet for such patients.
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receiving CD-TREAT, 4 (80%) had a clinical response and 3
(60%) entered remission, with significant concurrent decreases
in fecal calprotectin (mean decrease 918 ± 555 mg/kg; P ¼
.002). CONCLUSION: CD-TREAT replicates EEN changes in the
microbiome, decreases gut inflammation, is well tolerated, and
is potentially effective in patients with active CD. Clinical-
Trials.gov, numbers NCT02426567 and NCT03171246
NEW FINDINGS

CD-TREAT, an ordinary food diet, had similar effects to
those of exclusive enteral nutrition on the gut
microbiome and metabolome of healthy participants;
reduced ileitis in a rat model of disease; and reduced
disease activity and colonic inflammation in children
with active Crohn’s disease. CL

IN
IC
AL

AT
Keywords: Inflammatory Bowel Disease; Microbiota; Pediatric
Trial; Carbohydrate.

rohn’s disease (CD) is associated with high
LIMITATIONS

The efficacy of CD-TREAT in patients with active Crohn’s
disease requires replication in large clinical trials.

IMPACT

CD-TREAT is a diet-only treatment for active Crohn’s
disease that might be used interchangeably with
exclusive enteral nutrition; particularly in adults.

Abbreviations used in this paper: CD, Crohn’s disease; CD-TREAT,
Crohn’s disease treatment with eating diet; EEN, exclusive enteral nutri-
tion; FC, fecal calprotectin; IL, interleukin; OTU, operational taxonomic
unit; RCT, randomized controlled trial; SCFA, short-chain fatty acid; SD,
standard deviation; TNF, tumor necrosis factor; wPCDAI, weighted Pedi-
atric Crohn’s Disease Activity Index.
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Cmorbidity and increased health expenditure. The
current paradigm of CD pathogenesis suggests an interac-
tion between environmental factors and the gut microbiome
in people with genetic susceptibility to the illness.1

Steroids have been the mainstay therapy in CD, partic-
ularly in adults. Although effective, prolonged use of ste-
roids is associated with significant side effects and higher
mortality compared with anti–tumor necrosis factor (TNF)
agents.2 Given the cost and side effects inherent in biological
therapy, there is a need to develop novel, safe, and effica-
cious therapies.

Diet is important in the etiology of CD, particularly in
countries where the rising disease incidence has paralleled
changes in eating habits and food industrialization. Certain
nutrients and food additives have been associated with CD
risk. In consequence, recent studies have advocated the in-
clusion or exclusion of these food components in CD
management.3

Exclusive enteral nutrition (EEN) remains the only
established dietary treatment in pediatric CD, particularly in
Europe. EEN induces clinical remission in approximately
80% of patients and promotes gut healing.3–5 The mecha-
nism of action of EEN is not yet fully understood, but work
from our group and others proposed that modulation of the
gut microbiome drives its therapeutic properties.6–8 These
effects reversed when patients resumed their habitual diet
and gut inflammation correspondingly increased.7

Although successful, EEN is a very restrictive diet with
limited acceptability and prolonged use, particularly in
adults. Therefore, it is of critical importance that we use our
understanding of CD pathogenesis and the mechanism of
EEN action to develop new effective dietary therapies that
are more acceptable and tolerable. This unmet need is
further supported by health professionals and patient
groups when asked jointly about priorities for CD research.9

In view of the clinical efficacy of EEN, its simple nutri-
tional composition, and a mechanism of action involving the
gut microbiome, we hypothesized that we could achieve
therapeutic results similar to EEN by developing an ordi-
nary food diet based on the composition of EEN and
mimicking its effect on the gut microbiome. If this was
achievable, then such a diet would be likely to induce
remission in CD. Based on this concept, we devised the CD
treatment-with-eating diet (CD-TREAT) and explored mi-
crobial changes after CD-TREAT and EEN with a randomized
controlled trial (RCT) in healthy subjects. We followed this
RCT with experiments in animal models to explore the anti-
inflammatory effect of CD-TREAT and its effect on the gut
microbiome in a disease state. Then, we tested the efficacy
of CD-TREAT to induce clinical remission and ameliorate
blood and colonic inflammatory markers in a pilot trial of
children with active CD.

Methods
CD-TREAT Diet

The CD-TREAT is a prescriptive and personalized diet. It
recreates EEN by the exclusion of certain dietary components
(eg, gluten, lactose, and alcohol) and matching of others
(macronutrients, vitamins, minerals, and fiber) as closely as
possible using ordinary food. We based the composition of CD-
TREAT on Modulen IBD (Nestle, Vevey, Switzerland), the most
popular formula used in Europe, and on which we have based
our mechanistic studies.6,7 Maltodextrin, an artificial glucose
polymer and the commonest form of carbohydrate in EEN
feeds, but not present in natural foods, was substituted by food
high in starch and low in fiber. Because approximately 10% of
food starch resists digestion (ie, resistant starch) and so rea-
ches the colon,10 this is likely to influence the gut microbiome
in a different way than EEN. Hence, we purposely decreased
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the carbohydrate in CD-TREAT, particularly complex carbohy-
drates, in favor of protein. Carbohydrate and protein intake
remained within the composition range of other EEN feeds with
published records of efficacy in active CD (eg, Fresubin Protein,
Fresenius Kabi, Dublin, Ireland; Peptamen AF, Nestle). The
micronutrients from EEN were achieved with a multivitamin
tablet. CD-TREAT provides the daily energy requirements and
considers food preferences. A CD-TREAT daily menu is pre-
sented in Supplementary Table S1.
RCT in Healthy Volunteers
Study Design. Healthy adults (>18 years old) were

recruited from the community. At study enrollment, subjects
who had any acute or chronic illness (ie, illness requiring reg-
ular visits to health services) were excluded. Participants had
stable weight (±2 kg) in the past month, no history of gut
surgery, and had not used antibiotics or steroids during the
previous 3 months.

Participants were randomly allocated to EEN and CD-
TREAT for 7 days each, with a 14-day washout period in be-
tween to restore the gut microbiome to its baseline state and
avoid intervention contamination bias (Figure 1A).

Modulen IBD was used for the EEN trial, as described
previously.11 During CD-TREAT, participants were provided
with a food list from which to choose their preferred items. An
individualized dietary plan was developed by the research di-
etitians providing their daily energy requirements. This plan
was developed using the food group exchange methodology12

and WinDiets 2010 (https://windiets.software.informer.com/).
Energy requirements were calculated using the participant’s
estimated basic metabolic rate and self-reported physical
activity level.13 EEN and CD-TREAT meals were supplied to
participants free of charge along with written preparation
instructions.

Before initiation of the first experimental diet, participants
recorded their habitual diet using 7-day estimated weight food
diaries. This diet was replicated during the last week of the
washout, before their second intervention. Weight changes
were monitored.

Dietary Intake and Acceptability of Inter-
ventions. Appetite, gastrointestinal symptoms, and adher-
ence to the experimental diets were assessed by self-reported
questionnaire (Supplementary Files S1 and S2). Leftovers of
EEN formula were returned as additional estimates of treat-
ment adherence. Adherence to CD-TREAT was further assessed
by recording intake daily using estimated weight food diaries.
Fecal Sample Collection
Fresh fecal samples were collected before and after each

experimental diet, providing a total of 4 samples per participant
(Supplementary File S2). The shape and texture of the samples
was assessed using the Bristol Stool Form Scale.14 Fecal water,
pH, and ammonia were measured.6

Fecal Microbiome. Fecal genomic DNA was extracted
using the chaotropic method.6 Quantification of total bacteria
(16S rRNA gene copy number per gram of stool) was carried
out with quantitative polymerase chain reaction using TaqMan
(ThermoFisher Scientific, Waltham, MA) chemistry.6 The V4
region of the 16S rRNA gene was amplified and sequencing was
performed (MiSeq, Illumina, Essex, UK) using 2- � 250-bp
paired-end reads.7

Fecal Bacterial Metabolites. Free and total fecal sul-
fide was measured with a solid-state ion selective electrode
(HI4115; Hanna, Bedfordshire, UK). Short-chain fatty acids
(SCFAs) and branched-chain fatty acids were quantified by gas
chromatography.6

Fecal Metabolome. Untargeted fecal metabolites were
measured using liquid chromatography–mass spectrometry
(Supplementary File S2) in chloroform, methanol, and water
(1:3:1) extracts. Metabolite profiling was performed using a
SeQuant ZIC-pHILIC column (Hichrom Ltd, Reading, UK)
coupled to an Orbitrap Exactive instrument (ThermoFisher
Scientific).
Animal Experiments
Study Design. The animal experiment explored the effect

of CD-TREAT, compared with EEN and regular chow, on gut
inflammation and microbiome in a disease state. We used adult
(36- to 40-week-old) heterozygous HLA-B27 (B27) and HLA-B7
(B7) transgenic rats of a Piebald-Virol-Glaxo background. B27
rats express the human major histocompatibility complex class
I HLA-B27 gene and the associated human b2-microglobulin
gene and develop inflammation throughout their gastrointes-
tinal tract, including the ileum.15 They do not present gut
inflammation in a germ-free environment16 and severity of
ileitis is decreased by antibiotic treatment.17 This model has
been used extensively in inflammatory bowel disease research,
including interventions with EEN.18 The B27 gut microbiome
has a similar phenotype to that seen in CD, including an in-
crease in Proteobacteria and a decrease in Firmicutes species.19

The HLA-B27 genotype has been associated independently with
CD, and patients with ankylosing spondylitis often have sub-
clinical gut inflammation.20 B7 rats do not present gut inflam-
mation and were used as controls.

The B27 animals were fed ad libitum with EEN, CD-TREAT,
or standard chow (BK001E, Special Diets Services, Essex, UK)
for 4 weeks (B27-EEN, B27-CD-TREAT, and B27-CONTROL,
respectively). To confirm gut inflammation in the B27 animals,
a healthy group of B7 rats fed on standard chow was included
(B7-CONTROL). Similarly, B7 rats on EEN were included to
address the net effect of EEN on their gut microbiome in the
absence of inflammation (B7-EEN). A B7 group on CD-TREAT
was not included because the effect of CD-TREAT against EEN
on the healthy gut microbiome was addressed in the human
RCT (Figure 1B). CD-TREAT food items were cooked, homog-
enized, and stored at �20�C. Rats were maintained in individ-
ual cages and under specific pathogen-free conditions. Weight
was monitored.

Fecal Samples, Luminal Contents, and Tissue
Harvesting. Fecal samples were collected at baseline and
weekly until sacrifice after 28 days. Gut luminal contents and
ileal, cecal, and colonic tissue were stored at �70�C. The
weights of cecal luminal content and fecal water were
measured.

Gut Histopathology and Cytokine Expression in
Ileum. Colonic and ileal specimens were fixed in 10%
formalin until the tissue was embedded in paraffin, stained
with hematoxylin and eosin, and evaluated by 2 pathologists
(R.K. and J.S.) in a blinded manner (Supplementary File S2).

https://windiets.software.informer.com/


Figure 1. (A) RCT in healthy volunteers. (B) Animal experiments. (C) Open-label trial in patients with active CD.
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Total RNA was isolated from ileal tissues and stored
immediately in RNAlater using the AllPrep DNA/RNA Mini kit
(Qiagen, Manchester, UK). Reverse transcription was performed
using the QuantiTect Reverse Transcription kit (Qiagen). Rela-
tive expression of genes encoding for TNF-a, interleukin (IL)-6,
IL-10, IL-1b, and CXCL-1 was measured with quantitative po-
lymerase chain reaction using TaqMan chemistry, house-
keeping genes as endogenous controls, and the comparative
threshold cycle method (Supplementary File S2).

Gut Microbiome. DNA from fecal, cecal, and colonic
luminal contents was extracted as described earlier. DNA from
cecal and colonic tissue was extracted using the AllPrep DNA/
RNA Mini Kit. The 16S rRNA gene sequencing in all samples and
the concentration of total bacteria and SCFAs in fecal samples
and cecal luminal contents were measured as described earlier.
The total quantity (micromoles) of each SCFA and branched-
chain fatty acid produced in the entire cecal luminal content
also was calculated.

Open-Label Trial in Patients With Active CD
Study Design. Children (6–15 years old) previously

diagnosed with relapsing CD (weighted Pediatric Crohn’s
Disease Activity Index [wPCDAI] score � 12.521) were
recruited from the Royal Hospital for Children (Glasgow, UK).
Exclusion criteria included antibiotic use within 1 month;
change in type or dose of CD therapy within 3 months or 1
month, respectively; enrollment in other studies; disease
severity sufficient to warrant hospitalization; and food allergies
incompatible with CD-TREAT.

Participants were treated exclusively with CD-TREAT for 8
weeks. All food was provided. In contrast to the healthy
volunteer RCT, meals requiring cooking were prepared by a
subcontracted catering company and were delivered to the
participants (Supplementary Figure S1). Participants recorded
their dietary intake daily (Supplementary File S3).

Clinical reviews were scheduled at weeks 2 (telephone) and
4 and 8 (visits). No alterations to CD-related medications were
allowed. If disease activity deteriorated at any point or there
was no improvement at 4 weeks, then patients discontinued
CD-TREAT. Those patients who clinically responded but did not
enter clinical remission at 8 weeks were offered the option to
stay on CD-TREAT for a further 4 weeks (Figure 1C).

Primary and Secondary Outcomes. The outcomes of
the trial were selected based on the recommendations of the
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European Crohn’s and Colitis Organization.22 The primary
outcome was clinical response (wPCDAI score decrease � 17.5)
or clinical remission (wPCDAI score < 12.5) at 8 weeks.
Secondary outcomes included changes in fecal calprotectin (FC;
CALP0170 kit, Calpro AS, Lysaker, Norway), serum albumin,
and C-reactive protein.6
Bioinformatics
Operational taxonomic unit (OTU) assignments were

generated using a modified version of the VSEARCH pipeline
(https://github.com/torognes/vsearch/wiki/VSEARCH-pipeline;
Supplementary File S2). For fecal metabolome, we used prob-
abilistic quotient normalization23 for univariate differential
analysis (muma package; https://cran.r-project.org/web/
packages/muma/index.html) and square-root transformation
and Pareto-scaling24 for multivariate analysis.
Statistics
Power Calculation. A confirmed microbial signal

explaining the EEN therapeutic effect does not exist. Hence, to
power the human RCT, we chose a microbial signal that
changed significantly during EEN in children with CD, was
associated with disease improvement, and showed the largest
size effect with the narrowest standard deviation (SD).6

Recruiting 25 healthy adults would produce 80% power to
detect a mean fecal butyrate decrease of 19 mmol/g (SD 32)
after either dietary intervention. The power calculation was
revised after completion of the first 10 participants
(Supplementary File S2). Animal experiments were performed
at 2 independent occasions (4 rats per group).

Data Analysis. For group comparisons, we used the
general linear model with Box-Cox transformation and Fisher
pairwise test. For microbiome, a-diversity (Shannon and
Chao1) and b-diversity (Bray-Curtis dissimilarity and weighted
UniFrac distance) were performed (vegan package) in R.
Discriminant taxa were identified using t tests on logarithmic
proportional abundances. For metabolome data, principal
component analysis and permutational multivariate analysis of
variance were carried out on Manhattan distance matrices.
Differentially abundant metabolites were identified using a
modification of the univariate function in the muma package,
adapted for paired data. All correlations were tested with the
Pearson test; but for the metabolome analysis, the Spearman
rank correlation test was used instead to compensate for the
disproportionate influence of outliers. The significance level for
the human RCT and pilot trial in patients was defined as P <
.05. Benjamini-Hochberg corrections for multiple testing were
applied, relaxing the criteria to P < .1 in the animal experi-
ments in which samples were small (n ¼ 4 per group).
Ethical Considerations
The RCT in healthy volunteers was approved by the ethics

committee of the University of Glasgow (Glasgow, UK; reference
200130161) and the trial in patients was approved by the West
of Scotland Research Ethics Committee (reference 17/WS/
0119). Participants and/or caregivers provided written con-
sent. The animal experiments were conducted under licenses
by the UK Home Office.
Results
RCT in Healthy Volunteers

Participant Characteristics. Twenty-eight volunteers
were recruited. Three dropped out, leaving 25 subjects who
completed the trial (mean body mass index 22.4 kg/m2, SD
2.7; mean age 24.5 years, SD 3.1; 13 women [52%]). Thir-
teen and 12 were randomly allocated to start with EEN and
CD-TREAT, respectively. No significant changes in body
weight were observed (Supplementary Table S2).

Dietary Intake and Acceptability of Inter-
ventions. Differences between the prescribed and actual
intake were minimal during the 2 dietary interventions,
indicating high compliance (Table 1). Nutrient intake during
CD-TREAT was more similar to that of EEN than to the
participants’ habitual diet. During EEN and CD-TREAT, the
participants consumed more total and saturated fat and less
fiber and carbohydrates compared with their habitual diet.
Protein intake was higher than the habitual diet during CD-
TREAT.

CD-TREAT was easier to follow and more satiating than
EEN. Gastrointestinal symptoms were uncommon for the 2
diets. Conversely, ratings for abdominal pain and diarrhea
were higher (P ¼ .005 for the 2 comparisons) for EEN than
for CD-TREAT (Supplementary Table S3).

Fecal Sample Characteristics. The 2 dietary in-
terventions decreased Bristol Stool Chart ratings (P < .001
for the 2 comparisons) and fecal output mass (EEN, P ¼
.031; CD-TREAT, P ¼ .017). Fecal water content decreased
only after EEN (P ¼ .003; Supplementary Table S2).

Fecal Microbiome. The concentration of total fecal
bacteria significantly decreased with the 2 diets
(Supplementary Table S2). Ninety-six samples from 24
participants were analyzed after removing 4 samples with
<5,000 reads. The number of unique OTUs across all sam-
ples was 1176, annotated to 224 genera. No significant
changes from baseline were observed for the Chao1 index
(P ¼ .143 for the 2 comparisons), a measure of microbiome
richness, or the Shannon a-diversity index (EEN, P ¼ .387;
CD-TREAT, P ¼ .359; Figure 2A and B). Microbiome struc-
ture clustered according to study time point (R2 ¼ 0.13, P <
.001; Figure 2C). Compared with baseline, EEN (R2 ¼ 0.14,
P < .001) and CD-TREAT (R2 ¼ 0.05, P < .001) shifted the
b-diversity index to the same direction, explaining 14% and
5% of the variation in microbiome structure, respectively.
Weighted UniFrac distance analysis produced similar re-
sults (Supplementary Figure S2).

After filtering out OTU with abundance <0.01%, 329
OTUs remained, aggregated to 118 genera. A moderate to
strong correlation between the changes after EEN and CD-
TREAT was observed for OTU (r ¼ 0.67, P < .001;
Figure 2D) and for genera (r ¼ 0.65, P < .001;
Supplementary Figure S3).

The relative abundance of 58 (49.3%) and 38 (32.3%)
genera changed significantly after EEN and CD-TREAT,
respectively. Twenty-eight of these genera changed in the
same direction for the 2 dietary interventions (Table 2).
Therefore, 48.3% of the EEN effect was replicated by CD-
TREAT and 73.7% of the CD-TREAT effect was observed

https://github.com/torognes/vsearch/wiki/VSEARCH-pipeline
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Table 1.Dietary Intake in the RCT in Healthy Volunteers (n ¼ 25) and Open-Label Trial in Children With Active CD (n ¼ 5)

RCT in healthy volunteers Open-label trial in patients with CD

Habitual
diet

EEN
actual intake

CD-TREAT
actual intake

EEN
prescribed

CD-TREAT
prescribed

CD-TREAT
actual intake

CD-TREAT
prescribed

Energy (kcal) 2093 (497) 2234 (428) 2407 (344)a,e 2183 (363) 2261 (282) 2298 (222) 2451 (519)
Energy (% TEE) 96.8 (21.44) 103.4 (16.7) 111.9 (14.8)a,e 100.4 (3.3) 104.9 (9.1) 98.7 (12.6) 103.1 (8.0)
Fat (%) 33.9 (4.6) 40.3 (0.8)a,f 42.6 (3.3)a,b,f 41.4 (0.0)a,f 43.9 (0.9)a,b,f 39.8 (3.9) 41.4 (2.5)
Saturated fat (%) 12.2 (2.7) 22.8 (0.5)a,c,f 21.4 (2.1)a,b,f 23.4 (0.0)a,f 21.2 (0.6)a,b,f 22.7 (2.8) 23.0 (1.9)
Protein (%) 13.6 (1.9) 14.2 (0.2) 19.0 (1.8)a,b,f 14.4 (0.0)a,d 18.3 (0.7)a,b,f 17.5 (2.4) 18.2 (0.8)
Carbohydrates (%) 49.9 (4.4) 45.4 (1.0)a,c,e,f 38.2 (3.2)a,b,f 43.2 (0.0)a,f 37.9 (0.4)a,b,f 41.1 (3.4) 39.0 (3.1)
Fiber (g/1000 kcal) 7.8 (2.2) 0.0 (0.0)a,f 4.7 (1.0)a,b,f 0.0 (0.0)a,f 4.2 (0.3)a,b,f 4.5 (0.4) 5.1 (0.8)
Gluten free No Yes Yes Yes Yes Yes Yes
Lactose free No Yes Yes Yes Yes Yes Yes
Alcohol free No Yes Yes Yes Yes Yes Yes

NOTE. Data are displayed as mean (standard deviation).
TEE, total energy expenditure.
aSignificantly different than “habitual diet.”
bSignificantly different than “EEN.”
cSignificantly different than “prescribed.”
dP < .05.
eP < .01.
fP < .001 for Fisher pairwise comparisons after general linear modeling with Box-Cox transformation.
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in EEN. Thirty genera changed significantly only during EEN
and 10 changed only during CD-TREAT (Supplementary
Tables S4–S6).

Similar findings were observed from OTU assignments.
In total, 109 OTUs (33.1%) for EEN and 64 OTUs (19.5%)
for CD-TREAT changed significantly compared with
Figure 2. Effect of experimental diets on the gut microbiome of
(eH). (B) Chao1 index. (C) NMDS using Bray-Curtis distances of
changes. (E) Principal component analysis of annotated metabo
nonmetric multidimensional scaling; PC, principal component.
baseline. The relative abundance of 47 OTUs was similarly
altered after EEN and CD-TREAT, indicating that 43.1% of
the EEN-induced OTU changes were replicated by CD-
TREAT and 73.4% of CD-TREAT-induced OTU changes
were observed in EEN. The OTUs that changed significantly
during only EEN or CD-TREAT were 62 or 17, respectively
healthy volunteers (n ¼ 24). (A) Exponential of Shannon index
OTU community structure. (D) Correlation of OTU abundance
lites. (F) Correlation of annotated metabolite changes. NMDS,



Table 2.Mean Difference in Relative Abundance (log10) of Genera and Fold Change (log2) in Metabolites That Similarly (P < .05)
Changed After EEN and CD-TREAT

EEN Adjusted P value CDT Adjusted P value

Genera increased during the 2 diets
Actinobacteria
Actinomyces 1.67 <.001 0.85 .003
Eggerthella 2.06 <.001 0.90 .001
Senegalimassilia 1.02 .008 0.63 .015

Bacteroidetes
Alistipes 1.01 .012 0.67 .024
Butyricimonas 1.16 .020 0.76 .014
Prevotella 1.83 <.001 0.57 .030

Firmicutes
Anaerofilum 1.65 <.001 0.93 .003
Anaerotruncus 1.21 <.001 1.32 <.001
Candidatus Soleaferrea 1.09 <.001 0.71 .014
Eisenbergiella 2.61 <.001 2.17 <.001
Family XIII AD3011 group 0.99 <.001 0.80 <.001
Flavonifractor 2.15 <.001 0.95 .003
Hungatella 1.72 <.001 1.04 .002
Lachnoclostridium 2.20 <.001 0.63 .002
Oscillibacter 1.97 .001 1.02 .006
Ruminiclostridium 5 0.96 .002 0.70 .014
Tyzzerella 4 1.68 <.001 1.14 .015

Proteobacteria
Bilophila 0.80 .024 1.14 .002
Escherichia, Shigella 1.71 <.001 1.59 .001

Genera decreased during the 2 diets
Actinobacteria
Bifidobacterium �1.66 <.001 �1.51 <.001

Firmicutes
Dialister �2.39 <.001 �1.00 .014
Faecalibacterium �1.82 <.001 �0.63 .011
Lachnospiraceae FCS020 group �0.85 .029 �0.62 .001
Lachnospiraceae UCG-004 �2.18 <.001 �0.95 .011
Pseudobutyrivibrio �3.35 <.001 �1.27 .002
Ruminiclostridium 6 �1.25 .004 �1.42 .018
Ruminococcaceae UCG-013 �1.94 <.001 �0.83 .011
Ruminococcus 1 �3.00 <.001 �3.78 <.001

Top 25 metabolites changed during the 2 diets (ranked by EEN change in P)
Metabolism of lipids
3a,7a,12a-Trihydroxy-5b-cholestanoate 1.76 <.001 1.21 <.001
3a,7a-Dihydroxy-5b-cholestanate 1.48 <.001 1.26 <.001
FA hydroxy(20:4) 1.70 <.001 0.64 .023
DG(15:0/20:4[5Z,8Z,11Z,14Z]/0:0) 2.73 <.001 1.75 <.001
DG(15:0/18:2[9Z,12Z]/0:0) �2.95 <.001 �1.41 .042
ST hydroxy(3:2/3:0/3:0) 2.01 <.001 1.06 .001
11-Acetoxy-3b,6a-dihydroxy-9,11-seco-5a-cholest-7-en-9-one 1.56 <.001 1.21 <.001
ST hydroxy(4:0) 1.45 <.001 1.23 <.001
26-Hydroxycholesterol 3-sulfate 2.07 <.001 1.47 <.001

Metabolism of proteins
Ala-Leu-Gln-Gln 3.43 <.001 3.79 <.001
Lys-Ala-Gln �4.52 <.001 �5.12 <.001
N2-acetyl-L-aminoadipate �3.85 <.001 �1.63 .006
N-succinyl-LL-2,6-diaminoheptanedioate �3.49 <.001 �1.04 .010

Metabolism of cofactors or vitamins
(1R,6R)-6-hydroxy-2-succinylcyclohexa-2,4-diene-1-carboxylate �2.75 <.001 �1.24 <.001

Biosynthesis of secondary metabolites
Antheraxanthin �2.88 <.001 �1.73 .002
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Table 2.Continued

EEN Adjusted P value CDT Adjusted P value

Unknown
Crotanecine �2.42 <.001 �1.05 <.001
Glutamylalanine �2.14 <.001 �0.90 .002
N-(3-hydroxybutanoyl)-L-homoserine �2.34 <.001 �0.84 .001
Formylpyruvate �2.44 <.001 �0.50 .018
6-hydroxy-indole-3-acetyl-valine 1.53 <.001 0.68 .001
Evodone 1.83 <.001 0.73 <.001
Androstane-3,17-diol dipropionate 2.68 <.001 1.18 <.001
130-hydroxy-&a;-tocopherol 2.03 <.001 1.30 <.001
(24R,240R)-fucosterol epoxide 2.10 <.001 1.17 <.001
N-acetyl-L-histidine �2.87 <.001 �1.45 <.001

NOTE. For the genera analysis, 96 samples from 24 healthy humans were used; for metabolite analysis, 100 samples from 25
healthy volunteers were used. P values were analyzed by paired t test or Wilcoxon signed-rank test.

April 2019 Treatment of Active CD With Food-Based Diet 1361

CL
IN
IC
AL

AT
(Supplementary Tables S7–S9). No OTU or genera demon-
strated a significant change in the opposite direction when
comparing EEN and CD-TREAT.

Fecal Bacterial Metabolites. Fecal pH increased to
alkaline levels, with a mean increase of 1.3 units during EEN
(P < .001) and 0.9 unit during CD-TREAT (P < .001).
Similarly, the fecal concentration of total sulfide increased
after the 2 dietary interventions (EEN, 213%; CD-TREAT,
109%; P < .001 for the 2 comparisons); free sulfide
decreased only after EEN. The mean concentrations of ace-
tate, propionate, and butyrate significantly decreased after
EEN and CD-TREAT, with a similar effect size observed
between the 2 diets. Branched-chain fatty acids increased
only after EEN and valerate decreased only after CD-TREAT
(Supplementary Table S2).

Fecal Metabolome. The number of annotated metab-
olites across all 100 samples was 886. The metabolome
significantly changed toward the same direction after EEN
(R2 ¼ 0.21, P < .001) and CD-TREAT (R2 ¼ 0.13, P < .001),
with 21% of the variation in the metabolome profile
explained by the 4 study time points (P < .001; Figure 2E).
The log2-fold baseline changes of metabolite abundance
were correlated between EEN and CD-TREAT (Spearman
r ¼ 0.38, P < .001; Figure 2F).

Of the 886 annotated metabolites, 675 (76.2%) and 573
(64.7%) changed significantly after EEN and CD-TREAT,
respectively (Supplementary Table S10). Two-hundred
ninety-four metabolites changed in the same direction af-
ter the 2 dietary interventions. Therefore, 43.6% of the EEN
effect was replicated by CD-TREAT and 51.3% of the CD-
TREAT effect was observed in EEN. Most of these metabo-
lites were associated to metabolism of lipids (n ¼ 90,
30.6%), proteins (n ¼ 47, 16.0%), carbohydrates (n ¼ 8,
2.7%), nucleotides (n ¼ 5, 1.7%), cofactors or vitamins (n ¼
7, 2.4%), biosynthesis of polyketides and nonribosomal
peptides (n ¼ 4, 1.4%), and secondary metabolites (n ¼ 9,
3.1%; Supplementary File S4). The 25 most statistically
significant metabolites ranked by P value for EEN change
are presented in Table 2. Metabolites that changed
significantly in only one of the diets are presented in
Supplementary File S4. Sixty-eight (7.7%) had changes in
the opposite direction for the 2 diets.

For all analyses performed, there were no significant
differences in the microbiome of the 2 pretreatment diets
(ie, pre-EEN and pre–CD-TREAT), indicating that the
washout period and replication of the pre-intervention diet
reverted the microbiome to the same baseline characteris-
tics (metabolome: R2 ¼ 0.01, P ¼ .391; microbiome:
R2 ¼ 0.01, P ¼ .187; Figure 2C and E).
Animal Experiments
Animal Characteristics. Twelve B27 and 8 B7 rats

were included. Each group included 2 male and 2 female
rats with no group differences in weight (mean 285.4 g, SD
80.3). Only animals on the experimental diets, including
B27-EEN, B27-CD-TREAT, and B7-EEN, gained weight
(Supplementary Table S11).

The B27-CONTROL group had higher colonic and ileal
inflammation and fecal water content than the B7-CONTROL
group (Figure 3, Supplementary Figure S4, Supplementary
Tables S11 and S12). The B27-CONTROL microbiome was
characterized by compositional and functional dysbiosis,
including decreased fecal, cecal bacterial diversity, and
butyrate production (Figure 4, Supplementary Tables S11
and S13–S17, Supplementary Figure S5).

Gut Histopathology and Cytokine Expression in
Ileum. The histopathology scores were highly correlated
between the 2 assessors (ileum: Spearman r ¼ 0.76, P <
.001; colon: Spearman r ¼ 0.84, P < .001). Individual
components of the histopathology scoring are presented in
Supplementary Table S12 and representative sections are
presented in Figure 3B, Supplementary Figure S4, and
Supplementary File S5. EEN and CD-TREAT ameliorated
ileitis compared with the B27-CONTROL group (Figure 3;
P ¼ .015, P ¼ .044). No such effect was observed for colonic
inflammation. There was no effect of EEN on B7 gut
inflammation.

Expression of genes encoding for TNF-a, IL-6, IL-10, and
CXCL-1 in the ileum did not differ significantly between the



Figure 3. (A) Rat ileal histopathology scores. (B) Representative sections of all (n ¼ 20) animal groups (P values for Fisher
pairwise comparisons by general linear model).

1362 Svolos et al Gastroenterology Vol. 156, No. 5

CLINICAL
AT
B7-CONTROL and B27-CONTROL groups despite the higher
average values observed in the latter group. When we
looked at the effect of the experimental diets, the B27-CD-
TREAT group had lower mean expression of IL-6 than the
B27-CONTROL group (P ¼ .036), and although CXCL-1 also
was lower, this did not reach significance (P ¼ .089).
Regardless of intervention, fecal water content did not
change in the B27 rats. A significant increase was observed
in the B7-EEN group (Supplementary Tables S11 and S12).

Gut Luminal Content Characteristics. The 2 exper-
imental diets decreased the weight of cecal luminal contents
in the B27 animals (EEN, P < .001; CD-TREAT, P ¼ .017
compared with B27-CONTROL). This effect also was
observed in the colon of the B27-EEN group (P ¼ .040) and
in the cecum and colon of the B7-EEN group
(Supplementary Table S13).

Gut Microbiome. The B27-EEN and B27-CD-TREAT
groups had a higher concentration of total bacteria in cecal
luminal contents and in fecal samples than the B27-
CONTROL group (Supplementary Table S13). Rat micro-
biome was characterized in 100 fecal, 20 cecal, and 17
colonic luminal contents and 19 cecal and 10 colonic tissue
samples after removing samples with low reads (<5000).
There were 1072 unique OTUs and 218 unique genera.

The 2 experimental diets shifted the B27 fecal and cecal
luminal microbiome structures in the same direction.
Microbiome signatures were significantly different than the
B27-CONTROL group in fecal samples (EEN: R2 ¼ 0.45; CD-
TREAT: R2 ¼ 0.43; P ¼ .034 for the 2 comparisons) and
cecal luminal contents (EEN: R2 ¼ 0.47; CD-TREAT: R2 ¼
0.54; P ¼ .029 for the 2 comparisons; Figure 4C and D). The
effect of EEN and CD-TREAT on the B27 fecal microbiome
was already evident from the first week of intervention
(EEN: R2 ¼ 0.57; CD-TREAT: R2 ¼ 0.58; P ¼ .030 for the 2
comparisons). A similar effect was observed for the B7-EEN
group compared with the B7-CONTROL group (fecal: R2 ¼
0.43, P ¼ .034; cecal: R2 ¼ 0.54, P ¼ .029). Nonmetric
multidimensional scaling plots for the microbiome of cecal
tissue, colon tissue, and colon luminal contents are pre-
sented in Supplementary Figure S5. Analysis using weighted
UniFrac distances produced similar results (Supplementary
Figures S6 and S7).

After the 4-week intervention, the B27-CD-TREAT group
had a higher Shannon a-diversity index in feces (P ¼ .020)
and cecal luminal contents (P ¼ .006) than the B27-
CONTROL group. A similar pattern of effect was observed
for the B27-EEN group, but did not reach significance
(Figure 4A and B).

After filtering out OTUs with abundance <0.01%, 92
genera remained at baseline, 109 at 7 days and 105 at 28
days of intervention in fecal samples, and 104 genera were
assigned to cecal luminal contents. To assess the effect of
the experimental diets on B27 microbiome, we compared
the genus relative abundance of fecal samples and cecal
luminal contents for the B27-EEN and B27-CD-TREAT
groups against the B27-CONTROL group. Of the 105 genera
tested in cecal luminal contents, the relative abundance of
27 (25.7%) for the B27-EEN group and of 25 (23.8%) for
the B27-CD-TREAT group significantly differed compared
with the B27-CONTROL group. The relative abundance of 13
genera responded similarly for EEN and CD-TREAT, indi-
cating that 48% of EEN-induced changes were replicated by
CD-TREAT and 52% of CD-TREAT–induced changes were
observed in EEN. Twenty-six genera changed in the opposite
direction between CD-TREAT and EEN (Supplementary
Tables S18–S20). Similar effects were observed in fecal
samples (Supplementary Tables S21–S26) and for OTU as-
signments (Supplementary Tables S27–S35), although the
small sample precluded robust statistical analysis.

Gut Bacterial Metabolites. The B27-EEN and B27-
CD-TREAT groups had higher cecal concentrations of
valerate, isobutyrate, and isovalerate (P < .001 for all
comparisons) compared with the B27-CONTROL group. In
addition, the B27-CD-TREAT group had more butyrate (P ¼
.004) and propionate (P ¼ .021) in the cecum, whereas
the B27-EEN group had lower acetate (P < .001) and



Figure 4. Chao1 and exponential of Shannon index (eH) of (A) rat fecal microbiome during experimental diets and (B) rat cecal
luminal content microbiome. NMDS using Bray-Curtis distances of OTU community structure of (C) rat fecal microbiome
during experimental diets and (D) rat cecal luminal content microbiome in all animals (n ¼ 20). NMDS, nonmetric multidi-
mensional scaling.

April 2019 Treatment of Active CD With Food-Based Diet 1363

CL
IN
IC
AL

AT
propionate (P ¼ .003). For total amount of SCFA in the
entire cecum, a more reliable proxy of net production, in the
B27 groups, EEN decreased acetate, propionate, and buty-
rate (P < .001 for all comparisons) and increased iso-
butyrate (P ¼ .028) and, to a lesser extent, isovalerate (P ¼
.057). CD-TREAT increased isobutyrate (P < .001) and iso-
valerate (P ¼ .001) and tended to decrease (P ¼ .096) total
cecal amount of acetate. In the B7 groups, the effect of EEN
on cecal concentration and total SCFA production was
similar to that of the B27 groups (Supplementary
Table S13).

In support of these data, sequential data from
the weekly fecal sample collection showed that EEN and
CD-TREAT significantly decreased the concentrations of
acetate and propionate and increased those of isobutyrate
and isovalerate in B27 groups. Similar effects
were observed for the B7-EEN group (Supplementary
Table S11).



Figure 5. (A) wPCDAI
score and (B) FC in chil-
dren with CD at study
enrollment and at 4 and
8 weeks on CD-TREAT
(P values for Fisher
pairwise comparisons by
general linear model).
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Open-Label Trial in Patients With Active CD
Five children with mild to moderate active luminal dis-

ease (wPCDAI score 22.5–42.5) were enrolled from October
2017 to April 2018 and followed up until June 2018. All had
been treated previously with EEN. Three patients were on
monotherapy with thiopurine, 1 was on combination ther-
apy with thiopurine and anti-TNF, and 1 had no background
treatment (Supplementary Table S36). Compliance to CD-
TREAT was high (Table 1). Four children (80%)
completed 8 weeks of treatment and 1 child discontinued
CD-TREAT after 9 days because of symptom exacerbation.

After 4 weeks on CD-TREAT, 60% (3 of 5) clinically
responded (wPCDAI score change > 17.5) and 40% (2 of 5)
were in clinical remission (wPCDAI score < 12.5). At the
end of 8 weeks of treatment, 80% (4 of 5) clinically
responded and 60% (3 of 5) entered clinical remission. In
the 4 children who completed 8 weeks of CD-TREAT, the
wPCDAI score decreased from a baseline mean of 32.5 (SD
7.5) to 11.3 (SD 9.2) and 7.5 (SD 7.4) at 4 (P ¼ .012) and 8
(P ¼ .005) weeks, respectively (Figure 5A and
Supplementary Table S37). One patient had increased C-
reactive protein and decreased albumin at CD-TREAT initi-
ation; these inflammatory markers normalized by treatment
completion. All 4 patients who completed 8 weeks on CD-
TREAT had increased FC (range 307–2602 mg/kg) at
treatment initiation (Figure 5B and Supplementary
Table S36). By weeks 4 and 8 on CD-TREAT, the baseline
concentration of FC significantly decreased by 53% and
55%, respectively (baseline: mean 1960 mg/kg, SD 1104; 4
weeks: mean 981 mg/kg, SD 690; 8 weeks: mean 1042 mg/
kg, SD 776). In 1 patient (25%), FC decreased to normal
(<50 mg/kg) levels (Figure 5B). Interestingly, FC also
decreased in the patient who discontinued CD-TREAT after
9 days (2026 mg/kg at baseline vs 1072 mg/kg at 9 days).
Discussion
This series of studies aimed to develop an ordinary food-

based therapy for active CD using EEN as an exemplar of
effective nutritional therapy. EEN is likely to work by
exclusion or inclusion of dietary components that modify an
inflammatory microbiome.8 The specific dietary compo-
nents and how these interact with the gut microbiome are
not yet fully elucidated. In the absence of detailed
knowledge, we developed CD-TREAT, a personalized and
tolerable diet with comparable composition to EEN. We
anticipated that CD-TREAT would induce similar broad-
spectrum alterations in the gut microbiome and provide
similar efficacy in treating gut inflammation and improving
clinical activity.

Our RCT in healthy volunteers confirmed the a priori
hypothesis that CD-TREAT would induce similar effects on
the human microbiome as EEN. Applying multifaceted, tar-
geted, and untargeted multi-omics methodology, we inter-
rogated changes in microbiome profiling and metabolic
signatures before and after the 2 diets. The microbiome
composition, fecal pH, SCFA, total sulfide, fecal bacterial
load, and fecal metabolome significantly changed in the
same direction for the 2 diets with many parallel changes in
specific metabolites and species. Some effects seen in the
present study have been previously associated with gut
dysbiosis or an “unhealthy” microbiome, but paradoxically
associated with decreased disease activity and amelioration
of colonic inflammation in children with active CD on
EEN.6,7 This paradox remains one of the fundamental, yet
unresolved, questions regarding the mechanism of EEN ac-
tion and what this in turn indicates about the pathophysi-
ology of CD.25 EEN could deplete the nutrients necessary for
bacterial growth, such as fiber, or create a luminal micro-
environment where the functionality of inflammatory mi-
crobes is suppressed or altered, blunting activation of the
gut-associated immune system in patients with CD. This
theoretical mechanism of EEN action also is supported by
the clinical effectiveness of antibiotics26 and the relative
ineffectiveness of probiotics, prebiotics, and fiber
interventions aiming to reconstitute a “healthy”
microbiome.27

Several effects observed in the healthy volunteer RCT
were replicated in our animal model of gut inflammation,
which features a microbial dysbiosis similar to human CD.19

Encouragingly, the changes in metabolites and microbiome
composition in fecal samples, cecal luminal contents, and
mucosa-associated microbiome were similar between the 2
experimental diets and significantly different than the B27-
CONTROL group.

The effects of the 2 experimental diets on secondary
outcomes, such as abundance of species and metabolites,
were very similar, but not always the same. This was
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anticipated because CD-TREAT is a far more diverse diet
than EEN, the number of microbial signals assessed at one
time was large, and inter- and intraindividual variations in
microbiome characteristics were considerable, effects we
also observed even after the end of intervention solely with
EEN (Figure 2C). Importantly, unlike EEN, CD-TREAT is not
an identical diet in all individuals. This means interindi-
vidual food differences can be significant within the CD-
TREAT group and so the potent effect of ingredients in
this food (eg, phenols, type of amino acids, and fiber) on the
microbiome also will naturally differ. In truth, one advan-
tage of the natural variability inherent in CD-TREAT is the
possibility of identifying food-based signals in larger studies
of efficacy. Transgressions from prescribed CD-TREAT are
less likely to explain microbial differences because pre-
scribed and reported intake did not differ. Moreover, a
longer intervention might have mitigated the deviation in
microbiome effects between the 2 diets. Indeed, this was
observed in the animal experiments in which b-diversity
was more similar after 28 days than after 7 days of inter-
vention (Figure 4C).

However, it is noteworthy that several changes in the
taxon abundance of certain species and metabolites were
similar to those described before in children with CD on
EEN.6,7 Specifically, the abundance of genera belonging to
Actinobacteria, Bacteroidetes, and Firmicutes, such as Bifi-
dobacterium, Alistipes, Dialister, Faecalibacterium, Pseudo-
butyrivibrio, and Ruminococcus, fecal pH, metabolites such
as SCFA, sulfide, and adenine substructures, which signifi-
cantly changed in children with CD after EEN,6–8,24 also
changed in the present RCT. Likewise, differences in fecal
amino acid and lipid concentrations and metabolism have
been described between patients with CD and healthy
controls,28 inferring their role in disease etiology, several of
which also changed during CD-TREAT and EEN. Although
important microbial messages emerge from these studies,
the main purpose of this study was to demonstrate
comparability of microbial changes and, by proxy, putative
microbial mechanism of action and not to look specifically at
the mechanism of CD-TREAT or EEN action. Such a study is
important but would be better specifically addressed by
exploring CD-TREAT against EEN in patients with active CD.

The attenuation of ileitis histopathology scores and the
lower expression of IL-6 and CXCL-1 in our B27-CD-TREAT
rat model also indicate that CD-TREAT can deliver thera-
peutic benefit in a disease state strongly associated with
microbial dysbiosis, much like EEN in CD. In particular, the
effect of EEN on ileal inflammation in our animals aligns
with evidence of its efficacy in ileal mucosal healing in pe-
diatric CD.4

Because preclinical findings require replication in clin-
ical trials, we next tested CD-TREAT in children with active
CD. CD-TREAT produced the same clinical efficacy signal
and the same decrease in FC as in children with newly
diagnosed CD on EEN.4,5 Adherence to CD-TREAT was high,
suggesting it was relatively easy to follow, although meals
were cooked and provided free to explore the efficacy signal
under maximum treatment adherence conditions. In this
small number of patients, it is not possible to test whether
clinical efficacy is associated with an EEN-like modification
of the microbiome.

We could not directly relate our findings with those from
clinical research of other exclusion diets.3 Although such
previous studies have shown encouraging efficacy signals in
uncontrolled trials in patients with active CD, they lack
mechanistic evidence that would allow a direct comparison
with the present data. However, we argue that these diets
work by decreasing exposure to free sugars, dietary fat, or
food additives and emulsifiers or by promoting gut “nor-
mobiosis.” Indeed, several EEN feeds used in the manage-
ment of active CD also are rich in fat and sucrose, contain
maltodextrins and carrageenan, and lack fiber, and as dis-
cussed earlier, EEN-induced dysbiosis is paradoxically
associated with mucosal healing.6 The clinical efficacy sig-
nals of these diets could be attributed to other excluded
components yet undescribed.

EEN acceptability and long-term use, particularly in
adult patients, might be limited by taste fatigue and poor
palatability. In this study, CD-TREAT ranked as more
palatable, easier to follow, more satiating, and causing fewer
gastrointestinal side effects than EEN. These observations
are in agreement with the opinions of families of children
with CD, previously treated with EEN, who reported that a
solid food-based alternative would be preferable.29 We did
not observe differences in satisfaction, fullness, and desire
to eat ratings or in gastrointestinal symptoms, such as
abdominal discomfort, passing wind, and constipation, be-
tween the 2 diets. This is likely to be because the diets were
isocaloric, had very similar composition, including low fiber
content, and perhaps most importantly, the duration of
intervention was not long enough to observe a significant
effect.

The strengths of the study are the well-designed ex-
periments in humans, for whom the provision of the CD-
TREAT was freely available to maximize adherence; the
replication of our findings in animals with gut inflammation
and microbiome dysbiosis similar to human CD; the exten-
sion of these experiments to demonstrate an early pilot
signal of efficacy in our target clinical population; and the
comprehensive multi-omics methodology applied.

However, the healthy human microbiome analysis was
solely performed on fecal samples and thus might not
reflect the mucosal microbiome. Undertaking repeat colo-
noscopy assessments in healthy volunteers would be
ethically unacceptable. However, the microbial signals of
the 2 experimental diets on the fecal and cecal luminal
contents and tissue specimens were similar in the animal
experiments. The duration of the intervention lasted for 7
days in the human RCT and for 4 weeks in the animal
experiment, which is shorter than the 6–8 weeks of EEN
that patients with CD typically receive. However, the im-
mediate response of the fecal rat microbiome within the
first week of treatment, with fewer changes observed
thereafter, suggests the observation was long enough, at
least for the main study outcomes. We also believe that the
effect of animal overfeeding and weight gain on the gut
microbiome was insignificant because comparable micro-
bial signals were observed in the healthy volunteer RCT
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and previously in children with CD gaining weight during
EEN.6,7 To ensure the most conservative approach to ani-
mal experiments, and for animal welfare, we kept the
group sizes modest; hence, this experiment might be un-
derpowered for additional and exploratory outcomes, with
substantial inter-animal variation, such as the effects
on specific taxon abundance. This also might have been
the issue in the expression of some ileal tissue cytokines,
in which, despite apparent mean differences between
groups, the small number of animals and substantial inter-
animal variation, as observed previously,19 weakened
statistical power. However, for a preliminary study devel-
oping and supporting our core hypothesis, the rat model,
as reported, provided sufficient support to subsequently
interrogate CD-TREAT in our pilot trial in patients with
active CD.

In addition, for some outcome measures for which we
infer equivalence between the EEN and CD-TREAT in-
terventions, we might have needed a larger sample. Such
outcome measures could include the absence of differences
in the expression of cytokines in the ileum of the animal
experiments and some microbiome characteristics in the
RCT of healthy volunteers. However, the primary objective
of these preclinical studies was to explore the effects of each
experimental diet against the control diet, with the equiva-
lence between experimental diets studied as a secondary,
yet important, objective. Likewise, the efficacy signals of CD-
TREAT in children with CD need replication in larger studies
and against EEN.
Conclusion
We have produced robust proof-of-concept data to

support a novel dietary treatment trialed in healthy volun-
teers, subsequently in rats with gut inflammation and
microbiome dysbiosis similar to human CD, and in a pilot
trial in children with active CD. With the evidence produced
within this scientific body of work, the efficacy of CD-TREAT
on human CD clinical outcomes needs to be ascertained in
large well-controlled clinical trials and with inclusion of
mechanistic studies to explore microbial signals of response.
If successful, CD-TREAT has the potential to be used inter-
changeably with EEN, particularly in adults in whom EEN
uptake is low, and raises the prospect of long-term dietary
maintenance therapy.
Supplementary Material
Note: To access the supplementary material accompanying
this article, visit the online version of Gastroenterology at
www.gastrojournal.org, and at https://doi.org/10.1053/j.
gastro.2018.12.002.
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Supplementary Methods

RCT in Healthy Volunteers
Acceptability of Interventions. Appetite, gastroin-

testinal symptoms, and adherence to the experimental diets
were assessed by self-reported questionnaire. This was
compiled and checked for content validity by the research
team and for readability by lay people. The questionnaire
collected information from each participant on the partici-
pant’s appetite on days 1 and 6 of each intervention using
visual analog scales extracted from an existing question-
naire.1 Gastrointestinal symptoms and level of adherence to
the diet also were assessed at the end of each intervention
using Likert scales from a validated questionnaire.2 Addi-
tional meals outside the experimental diets were recorded.

Fecal Sample Collection. The entire bowel movement
was collected, stored immediately under anaerobic (Oxoid
AnaeroGen Sachet; ThermoFisher Scientific) cold condi-
tions, and processed within 60 minutes of defecation. The
entire bowel movement was weighed, homogenized, and
stored appropriately for downstream methods.

Untargeted Fecal Metabolomics. Extraction. Freeze-
dried fecal samples were extracted by chloroform, methanol,
and water at a volume ratio of 1:3:1. The extraction was
carried out by mixing extraction mixture 800 mL with a 20-
mg freeze-dried fecal sample. The supernatant was recov-
ered to another vial and extracts were stored at �80�C until
liquid chromatography–mass spectrometry (LC-MS) analysis.

Solvents and Chemicals. High-performance LC (HPLC)-
grade acetonitrile, chloroform, and water were obtained
from ThermoFisher Scientific. Ammonium carbonate and
methanol were purchased from Sigma-Aldrich (Poole,
Dorset, UK). HPLC-grade water was produced in house by a
Direct-Q 3 Ultrapure water purification system (Millipore,
Watford, UK). The metabolite standards were obtained from
Sigma-Aldrich and were prepared as previously described.3

HPLC Conditions. Mobile Phase and Column. The
mobile phase solutions were freshly prepared and stored at
room temperature for up to 48 hours. Mobile phase A
(ammonium carbonate buffer 20 mmol/L, pH 9.2) was
prepared by dissolving ammonium carbonate 1.92 g in
HPLC-grade water 800 mL followed by adjustment to pH
9.2 with ammonia solution and then made up to 1 L. Mobile
phase B was prepared using HPLC-grade acetonitrile. The
column used was a ZIC-pHILIC (L150 � 4.6-mm inner
diameter, 5 mm, polymeric bead support) column from
Hichrom Ltd (Reading, UK). The column was attached to a
ZIC-pHILIC guard column.

HPLC Setup. A gradient elution method
(Supplementary Table 1) was used as described previ-
ously.3 The flow rate was set to 0.3 mL/min.

Orbitrap Exactive Mass-Spectrometer
Setup. Samples were analyzed using an Accela HPLC sys-
tem connected to an Orbitrap Exactive mass spectrometer
(ThermoFisher Scientific, Bremen, Germany). The quality of
the data and identified metabolites were confirmed by
standard mixtures introduced within the running
sequence.4 During the analysis, peak characteristics such as

width and height were determined using relative SD values.
The acceptable relative SD value was set to not exceed 20%
for each standard and the retention time shift should not be
more than 0.3 minute between the initial and final sample
in a sequence.

Data Extraction. The raw files for the samples were
extracted and processed using mzMatch/Peak ML metab-
olomics data analysis.5 IDEOM provided a free data
extraction application that can identify spectrum peaks
while considering noise sources in the LC-MS analysis. This
macro-based spreadsheet was obtained from http://
mzmatch.sourceforge.net/ideom.htm and the analysis de-
pends on the LC-MS data extraction method.6 The R package
from http://www.r-project.org was preinstalled to create a
readable environment for LC-MS processing.7 The identified
metabolites and quality of peaks were examined manually
using different databases, including HMDB (http://www.
hmdb.ca/), KEGG (http://www.genome.jp/kegg/), and
LIPID MAPS (http://www.lipidmaps.org/).

Animal Experiments
Gut Histopathology. Colonic and ileal specimens were

fixed in 10% formalin until the tissue was embedded in
paraffin, stained with hematoxylin and eosin, and evaluated
by 2 pathologists (R.K. and J.S.) in a blinded manner. Tissue
sections (5 mm) were stained with hematoxylin and eosin,
imaged (EVOS FL Auto Cell Imaging System, Life Technol-
ogies, Carlsbad, CA), and evaluated by 2 pathologists (R.K.
and J.S.) in a blinded manner.

The colon was assessed for leukocyte infiltration,
mucosal damage, neutrophil infiltration, crypt abscesses or
hyperplasia, and goblet cell depletion. The ileum was
assessed for leukocyte infiltration, villous fusion, shortening
or hyperplasia, and mucosal necrosis, erosion, and ulcera-
tion. Each parameter was scored from 0 to 3 (0 ¼ no; 1 ¼
mild; 2 ¼ moderate; 3 ¼ severe presence). The sum of the
individual parameters generated an ileal (minimum–
maximum score 0–12) and a colonic (minimum–maximum
score 0–15) inflammatory score.8

Expression of Cytokines in Ileum. The expression of
the following genes was quantified: TNF-a (GenBank
accession number Rn99999017_m1), IL-6 (GenBank acces-
sion number Rn01410330_m1), IL-10 (GenBank accession
number Rn01483988_g1), IL-1b (GenBank accession num-
ber Rn00580432_m1), and CXCL-1 (GenBank accession
number Rn00578225_m1). Amplification reactions were
analyzed by relative quantification using the comparative
threshold cycle method and using the housekeeping genes
GAPDH (GenBank accession number Rn01775763_g1) and
RPLNO (GenBank accession number Rn03302271_gH) as
endogenous controls. Data are displayed as fold change of
gene expression against the average of B7-CONTROL
samples.

Bioinformatics. We retained the paired-end reads
between 225 bp and 275 bp in length, overlapped the reads,
and performed OTU clustering on de-replicated reads after
removing singletons and using 98% similarity. Afterward,
we removed chimera based on the de novo approach
(using the most abundant de-replicated reads) and the
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reference-based approach (as mentioned in the link) and
generated OTU at 97% similarity with taxonomy assigned
using functions given in the Dada2 pipeline after filtering
out OTUs with mean proportional abundance <0.01%.

Statistics
Power Calculation. The power calculation for the RCT

of health volunteers was revised after completion of the first
10 participants, at which point we were already powered to
detect significant changes for SCFA and bacterial load dur-
ing EEN and CD-TREAT (Supplementary Table 2). However,
we continued recruitment to our original target number of
25 participants to maximize statistical power for secondary
outcomes of the study in which higher interindividual
variation and potentially smaller effect size (ie, 16S rRNA
sequencing, metabolome) were expected.
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Supplementary Figure S2. NMDS using weighted UniFrac
distances of the 3% OTU community structures during di-
etary interventions on healthy human fecal microbiome (n ¼
24). Adonis for A and B: R2 ¼ 0.11, adjusted P ¼ .001; Adonis
for C and D: R2 ¼ 0.03, adjusted P ¼ .031; Adonis for A–C:
R2 ¼ 0.008, adjusted P ¼ .080. NMDS, nonmetric multidi-
mensional scaling.

Supplementary Figure S3. Scatterplot with genera changes
before and after EEN and CD-TREAT in the crossover RCT of
healthy volunteers (n ¼ 24).

Supplementary Figure S1. Example CD-TREAT meals prepared by the catering company.
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Supplementary Figure S4. Representative hematoxylin and eosin stained sections of the colon of EEN, CD-TREAT, and
control HLA-B27 rats and EEN and control HLA-B7 rats. Colon tissue sections were visualized and digital images were
captured using an EVOS FL Auto Cell Imaging System (Life Technologies) with a 10� objective (in all cases, data of all studied
animals were included; n ¼ 20).

Supplementary Figure S5. NMDS using Bray-Curtis distances of the 3% OTU community structures of B27-CONTROL, B27-
EEN, B27-CD-TREAT, B7-CONTROL, and B7-EEN animals’ (A) cecum tissue microbiome (n ¼ 19), (B) colon tissue micro-
biome (n ¼ 10), and (C) colon content microbiome at sacrifice (n ¼ 17). NMDS, nonmetric multidimensional scaling.
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Supplementary Figure S6. NMDS using weighted UniFrac
distances of the 3% OTU community structures of the rat
cecal luminal content microbiome at sacrifice (n ¼ 20). Adonis
for B27-EEN and B27-CONTROL: R2 ¼ 0.45, adjusted P ¼
.038; Adonis for B27-CD-TREAT and B27-CONTROL: R2 ¼
0.79, adjusted P ¼ .038; Adonis for B27-CONTROL and B7-
CONTROL: R2 ¼ 0.35, adjusted P ¼ .094; Adonis for B7-EEN
and B7-CONTROL: R2 ¼ 0.63, adjusted P ¼ .038. NMDS,
nonmetric multidimensional scaling.

Supplementary Figure S7. NMDS using weighted UniFrac distances of the 3% OTU community structures of the rat fecal
microbiome during the course of dietary interventions (n ¼ 20). NMDS, nonmetric multidimensional scaling.
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Supplementary Table 1.Gradient Elution Program Applied
for ZIC-pHILIC Column in LC-MS
Analysis

Time (min)
Mobile

phase A (%)
Mobile

phase B (%)
Flow rate
(mL/min)

0 20 80 0.3
30 80 20 0.3
31 92 8 0.3
36 92 8 0.3
37 20 80 0.3
46 20 80 0.3

Supplementary Table 2.Fecal Sample Characteristics, Metabolites, and Bacterial Load Before and After Dietary EEN and
CD-TREAT in the First 10 Participants Who Completed the Healthy Volunteers RCT (n ¼ 40; Fecal
Samples From 10 Participants)

Before EEN After EEN Before CD-TREAT After CD-TREAT

Bristol Stool Form Scale 3.7 (1.6) 1.6 (1.0)a,e 3.0 (1.3) 1.9 (0.9)a,c

Fecal pH 7.0 (0.5) 8.2 (0.2a,f 7.0 (0.6 7.7 (0.4)a,b,e

Acetate (mmol/g) 67.6 (11.9) 48.6 (14.4)a,d 76.9 (17.6) 65.5 (19.8)a,b,c,e

Propionate (mmol/g) 15.6 (5.4) 9.9 (4.9)a,e 15.8 (5.8) 13.3 (9.2)a,d

Butyrate (mmol/g) 11.9 (5.0) 6.3 (2.5)a,e 14.1 (10.3) 7.9 (5.4a,e

Valerate (mmol/g) 2.2 (0.6) 2.0 (0.8) 2.4 (1.5) 1.9 (1.1)
Isobutyrate (mmol/g) 1.7 (0.8) 2.4 (1.0)a,d 2.0 (1.1) 2.1 (1.0)
Isovalerate (mmol/g) 1.8 (1.0) 2.7 (1.1)a,e 2.1 (1.4) 2.3 (1.1)
Free sulfide (nmol/g) 5.1 (2.6) 1.5 (1.6)a,f 4.2 (1.0) 6.0 (4.7)c,f

Total sulfide (nmol/g) 82.2 (62.9) 250.4 (83.7)a,f 66.5 (30.6) 141.4 (69.8)a,b,e

Total bacteria 11.3 (0.2) 11.1 (0.2)a,e 11.2 (0.2) 11.0 (0.3)a,d

NOTE. Data are displayed as mean (standard deviation). Total bacteria are displayed as log10 16S rRNA gene copy number per
gram of stool.
aSignificant difference between before EEN and after EEN or before CD-TREAT and after CD-TREAT.
bSignificant difference between after EEN and after CD-TREAT.
cP < .1.
dP < .05.
eP < .01.
fP < .001 for Fisher pairwise comparisons after general linear modeling with Box-Cox transformation.
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