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Abstract 
This study examines the influences on fluid flow within a shale outcrop where the networks of two 

distinct palaeo-flow episodes have been recorded by calcite-filled veins and green alteration halos. 

Such direct visualisation of flow networks is relatively rare and provides valuable information of fluid 

flow behaviour between core and seismic scale.  

Detailed field mapping, fracture data, and sedimentary logging were used over a 270m2 area to 

characterise the palaeo-fluid flow networks in the shale. Distal remnants of turbidite flow deposits 

are present within the shale as very thin (1-10mm) fine grained sandstone bands. The shale is cut by 

a series of conjugate faults and an associated fracture network; all at a scale smaller than seismic 

detection thresholds. The flow episodes utilised fluid flow networks consisting of subgroups of both 

the fractures and the thin turbidites. The first fluid flow episode network was mainly comprised of 

thin turbidites and shear fractures, whereas the network of the second fluid flow episode was 

primarily small joints (opening mode fractures) connecting the turbidites.   

The distribution of turbidite thicknesses follows a negative exponential trend; which reflects the 

distribution of thicker turbidites recorded in previous studies. Fracture density varies on either side 

of faults, and is highest in an area between closely spaced faults. Better predictions of hydraulic 

properties of sedimentary-structural networks for resource evaluation can be informed from such 

outcrop sub-seismic scale characterisation. These relationships between the sub-seismic features 

could be applied when populating discrete fracture networks models, for example, to investigate 

such sedimentary-structural flow networks in exploration settings.  

1. Introduction 
Shales, mudstones or mudrocks (shale differentiated by higher fissility) account for approximately 

two thirds of the sedimentary rock covering the Earth's surface (Aplin and Macquaker 1999). Many 

industries require a solid understanding of the hydraulic properties of shales, for instance as top 

seals for conventional oil and gas reservoirs or CO2 storage targets (Gaus 2010); reservoirs for 

unconventional hydrocarbon production (Gale et al. 2014); geological disposal sites for radioactive 

waste disposal (Kim et al. 2011); geothermal resources (Wilmot-Noller and Daly 2014). However, 

there are issues with being able to capture their permeability properties at the appropriate scale and 
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then being able to upscale to whole reservoir perspective. Shales typically have low permeability 

(Dewhurst and Siggins 2006, Armitage et al. 2011, Aplin and MacQuaker 2011) and must be 

stimulated using hydraulic fracture treatments for hydrocarbon production. In order to enhance 

production it is advantageous if the hydraulic fractures connect the wellbore with higher 

permeability structures in the rock. Natural fractures, even if sealed, can be reactivated during 

treatments, and if open fracture networks are present, fluid flow will be strongly controlled by the 

linked natural and stimulated fracture network (Gale et al 2007). Shale units can also be interbedded 

with coarser material, such as siltstone or sandstone, due to depositional cycles such as turbidite 

flows (figure 2.13, Bouma et al. 1962). However the difficulty of making in-situ observations of the 

effects of thin, high-permeability beds (sometimes referred to as “thief zones” in thicker units) has 

hampered efforts to understand their effect on flow within a larger network.  

Fracture networks in tight rocks may be beneficial because they can increase completion quality in 

shale gas and tight gas wells (e.g. Glaser et al. 2013), or may be detrimental by providing leakage 

pathways (Gaus 2010). Fault zones in sedimentary environments have been extensively studied for 

their flow properties (Lehner and Pilaar, 1997; Yielding et al., 1997; Dockrill and Shipton 2010; 

Davatzes and Aydin 2003; Eichhubl et al., 2005) due to the role of faults in compartmentalisation of 

reservoirs and hydrocarbon trapping. Faults can also provide conduits for along-fault flow as 

evidenced by diagenetic alteration surrounding fault related fractures e.g. mineralisation induced 

colour changes (Eichhubl et al. 2009), mineralisation within fractures ( Zhao et al. 2007, Kampman et 

al. 2012), modern springs (Fairley and Hinds 2004) and ancient CO2 rich springs in the form of 

travertine mounds (Burnside et al. 2013).  

Seismic techniques occasionally permit direct visualisation of fluid moving through faulted shales 

(i.e. seals) in the subsurface (Cartwright et al. 2007, Haney et al. 2005), but typically the structures 

controlling flow on the scale of the well are too small to be captured in reflection seismic data. On 

the other hand, cores from wellbores may only capture a small part of the permeability network and 

may not be representative of the larger scale. While many studies examine matrix permeability of 

core samples (e.g. Bolton et al. 2000, Aplin and Macquaker 2011), these are not representative of 

the bulk permeability of a fractured or faulted shale.  Some studies have focussed on fault-related 

fractures, while others include the widely developed opening-mode fractures that occur in panels of 

rock away from faults (e.g. Lash and Engelder 2009, Gale et al. 2007, Evans 1994). 

Outcrop analogue studies of fault and fracture systems in shale can be a useful scale bridge 

between core and seismic but are hampered due to the susceptibility of the rock to erosion leading 

to poor quality exposures. We investigated an exceptionally well-exposed shale unit hosting very 

thin (<1cm) sandy remnants of distal turbidite flows (Ingham 1978) and which is cut by sub-seismic 

scale faults. Distal regions of turbidite systems have previously been studied to understand their 

depositional environments (e.g. Crimes 1973), or the influence of turbidite sheet connectivity on 

hydrocarbon migration (Walker 1978). They are generally expected to form seals to hydrocarbon 

flow since any thin coarser grained layers lack vertical connectivity. We examine whether the sealing 

potential of shales in such distal turbidite regions is compromised by the presence of vertically 

connected subseismic fault and fracture networks in addition to the presence of rare injectites. 

Evidence is presented, collected from a distal portion of a turbidite system, of two separate fluid 

flow episodes identified by the presence of mineralisation and chemical alteration halos. A detailed 

study of the small scale sedimentary and structural features show that they interact, forming 

connected fluid flow networks through the mudstone. The results form the basis for a  discussion 

about data collection strategies for aiding the detection and prediction of such networks in an 

applied setting.   
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2. Geological Setting 

2.1 Field site location 

The study area (figure 1), known as the Whitehouse Shore, is located in the southwest of Scotland, 3 

km (2 miles) south of the town of Girvan. Interbedded, steeply dipping beds of sandstones and 

shales are exposed in the intertidal zone below a raised beach. The shale unit of interest is swept 

clear of debris with each tide, leaving the rock surface smooth and accessible for about 2.5 hours 

either side of low tide.  

 
Figure 1. Geological map of the area surrounding Whitehouse Shore and the field site. Rocks are 

Ordovician and Silurian and young to the North East. Map from (Lawson and Weedon 1992). Field 

site is located at co-ordinates 55⁰12’49.47”N 004⁰53’18.25” 

The study area was chosen for two main reasons: 1) the unusually excellent exposure of mudrocks 

has undergone very low grade metamorphism, increasing resistance to erosion and therefore 

preserving the outcrop; 2) there is clear evidence of two distinct fluid flow episodes preserved in the 

rock. This site, the Whitehouse Shore, is a Site of Specific Scientific Interest (a UK classification of 

strict environmental and geological protection) and therefore no tools are permitted for sampling, 

all samples were from loose rock.  

2.2 Sedimentary Setting 

The Whitehouse Shore exposes Late Ordovician to Silurian sediments (figure 2) deposited within a 

submarine fan system that developed in a fore arc basin related to the closing of the Iapetus Ocean 

(Ince 1984). The Ballantrae Ophiolite, related to this closure, is located several miles to the south of 

the field site. Sedimentology suggests sourcing from a magmatic arc with palaeocurrent indicators 

showing sourcing from the North West (Hubert 1966). 

At this field locality greywackes, sandstones, siltstones, mudstones, shales and thin limestones were 

deposited in waters over 400 m (1300 feet) deep in the Late Ordovician (Lawson and Weedon 1992). 

Significant variations in sediment thicknesses of the underlying Benan Conglomerate suggest that 
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the basin was bounded by active normal faults that controlled sedimentation on the fan (Ingham 

1978). The Myoch Formation of the Upper Whitehouse subgroup is composed of predominantly 

green shale at its base overlain by red shale containing thin (often <1cm thick) sandstone bands. The 

Upper Whitehouse subgroup has been interpreted as deposited in a deep shelf and ocean floor 

setting distal to the submarine fan (Ingham 1978). This study focuses on the red shale member of 

the Myoch Formation, where the digenetic features are most clear.  

 

Figure 2. Geological map of the Whitehouse Shore (adapted from (Lawson and Weedon 1992). The 

area highlighted by the thick black outline is the area of particularly good exposure used in this study 

which is mapped in detail on figure 9. Bedding dips 84-88⁰ to the North-East and youngs in this 

direction. Earlier thrust faults are offset by later strike-slip faults. Photos a and b show particular 

interesting details of the fault core area. Photo a shows zone in footwall adjacent to fault core where 

sandstone bands (surrounded by green halo) are dragged into fault with strain being accommodated 

through shear fractures offsetting the thin sedimentary layer. Photo b shows area of fault core 

between two shear zones (shown by thick black lines), this area is highly fractured and pieces of fault 

core can be easily removed by hand whereas areas just outside shear zones are intact between 

fractures (e.g. those fractures shown in photo a). Red circle on map shows approximate location of 

photo a and b.  

To characterise the shale, grain size and composition were estimated from point counting on SEM 

images. The grain size of the shale ranges from clay to rare grains of very fine sand (< 125µm to 

63µm), although most of the grains are silt (< 63µm) or smaller with approximately 50% of the grains 

being part of the clay fraction. The mineral composition of the red shale is 10% quartz, 63% feldspar, 

with biotite, chlorite and metal oxides making up the remaining 27%. The thin sandstone bands 

within the red shale have steep dips of 84⁰-86⁰ and have tightly clustered strikes of NE-SW (figure 3). 

The sandstone grain size ranges from 17µm (medium silt) to a maximum measured grain size of 

148µm (medium sand). No grading of grain size was observed in any of the sandstone bands. Point 

counting gives a clay content of the sandstone bands as 20% and the composition of the clasts as 

56% quartz, 12% feldspar, with the remaining 32% composed of biotite, chlorite and metal oxides. 

The partial replacement of some biotite grains with chlorite indicates that the shale has undergone 

very low grade metamorphism.   
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Figure 3. Orientations of different fluid flow controlling features. The tick marks on the perimeter of 

3c show the trend of the largest fault in the field site (280⁰ to 100⁰). 

Sixty-nine sandstone band thicknesses were measured along a scanline perpendicular to the bands. 

Figure 4 shows a graphical representation of the sedimentary scanline.  A digital caliper was used for 

their measurement and a histogram of the thicknesses is presented in figure 5. Almost all sandstone 

bands were under 1cm thick, but the thickest was significantly more at 7cm. Sandstone bands less 

than 1mm may be underestimated due to the difficulty of identifying such small features in the field. 

The distribution of sandstone band thicknesses is well described by a negative exponential 

distribution (figure 5).  The sandstone bands represent a 3.6% net-to-gross of the total thickness of 

the red shale; similar ratios (2% sandstone) have been found in equivalent depositional 

environments (Basilici 1997). 
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Figure 4. Sedimentary transect showing location and thickness of sandstone bands, including those 

with a surrounding green halo. 
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Figure 5. (a) Histogram of sandstone band thickness measured by digital caliper. (b) Cumulative 

frequency of sandstone bands of greater than thickness h (N>h). Best fit line has R2=0.98. 

Thin sandstone sheets and isolated lenticular lobes are typical of outer fan areas of muddy 

submarine deposition systems (Basilici 1997). In other studies, similar looking structures have been 

classified as thin-bedded sand-mud couplets of Facies C2.3 in the deep water facies classification of 

Pickering et al. 1986. Some of the sandstone bands are continuous and can be traced along strike for 

tens of meters (>30 feet), whereas others occur as horizons of individual, distinct lenses which are 

likely caused by current ripples (Pickering et al. 1986). For the purposes of this study the bands are 

classified as high connectivity (continuous for greater than 1 meter, >3.3 feet)), medium connectivity 

(continuous for between 10 cm and 1 m, >0.33 and <3.3 feet), and low connectivity (continuous for 

less than 10 cm, <0.33 feet). Although it should be noted that turbidites have been reported to have 

consistent connectivity for many miles (Plink-Blörklund and Steel 2004) significantly beyond the 

scale of this current study. Figure 6 shows how bands of these different connectivities tend to 

manifest in the field: even the low and medium connectivity bands can be laterally extensive and 

traceable for many tens of meters (>30 feet) despite the apparent internally unconnected nature of 

the lenses. Although the poor connectivity could be an artifact of the 2D slice presented by the 

outcrop, i.e. the isolated lenses of a low connectivity sandstone bands are a  part of a connected unit 

in 3D, information presented later (figure 12) shows that the classification is a key determinant of 

the fluid flow behavior of the sandstone bands. Rarely, sandstone injectites sourced from the 

sandstone bands cut through the shale perpendicular to bedding.  These injectites are thin (<2 cm, 
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<0.8 inches), they typically do not repeat within 50 m (160 feet) along strike of the bedding, and are 

only represented on the field study area in one location next to the main fault. 

 

Figure 6. Schematic of the different levels of connectivity displayed by the sandstone bands. High 

connectivity bands are continuous for over 1m, medium connectivity bands have between 10cm and 

1m long segments, and low connectivity bands are continuous. 

2.3 Structural context 

The rotation of the beds to their current near vertical dip, was likely due to folding accommodating 

NW-SE compression during the Caledonian Orogeny. The subsequent formation of the Whitehouse 

Shore Thrust Fault and several smaller synthetic thrusts is evidence of ongoing NW-SE compression 

(Ingham 1970). These faults strike sub-parallel to bedding and are exposed as bed-parallel gullies 

containing a thin (less than two cm) brecciated zone, which can be traced for tens of meters (>30 

feet) across the exposure. 

Conjugate dextral and sinstral strike-slip faults offset the beds and thrust faults.  These have been 

interpreted as the final brittle deformation of the Caledonian Orogeny in the Late Silurian (Ingham 

1978). The horizontal component of displacement on these strike-slip faults defined by offset of the 

subvertical bedding in the field site is usually less than 10m. This is a minimum value because the 

lack of slickenlines means that dip-slip displacement could not be determined.  

The fault with the largest apparent displacement (labelled “main fault gully” in figure 2) was covered 

by coastal debris. A section of this fault exposed by seven volunteers with spades digging through 

coastal debris for a four hour tidal window, presented a fault core approximately 20 cm (0.66 feet) 

wide with loose, uncemented brecciated shale from which individual pieces can be removed by 

hand. A splay fault off the main fault shows a breccia varying from 1 to 5 cm wide bounded by slip 

surfaces. Both slip surfaces have sharp boundaries between the surrounding undeformed rock and 

the brecciated fault core. Sandstone bands are rotated clockwise into the fault, with some of this 

strain accommodated by shear fractures.   

Shear fractures across the field site are orientated synthetic to the larger faults (figure 3c) and have 

horizontal offsets from several centimeters to a couple of millimeters, i.e. less than an inch. The 

shear fractures are primarily orientated WNW-ESE, synthetic to the main fault, with less common 

sets at NW-SE and NNW-SSE. Joints (fractures with no visible offset) are preferentially orientated to 

strike NW-SE (perpendicular to bedding) with some spread out to WNW-ESE and NNW-SSE (figure 

3d). 

3. Evidence for fluid flow  
At the Whitehouse Shore there is clear evidence for two fluid flow episodes within the fractures and 

sandstone bands of the Myoch Formation red shale. The earliest fluid flow episode caused a phase 

of calcite cementation. The second fluid flow episode caused diagenesis of the red shale into green 

halos around fractures and sandstone bands.  

Calcite cementation within this outcrop of the Myoch formation occurs in two forms: (1) as veins 

within fractures and (2) as pore-filling cement within sandstone bands (figure 7). Calcite veins can be 

up to 2 cm (0.79 inches) thick (figure 7a) but are predominantly 1-3 mm thick (figure 7c). The calcite 
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fills a subset of fractures; other adjacent fractures and fractures of similar orientations may contain 

no cement. In the thicker veins multiple stages of cementation are visible. Calcite was identified 

within the sandstone bands by the reaction with hydrochloric acid whereas the shale beds do not 

react.  

Green halos surround a subset of the fractures and sandstone bands (figure 7). The halos typically 

extend less than one centimetre from fractures or bands and show a sharp contrast with the 

surrounding red shale. Green alteration in shale has previously been demonstrated to be due to the 

reduction of Fe3+ to Fe2+ (Mykura and Hampton 1984) along with transportation by diffusion of 

several minerals (Borradaile et al 1991). The red shale was likely deposited in oxidizing conditions, 

the overlying and underlying green shale layers are indicative of earlier and later reducing 

depositional conditions respectively. It is therefore likely that post-depositional fluid movement in 

the subsurface acted to reduce mineral oxides in the red shale. Regardless of the origin of the halos, 

this chemical alteration can be used to identify individual fractures that have acted as conduits for 

fluid flow (c.f Eichhubl et al. 2009). 

Due to sampling restrictions, we were unable to sample the sandstone bands to determine which 

specific bands or parts of individual bands hosted calcite cement. However, where checked, these 

bands always reacted with HCl, indicating the presence of calcite. Therefor we have taken that those 

bands which were part of the second fluid flow episode creating the green halos also hosted the 

earlier calcite-precipitating flow episode. 

 

Figure 7. Examples of evidence for fluid flow where in the right hand digitisations: yellow represents 

sandstone bands, green the green halos, and fuchsia the calcite veins. (a) One of the thicker 

carbonate veins containing multiple stages of carbonate deposition. Green halos can be observed at 
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the lower side of the carbonate vein and on both sides of the unfilled fracture intersecting the vein. 

The palest white is due to salt efflorescence and is not related to tectonic veining. (b) Network of 

joints with surrounding green halo intersecting an example of a low connectivity sandstone band 

also surrounded by green halo. (c) Thin carbonate vein with surrounding green halo runs down the 

centre of the photograph. Vein sinistrally offsets low connectivity sandstone band with surrounding 

green halo. Ruler scales are in centimetres. 

 

There is clear field evidence that calcite veins and cements preceded the formation of the green 

halos. Cross-cutting relationships showing green halo fractures terminating against calcite filled 

fractures (figure 8a) are repeated throughout the field site, whereas the converse was never 

observed. Additionally, in places the margin of calcite veins have acted as a focus for subsequent 

fracturing. Where this has occurred green halos are confined to only one side of the fracture (figure 

8b). The calcite vein has acted as a barrier, stopping the fluid reacting with the opposite fracture 

wall.   

 

Figure 8. (a) Carbonate vein with shear movement. Joint with green halo terminates against pre-

existing carbonate vein. (b) Green halo confined to one side of the fracture implying the carbonate in 

the vein acted as a barrier to chemical alteration on the other side. Where the green halo switches 

side there is a jog in the fracture and cracks in the carbonate so the reducing fluid may have 

transferred which side of the vein it was on at this point. In this and subsequent figures, schematics 

are used to illustrate the geometrical relationships because the details do not show up particularly 

clearly in photographs. 
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4. Spatial distribution of features that may have facilitated fluid flow  
Figure 9 shows a map of the fractures and sandstone bands as identified in the field. The map was 

established by defining a one-metre square string grid over the field site. Each square meter was 

photographed and interpretations annotated directly onto the photographs in the field during 

several low-tide “windows”. These were then digitised and stitched together to make an initial map. 

The map was then ground-truthed during subsequent low-tides to ensure that stitching the images 

had preserved the geometry, and to ensure that fine details were included with particular attention 

to the connections between the features. All fractures displayed calcite fill, green halos or both. 

Large sandstone bands all displayed green halos, small, unconnected bands that are too small to be 

included in the map sometimes had no halo.  

The fracture density (defined as fracture mid-points per m2) of calcite filled and green halo fractures 

was counted using 46 circular scanlines; with diameters of 0.6 to 1.2 meters or 2 to 4 feet (Mauldon 

et al. 2001). Scanline diameter was selected to be larger than the blocks between fractures to ensure 

an adequate rate of sampling (Rohrbaugh et al. 2002), and due to unpredictable tidal debris cover, 

locations were selected to ensure adequate exposure within the scanline area.  

 

Figure 9. Distribution of fractures sandstone bands and thrust faults colour coded by diagenetic 

evidence for fluid flow. Areas unobservable due to being covered by coastline debris are shown in 

blue and labelled as “covered area”. The thick dotted grey lines and text indicate how the field is 

split into the southern, central, and northern areas in subsequent figures. 
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Shear fractures have orientations synthetic or antithetic to the main faults, and joints generally 

bisect the conjugate shear fractures (figure 3). The calcite veins were often observed to be within 

the long, conjugate shear fractures. Conversely, green halos are more common around shorter NW-

SE trending fractures, which tend to have no observable shear offset.   

The field observations indicate that areas bounded by the main fault and splay fault have differing 

fracture properties. To aid discussion, the field area has been split up into “southern area” between 

South-West boundary and the Main Fault Gully, “central area” between the Main Fault Gully and the 

Splay Fault, and “northern area” between the Splay fault and the North-East boundary labelled on 

figure 10 as Second Fault Gully.  Both the calcite veins and green halo fractures are highest density in 

the central area between the main fault and the splay fault (figure 10). The two particularly high-

density values for calcite veins (labelled as “a” and “b” on figure 10) were caused by ladder geometry 

fractures between the splay fault and close proximity synthetic shear fractures. The calcite veins also 

show relatively high density in the northern area whereas the green halos do not, this distribution 

can clearly be seen in the detailed fracture map of figure 9 where very few green halos are located in 

the northern area.  

 

Figure 10. Fracture density across field site for carbonate veins (filled markers) and fractures with 

surrounding green halo (empty markers). Grey vertical bars show locations of “Main Fault Gully” and 

“Splay Fault” relative to where circular scanline data were collected. Locations of vertical bars 

correspond with the labelled faults and split the data into the southern, central, and northern areas 

as shown on figure 9. Each datum shows the value recorded from one circular scanline. The median 

values for carbonate fracture 8 density are 0.0, 14.1, and 11.8 for the southern, central, and 

northern area respectively; the median values for green halo fractures are 0.2, 7.1, and 0.0. 

Orientation data were collected from 146 fractures within the detailed mapped area shown on 

figure 9. Figure 11 shows the orientations of the fractures divided into opening and shear mode 

(figure 11 b and c) and also by type of fluid alteration (figure 11, d, e, and f).  
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The sandstone bands are consistently steeply dipping (almost vertical) and strike SW-NE (figure 11 

a). All fracture classifications (opening and shear mode and also both fluid flow alteration types) 

have strikes within 45° of NW-SE. However the orientations are not spread evenly within this area as 

some of the fracture types show particular clusters, highlighted on figure 11 (e.g. c1-c5 on Figure 11-

c).  

Joints and shear fractures have slightly different orientation distributions. The joint orientations are 

clustered around strikes of W-E (figure 11 c1 and c2), NW-SE (figure 11 c2 and c5) and also NNE-SSW 

(figure 11 c3). The shear fractures have much fewer orientation data than the joints, however the 

shear fractures appear to show a cluster striking N-S and also W-E (figure 11 b1 and b2 respectively). 

Although there are also some shear fractures striking NW-SE, there are proportionally less in this 

orientation than the joints.  

The green halo fractures also show differences in orientation distribution to those fractures with 

calcite fill. A high proportion of the green halo fractures were clustered around NW-SE strikes (figure 

11 d2 and d4), and a smaller proportion were clustered around E-W strikes (figure 11 d1 and d3). 

While the calcite filled fractures also have a small cluster around NW-SE strikes (figure 11 e2 and e4) 

there was a greater proportion clustered around E-W strikes (figure 11 e1 and e3). Additionally, the 

calcite filled fractures also show a small cluster around a strike of N-S. The fractures which hosted 

both fluid flow events cluster around E-W strikes (figure 11 f1 and f3) and NW-SE (figure 11 f2 and 

f4) and a smaller proportion striking N-S.  
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Figure 11. Orientations of different features. a. shows orientation data taken for four of the 

sandstone bands. b. and c. is fracture data split into shear fractures and joint. d. and e. show fracture 

orientation data grouped by the type of evidence for fluid flow. The orientations shown in “f, 

carbonate and green” is a combined subset from both “d, green halo fractures” and “e, carbonate 

filled fractures” and contains the fractures which appear in both fluid flow episodes. Stereonets 

were created using “Stereonet 9” (Allmendinger et al. 2011, Cardozo and Allmendinger 2013). 
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Field evidence for fluid flow demonstrates that the architecture and the length of each sandstone 

band controls its connectivity to the wider fluid flow network. The internal connectivity of the 

sandstone bands (figure 6) strongly correlates with the likelihood of a sandstone band having hosted 

fluid flow; high connectivity sandstone bands were far more likely to be surrounded by green halos 

than the low connectivity sandstone bands (figure 12). Five of the six (83%) high connectivity 

sandstone bands hosted fluid flow compared with only nine of the twenty seven (33%) low 

connectivity sandstone bands. The lateral extent of the sandstone bands (see figure 12 for 

definition) also plays a role with the longer bands being more likely to host fluid flow. Fourteen of 

the thirty three (42%) high extent sandstone bands hosted fluid flow compared with only one of the 

five (20%) low extent bands (figure 12). Although there is not as strong a relationship between the 

extent of the sandstone bands and their likelihood to have hosted diagenetic fluid flow as with 

connectivity, the observations are consistent with longer sandstone bands being more likely to 

intersect with other features that are open to fluid flow.  

 

Figure 12. Comparison of the influence of connectivity (defined in figure 6) and extent on the 

likelihood of a sandstone band having a green halo. Lateral extent measures how far across the 

outcrop a sandstone band could be traced (even if that band was low connectivity and made of 

isolated lenses). Each dot shows a sandstone band classified by its observed connectivity and extent 

with the presence or absence of green halo. For example, out of the five of the sandstone bands 

with both low connectivity and low extent only one has a green halo, whereas five out of six do for 

sandstone bands with both high connectivity and high extent. 

The sandstone bands are separated by irregular thicknesses of shale. If we assume that shale 

deposition is relatively constant, then the spacings between the sandstone bands may provide 

information about the timing of events which caused the turbidite flows depositing the coarser 

grained material. The spacing of the sandstone bands were measured to the nearest half centimetre 

using survey tape laid perpendicular to the bedding. The majority of the sandstone bands are spaced 

at intervals smaller than 0.1 m (0.33 feet) (figure 13a), although two intervals are much wider than 

the others at 0.66 m and 0.81 m (2.2 and 2.7 feet respectively). A negative exponential trend could 

be fit to the spacing distributions (figure 13 b), although the two widest spacings were not used in 

this fit due to not being sufficiently sampled to show a trend at these wider spacings.  
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Figure 13. (a) histogram of spacing of the sandstone bands. (b) Cumulative frequency of spacing of 

sandstone bands of where spacing is h. An exponential is fitted to the data of 0.45m and under, as 

above this value then the sandstone bands are not sufficiently sampled, the best fit line shows an 

R2=0.997 and  formula of y=2.2064e-2.9x, for the data of 0.45m and under. 

5. Connectivity of fluid flow features 
Both calcite and green halos are restricted to within or very close to the highest permeability 

features in the rock, demonstrating that the fluids that caused these diagenetic effects were 

confined to networks comprising fractures, thrust faults, strike-slip faults and sandstone bands. The 

map in figure 9 was used to explore the network connectivity of these features and the differences 

between the two recorded fluid flow episodes. Connectivity was defined by counting how many 

connections each mapped fracture had with the other fractures, thrusts, andsandstone bands. The 

true 3D network may have more connectivity than the exposed 2D network, which was used to 

collect the connectivity data (Odling et al. 1999). However, the 2D network is the only viable way to 

collect field data on the connectivity between the features.  

Figure 14 shows fracture connectivity for the three areas of the map, the southern, central and 

northern areas. When the fracture network is considered in isolation (i.e. not considering the 

sandstone bands or thrust faults) the majority of fractures have one or zero connections (figure 14a, 

b, c). For fluid flow to travel through such a potential fluid pathway then there must be at least two 

connections so as not to make a “dead end”.  The first thing to note is that the fracture connectivity 

is lowest in the southern area, highest in the central area, and the northern area connectivity is 

approximately mid-way between the other two areas. This pattern of fracture connectivity 

correlates with the fracture density (figure 10). The higher fracture density of the central and north 

areas means that a higher proportion of fractures have two or more connections, compared with the 

southern area. However the central and northern area still have a median connectivity of 1, 

indicating that at least half of the fractures are still visible as “dead ends” in the exposed 2D fracture 
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network. Such low values of individual fracture connectivity might usually be indicative of fracture 

network with low hydraulic connectivity; however the calcite and green halos show that these 

fractures have been utilised as part of fluid flow episodes in the past.  

 

Figure 14. Histograms showing the frequency of fracture connectivity. The x-axis shows how many 

times each fracture intersects with another fracture. The data has been split between the three field 

areas shown in figure 8. 

If there had not been any diagenesis to provide evidence that the sandstone bands were utilised 

during flow episodes, then it would have been standard practice to examine the fracture network 

connectivity alone. In figure 15 the connectivity of the combined flow network is calculated by 

including the sandstone bands and thrusts when counting the connections of each fracture. This 

means that some fractures which may have previously been considered isolated or dead-ends are 

now connected to the flow network by intersections with sandstone bands. The full fluid flow 

network (fractures and bands) for the earlier calcite-precipitating fluid flow episode (figure 14) has 

higher connectivity than when considering the fracture network alone. This enhanced connectivity is 

shown by the lower proportion of fractures with zero or one connection. A similar pattern is seen for 

the fractures and bands in the later “green halo” fluid flow episode (figure 14 b). This indicates that 

the sandstone bands are connecting otherwise isolated fractures. The full network has a median 

number of connections per fracture of 2 in each area (figure 15) compared to the fractures alone 

(figure 15). It is also worth noting that even in the southern area, where fracture density is low, the 

influence of the sandstone bands is enough to triple the upper quartile number of connections per 

fracture.  

 

Figure 15. Histograms of connectivity of (a) carbonate filled fractures and (b) green halo fractures. 

Connectivity in this case includes when the fracture connects with all other features of that fluid 

flow episode, i.e. including connections with sandstone bands and thrust faults. 
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6. Discussion 

6.1 How has the network connectivity influenced fluid flow through the shale over time?   

The bulk permeability properties of the shale will have been strongly influenced by the connectivity 

of the permeable features during the geological history of the shale. An increase in average fracture 

connectivity, due to fracture initiation or propagation would increase the likelihood of complete 

fracture pathways forming which transverse the shale layer. Conversely, should a key network 

connection close then the unit could return to more sealing behaviour. In the field example 

presented in this paper, the main fault could be considered such a key connection. If the main fault 

were closed to fluid flow (for instance by diagenesis), but other pathways remained open, then the 

shale would not become a seal despite a likely significant drop in overall bulk permeability. 

Examining the differences between the two fluid flow networks captured in this outcrop provides 

valuable insights into the hydraulic history of this shale. 

Initially after deposition and burial, the shale formation would have had very low porosity (Aplin and 

Macquaker 2011) and therefore low permeability (Yang and Aplin 2007, Armitage et al. 2011).  Prior 

to any fracturing of the rock, there would have been no hydraulic connectivity between the 

sandstone bands except for via the rare sandstone injectites. The first deformation features are the 

folding and bedding-parallel thrust faults.  The folding resulted in the exposed Whitehouse 

Formation having sub-vertical dip. No fold-related fracturing was recorded by Ingham (1978) or by 

this study so new connections between sandstone bands may not have formed at this stage.  The 

thrust faults are related to the Whitehouse Shore Thrust Fault which dips to the north-west (figure 

2). During this tectonic event, the thrust faults may have become critically stressed (Barton et al. 

1995) and could have provided potential fluid flow pathways between any sandstone band that was 

intersected and offset.  

The next stage of deformation was the formation of the sub-seismic scale strike-slip faults (Ingham 

1978). These faults and related fractures are well orientated to intersect with many of the sandstone 

bands. These intersections, and the fact that the fractures tend to be relatively large features cutting 

through much of the shale, formed a well-connected network. This network was then exploited 

during the first fluid episode which left evidence of calcite precipitation. However this calcite 

precipitation, or other possible effects such as stress changes, subsequently acted to close many of 

these larger faults and fractures such that for the second fluid flow episode, which created the green 

halos, there were fewer large features contributing to the fluid flow network. This effect is 

particularly strong in the Northern Area of the field site, where the density of fractures contributing 

to the fluid flow network decreases dramatically between the two fluid flow episodes (figure 10); 

although some fractures did remain open during both fluid flow episodes (figure 15 b). Conversely, 

the central area maintained high fracture density between the fluid flow episodes, this may be due 

to the closely spaced main fault and splay fault (figure 9). Such fault interaction areas have 

previously been recorded as having enhanced fluid flow rates caused by high fracture density 

(Curewitz and Karson 1997, Gartrell et al. 2004, Ligtenberg 2005), including in some shale gas 

reservoirs (Gale et al. 2007).  

The significant drop in the number of conductive fractures of the Northern Area in the time between 

the two fluid flow episodes would normally be expected to cause a decrease in connectivity (Harris 

et al. 2003, Berkowitz 2005); particularly when compared to the central area which did not 

experience a significant drop in fracture density. However, despite the closure of the longer 

fractures after the first calcite precipiating flow episode, flow network connectivity was maintained 
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because of the influence of the sandstone bands (figure 15) and the propagation of new fractures 

(figure 11 e). Although the flow network through the shale would now be more tortuous due to the 

interconnectivity required between the fractures and sandstone bands. Since the bands are 

perpendicular to the fractures, the result is a very well connected network for flow, and this unit did 

not behave as a seal. However, if only fractures had been considered, the density of open fractures 

would not have been enough to form connected networks through the shale, and the unit wrongly 

classified as sealing.  These high permeability sandstones are small scale versions of the thief zones 

within seals or high permeability streaks observed in reservoir rocks (Felsenthal and Gangle 1975). 

6.2  The distribution of the sandstone bands 

Prediction of risks and opportunities remains the goal of much applied geoscience during 

hydrocarbon or geothermal exploration. The statistically constrained relationships (figures 5, 10, and 

13) of the fluid-flow features indicate that such combined sedimentary-structural networks could be 

predictable.  

Naturally, during any exploration a well-exposed outcrop will not be present, so it is important to ask 

how many of these features would have been picked up in wireline logs. From discussion with 

industry the limit of high resolution wireline logging is 5mm. Most of the sandstone bands are below 

this thickness and would therefore not be detected in an exploration setting; 82% of the sandstone 

bands with green halos had thicknesses below 5mm, whereas 78% of the bands with no halo (i.e. not 

connected to the network) had thicknesses below 5mm. There are no significant differences in ratio 

of number bands with green halos to those without, above or below this 5 mm threshold, indicating 

that thickness is not key factor for fluid flow. Given the key role that the sandstone bands have 

within the flow network, it would be desirable to be able to be able to predict the thickness and 

spatial distribution of the bands with the greatest lateral extent, since these may be below detection 

threshold. Figure 5 showed that there is a relationship between the thicker and thinner bands in this 

study, but does this relationship hold for much thicker bands (e.g. >10cm)?  

Studies of thicker turbidites (>10 cm thickness, >3.9 inches) in submarine fan depositional systems 

report thickness-frequency distributions that are exponential (Sinclair and Cowie 2003), log-normal 

(Talling 2001) or power law (Hiscott et al. 1992) and that these distributions may be site specific. A 

complicated range of factors affect thickness distributions, such as location within depositional 

setting and magnitude of triggering event (Carlson and Grotzinger 2001). The variations in thickness 

distribution have also been attributed to channelised vs nonchannelised material flows resulting 

from depositional topography (Carlson and Grotzinger 2001) and to buoyancy changes as the 

turbidity current “thins” during transport and deposition (Pritchard and Gladstone 2009). Log-

normal distributions have been attributed to under-sampling of thin beds, although Talling (2001) 

disputed whether this is due to under-sampling or a true reflection of material deposition. 

The data presented in this study, in combination with those of Sinclair and Cowie (2003) suggest that 

the distribution of turbidite thickness within an individual turbidite sequence is well modelled by an 

exponential distribution (figure 16). However, clearly, the parameter values that govern the 

exponential distribution vary. This is to be expected; for example, the statistics of turbidites 

triggered by floods are likely to vary between locations with differing climates, whereas the statistics 

of turbidites triggered by earthquakes will vary based on the earthquake magnitude-frequency 

distribution of proximal faults. Further, at a given site, turbidite thickness will decrease with 

increasing distance from the turbidite source (i.e. toward the edge of the fan). While a relatively 

small amount of studies have been conducted on the thickness of proximal and distal turbidites, 

even fewer have been published on turbidite thickness as a function of their lateral extent. To 
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predict sandstone band thickness and spacing distributions in a turbidite sequence, not only should 

more data be collected from multiple outcrops (ideally including exposures both parallel and 

perpendicular to bedding) but these data should be pooled to develop generalisable statistical 

models based on turbidite triggering mechanism and location within the turbidite fan. 

 
Figure 16. Cumulative frequency - thickness plot of turbidite thicknesses of the Annot Sandstone, 

data from Sinclair and Cowie (2013). A regression line with slope of 0.33 fits the data, for the 

smallest turbidites the slope of the regression line steepens to 1.3. The 171 sloping line is an 

approximation of the fit to the data presented from figure 5 

6.3 Modelling approach for such small scale fluid flow networks. 

Discrete fracture network (DFN) modelling would be a typical solution to further investigate such a 

sedimentary-structural flow network. It is beyond the scope of this current paper to produce a DFN 

model but the observations and data can inform how a DFN model could be constructed.   This field 

study effectively presents a 2D window into the natural complicated 3D system, which would be   

modelled in a DFN. The observations made from the 2D outcrop, such as the central zone of high 

fracture connectivity surrounded by closely spaced faults, would be used to directly inform a 

modelled 3D network.  

The sandstone bands would be added into the DFN as a ‘fracture set’. The set up of this hypothetical 

DFN requires statistics that characterised the ‘real’ fracture and joint sets as well as an extra set that 

represent the sandstone band statistics. Data on such sandstone bands could be determined from 

image logs. Thinner band distribution is related to the seismic-scale beds (stats as discussed in 

paper) but  attention paid to the source mechanism and basin topography (Sinclair and Cowie 2003), 

turbidite sources, such as fault movement (e.g. Goldfinger et al. 2007) or storm events (e.g. 

Malamud and Turcotte 2006, Gorsline et al. 2000). The joint frequency could be inferred from shale 

bed thickness and fracture frequencies, location and orientation of seismic scale faults (e.g Bonnet 

et al. 2001, Manzocchi et al. 2009). 

These sedimentary and structural statistical distributions would then provide a basis to statistically 

populate a DFN style model, used to characterise bulk permeability properties of the unit. The field 

observations in this paper are a vital scale-bridge between core data (which does not give bulk rock 

properties) and seismic data (which cannot detect small but important network features) to inform 

how features in such networks interact to create  fluid flow systems. 
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 7. Conclusions  
Mineral precipitation and diagenetic alteration has allowed  tracing of pathways of palaeo-fluid flow 

episodes in the Myoch Formation at Girvan, Scotland. Such fluid flow is expected to be confined to 

the fracture networks within such low permeability rock. This study demonstrates that very thin (<1 

cm) and relatively poorly connected sandstone layers can act to enhance the fracture connectivity.  

If these sandstone bands link otherwise isolated fractures, the bands would have played a crucial 

role in creating a connected network for fluid flow through the shale. The otherwise poorly 

connected fractures would not have been able to host such fluid flow without these sandstone 

bands. It is possible that such sedimentary structures in shales may be one route to forming sweet 

spots in shale gas reservoirs. 

Sampling of such thin sandstone bands is confounded by their low thickness (below the resolution of 

wireline logging tools) and poor outcrop exposure, there is also a relative paucity of data on such 

thin layers. However the thin sandstone bands which are below the thickness  of resolution show 

statistical distributions related to the thicker (>5mm) detectable bands in this study .  

Although such fine-scale combined structural-sedimentary flow networks may seem too complex to 

realistically develop useful prediction methods, the observations in this paper suggest each of the 

important statistical properties of such fluid flow networks could be constrained, improving 

prediction of seal and fluid flow behaviour in similar settings.  
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