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The enhancement of stimulated Raman scattering (SRS) with a GaAs/AlAs intermixed superlattice that
works as a χ(3)-quasi-phase-matched structure is studied, where such Kerr-induced effects as four-wave
mixing (FWM), self-phase-modulation (SPM), cross-phase-modulation (XPM), and two-photon absorp-
tion (TPA) are included. In particular, the efficiency of anti-Stokes generation is enhanced here; anti-Stokes
generation inherently has an extremely small efficiency due to a phase mismatch in the interaction of
the pump, Stokes, and anti-Stokes waves (while the efficiency of Stokes generation is sufficiently large
because of no such phase mismatch). The superlattice enhances the anti-Stokes efficiency up to the order
of 103 when compared with that without the superlattice, particularly at a small pump intensity. In this
enhancement, it is seen that there is an efficiency boost via simultaneous FWM. In this situation, it is
shown how much SPM and XPM degrade the efficiency enhancement. Furthermore, an optimal super-
lattice length is identified that provides the highest efficiency. The degradation of the efficiency at the
optimized length due to TPA is also analyzed. Finally, to gain more anti-Stokes efficiency (or control the
sizes of the Stokes and anti-Stokes efficiencies), a photonic-band-gap cavity structure is proposed.
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I. INTRODUCTION

Studies on the enhancement of stimulated Raman scat-
tering (SRS) have been attracting a great deal of attention
in recent years, aiming for its potential scientific and
technological applications; for example, probing, sensing
[1,2], optical on-chip [3–7], and telecom [8,9] applica-
tions. Among them, the realization of SRS in silicon
(Si) [3–7] gave a great impetus to the development of
Si on-chip optical devices at telecom wavelengths, which
provided a potential integrated optical source with Si pho-
tonics. However, there still remains an issue that large
two-photon absorption (TPA) in Si at around 1.55 μm must
be avoided for practical applications and yet cannot easily
be resolved because the band-gap energy (1.1 eV) of Si is
much smaller than the TPA energy (2 × 0.8 = 1.6 eV) of
1.55-μm optical signals.
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Semiconductor optical amplifiers [10] made of com-
pound semiconductors can avoid TPA via band-gap engi-
neering with composition-ratio and/or strain controls, but
their carriers, or electron-hole pairs, which give rise to
radiative recombination for optical signal amplification,
distort the signal waveforms via plasma effects, thus pre-
venting the operation speed from going beyond tens of
gigahertz without additional systems.

Fortunately, silica-glass optical fibers (SiO2, insula-
tor with no carriers) have a wide band gap that can
avert TPA at around 1.55 μm, but their Raman gain
coefficient g (cm/GW) is very small compared with
that of semiconductors [e.g., Si, GaP, AlxGa1−xAs] (see
Table I), thus requiring a very long fiber on the order of
kilometers.

Here we propose a compact device design that uses
compound-semiconductor superlattices that can avoid
TPA while using the third-order optical nonlinearity
enhancement, and examine the enhancement behaviors
from nonlinear optical physics, where the use of instanta-
neous nonlinear interactions (with no TPA) provides this
superlattice device with potential that goes beyond the
current operation limitations of Si photonic devices and
semiconductor optical amplifiers.
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TABLE I. Properties of Raman materials.

Material type Raman gain (cm/GW) Raman shift (nm) Pump wavelength (nm) Device length (mm) References

SiO2 0.0065 105.6 1433 5.6 × 106 [8]
Si 20 124.8 1427 18 [4]
GaP 27 27.6 825 5.1 [11]
H2 4.4 117.6 532 ∼ 103 [12,13]
Ba(NO3)2 47.4 29.6 532 ∼ 102 [14,15]
Al0.24Ga0.76As 10 70.8 1550 7.2 [16]

A. Research target, method, and applications

In this paper, we focus on a merit of our device that
can boost the output efficiency of the anti-Stokes waves
that originally have a vanishingly small efficiency due to
a large phase mismatch �k = 2k0 − k−1 − k1 that arises
in the interacting pump, Stokes, and anti-Stokes waves
of wavevectors k0, k−1, and k1, respectively [17]. For-
tunately, the Stokes waves are strongly generated in this
device because of the absence of such a phase-mismatch
requirement. The ratio of the anti-Stokes-wave power to
the Stokes-wave power, for example, in Si waveguides,
is only 10−6–10−5 [18,19]. However, our proposed device
should provide the same order of output power for both
Stokes and anti-Stokes waves, as seen in Sec. IV B 4.
An application of the anti-Stokes-wave amplification with
our device is that since it generates a short wavelength
(e.g., 1.49 μm) from an input pump beam (e.g., at 1.56
μm), it can amplify the downstream signals at 1.49 μm
in gigabit-Ethernet passive optical networks [20]. It can
also be used for channel conversion and amplification in
wavelength-division multiplexing systems.

To attain high amplification by removal of �k, we
use quasi-phase-matching [21] for χ(3) processes in a
collinear beam configuration (e.g., in a waveguide) that
gives a strong field coupling among those three waves and
thus achieves high output efficiency. In this paper, instead
of quasi-phase-matched (QPM) structures proposed in
SiO2, Ba(NO3)2, and H2 [12,14], which are not easily
fabricated, we use a GaAs/AlAs intermixed superlattice,
which was originally developed as a χ(2)-periodic QPM
structure [22]. This has a small refractive-index change
(approximately 0.01) in χ(2) domains (i.e., only a 0.3%
change compared with the average refractive index in the
periodic structure) [23], and has an advantage of avoid-
ing significant additional optical scattering loss caused by
interface roughness between the discrete χ(2) domains;
for example, in orientation-patterned AlxGa1−xAs struc-
tures [24].

An important aspect in the GaAs/AlAs intermixed
superlattice is that it also works as a χ(3)-periodic QPM
structure because a χ(3) change is also induced in a similar
way to the χ(2) change caused by blueshifted resonance in
nonlinear susceptibility [25]. The removal of �k with this
χ(3)-periodic structure realizes strong anti-Stokes-wave

generation. Although the aforementioned χ(3)-periodic
superlattice still has χ(2) periodicity, the anti-Stokes waves
are not influenced, for example, by difference-frequency
generation (DFG) with χ(2), when the χ(3) period �

is set such that |2k0 − k−1 − k1| = 2π/�, because DFG
requires |k0 − k−1 − k1| = 2π/� [26].

Although the above discussion does not include a back-
ward scattering of the beams caused by the periodic
refractive-index structure, its omission is justified by the
calculations given in the Appendix, and the phase match-
ing using Bloch harmonics that arise from the same peri-
odic structure is not used here because of no usefulness due
to the very small refractive-index difference (0.3%) in the
periodic structure.

B. Device physics research

In our semiconductor χ(3)-periodic structure, we care-
fully examine the anti-Stokes-wave generation in terms of
the pump intensity and the device length because of our
interest in highly efficient output with a moderate pump
intensity and a reasonable device length.

Furthermore, we carefully examine other nonlinear
effects (Kerr-induced effects), such as four-wave mixing
(FWM), self-phase-modulation (SPM), and cross-phase-
modulation (XPM), because these are much greater than
those in Si. With regard to TPA, since the band-gap energy
in the GaAs/AlAs superlattice is comparable to the TPA
energy (1.6 eV), TPA can be avoided by subtle input-
wavelength adjustment or band-gap engineering, which
can be done easily when compared with the Si case.

The influence of stimulated Brillouin scattering (SBS)
coupled with low-frequency acoustic-phonon modes is
ignored here because, for example, in GaAs [27], the
Brillouin-shifted frequency and its linewidth are only
fSBS ∼ 20 GHz and �fSBS ∼ 170 MHz, respectively. Thus,
if we use relatively short input pulses (e.g., with a width
of approximately 10 ps or a spectral width of approxi-
mately 100 GHz as used often in optical communications),
SBS nearly ceases to occur because most of the spec-
tral components are out of the SBS gain linewidth �fSBS.
This SBS-stopping phenomenon is well known in optical
fibers for short pump pulses [28]. On the other hand, since
SRS coupled with high-frequency optical-phonon modes
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has a much wider gain linewidth �fSRS ∼ 100 GHz, SRS
can keep its large gain (e.g., for the 10-ps pulses) at the
Raman-shifted frequency fSRS ∼ 9 THz [16].

In this way, while including such nonlinear interactions
as optical Raman and Kerr effects in the proposed periodic
structure, we examine the SRS efficiency; more specifi-
cally, we examine the SRS efficiency of anti-Stokes waves,
with a far smaller efficiency than Stokes waves.

C. Paper structure

After this introduction, we describe a model for the peri-
odic GaAs/AlAs intermixed superlattice in Sec. II. We
then derive coupled nonlinear equations that deal with the
interacting pump, Stokes, and anti-Stokes waves in the
superlattice in Sec. III. In Sec. IV, we obtain analytical
solutions with some approximations to the coupled equa-
tions to see the properties of those nonlinear effects on
the output efficiency. Furthermore, we obtain numerical
solutions that contain no such approximations, and com-
pare them with the analytical solutions to check numerical
accuracy. The numerical computations give the efficiency
when there is a superlattice, which is compared with the
efficiency without the superlattice, and improvements are
discussed. Finally, Sec. V is devoted to a summary.

II. MODEL FOR A χ(3)-PERIODIC
SUPERLATTICE

We show our device model, which contains a periodic
GaAs/AlAs intermixed superlattice, in Fig. 1, where the
pump, Stokes, and anti-Stokes wavelengths are greater
than the half-band-gap wavelength of the superlattice,
which prevents TPA. (The influence of TPA is examined
in detail in Sec. IV B 7.)

In the case where one of those three wavelengths is
shorter than the half-band-gap wavelength, strong TPA

As-grown
region

Intermixed
region

Buffer
layer

n-type GaAs

p-type GaAs

FIG. 1. Device structure. A GaAs/AlAs superlattice waveguide
containing periodic as-grown and intermixed regions is sand-
wiched between buffer layers that have a lower refractive index
than the waveguide to confine light in it, where the thickness
of the buffer layers is adjusted to strongly confine the light, and
the waveguide together with the buffer layers is also sandwiched
between p-type GaAs and n-type GaAs to form a p-n junction.

will emerge, and considerable free-carrier absorption
(FCA) will also emerge due to TPA-induced carriers. In
this case, we use a reverse-biased p-n junction embedded
in the device to avert FCA, as shown in Fig. 1, where
the superlattice waveguide is sandwiched between buffer
layers of AlxGa1−xAs with x = 0.56 or 0.6 [23] with a
lower refractive index than the waveguide. If those three
wavelengths are longer than the half-band-gap wavelength,
such a p-n junction is not necessary (or no bias-voltage
application is necessary for the p-n junction).

When the as-grown domains of the waveguide in Fig. 1
are made of a 14:14 monolayer GaAs/AlAs superlat-
tice, the χ(3) characteristic can be well approximated by
that of AlxGa1−xAs (x = 0.18) [29], which has a fun-
damental absorption edge almost identical to that of the
14:14 monolayer GaAs/AlAs superlattice. In our calcu-
lations for the GaAs/AlAs as-grown domains, we use
this AlxGa1−xAs (x = 0.18), which makes the calculations
simpler.

On the other hand, the intermixed regions have a
blueshifted absorption edge as regards the χ(3) property,
and the χ(3) value is considerably decreased when com-
pared with that in the as-grown domains (it is nearly a half
of χ(3)) [29]. We set this value to be εχ(3) (0 ≤ ε ≤ 1)
in our calculations, as shown in Sec. IV B 4. In the next
section, we derive coupled nonlinear equations to describe
the evolution of the pump, Stokes, and anti-Stokes waves
for the waveguide device.

III. COUPLED NONLINEAR EQUATIONS FOR
THE DEVICE

In deriving the coupled nonlinear equations, we assume
that SRS is greater in photon generation than in sponta-
neous Raman scattering (i.e., beyond the SRS threshold
power) [17]. In this case, since there is almost no differ-
ence in optical power obtained by classical and quantum
analyses, we describe SRS in the waveguide device with
classical wave equations derived from Maxwell’s equa-
tions that are coupled with molecular vibrations in the
semiconductor used.

To perform the analysis for SRS, we start with the
following wave equations obtained via the standard pro-
cedure [30]:

∇2E − 1
c2

∂2E
∂t2

= μ0
∂2

∂t2
(PLN + PNL) , (1)

∇2E − 1
c2

∂2(εE)

∂t2
= μ0

∂2PNL

∂t2
, (2)

where ∇2 = ∂2/∂x2 + ∂2/∂y2 + ∂2/∂z2. The waveguide
is set parallel to the z direction. E = E(z, t) is the electric
field of the three coupled waves (i.e., the pump, Stokes, and
anti-Stokes waves) that propagate in the z direction. PLN
is the linear polarization defined by PLN = ε0χ

(1)E with
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vacuum permittivity ε0 and linear susceptibility χ(1). The
relative permittivity ε is related to χ(1) as ε = 1 + χ(1),
which gives the refractive index n as n = √

ε. PNL is
the nonlinear polarization containing the Raman and Kerr
effects, and μ0 is the magnetic permeability. Nonmagnetic
semiconductors (e.g., AlxGa1−xAs) have the same value
as μ0 in a vacuum. The velocity of light c is related to
ε0 and μ0 by c = 1/

√
ε0μ0. In the above, TE polariza-

tion is assumed for E, PLN, and PNL, which are excited
by TE-mode pump lasers.

The nonlinear polarization for the Raman effect is given
by [14,31]

PR
NL = ε0χ

′(3)QE, (3)

∂2Q
∂t2

+ 2
τ

∂Q
∂t

+ ω2
νQ = γ E2, (4)

where χ ′(3) is the imaginary part of the third-order nonlin-
ear susceptibility, Q is the phonon-wave amplitude, ων is
the Raman frequency, τ is the relaxation time of the molec-
ular oscillation, and γ is a constant that characterizes the
coupling between electric fields and polarized molecules.
In addition, the nonlinear polarization for the Kerr effect is
given by [28]

PK
NL = ε0χ

(3)E3, (5)

where χ(3) is the real part of the third-order nonlinear sus-
ceptibility. Experimentally, the Kerr effect arises together
with the Raman effect [32], and thus the total nonlin-
ear polarization PNL is expressed as the sum of Eqs. (3)
and (5).

In the above, the tensor component in the third-order
nonlinear susceptibility is chosen such that TE-mode input
gives TE-mode output.

A. Simplification of the space and time derivatives of
the wave equation

The space and time derivatives on the left-hand side
of the wave equation [Eq. (2)] are simplified when we
use an optical pulse with spatial width greater than the
characteristic length of the waves (i.e., the wavelength).
This is known as the “slowly-varying-envelope approxi-
mation” [30]. We use this approximation throughout the
paper.

To express εE in Eq. (2) containing the three waves, we
use the following sum of electric fields:

εE = 1
2

⎡
⎣∑

j

εj Ej ei(kj z−ωj t) + c.c.

⎤
⎦ , (6)

where j = −1, 0, 1 stand for the Stokes, pump, and anti-
Stokes waves, respectively, ωj is the frequency of the j th
wave, and εj is the ωj component of ε [i.e., εj = ε(ωj )],
and kj is the wavenumber of the j th wave. Using the

Raman frequency ων , we can write ωj as ωj = ω0 + j ων .
The Stokes and anti-Stokes waves (j = −1, 1) that we deal
with here are the first excited ones. Since the growth of
excited waves of order higher than the first excited waves
needs a much longer interaction length than that for the
first exited waves [14], and since we are interested in a rela-
tively short waveguide on the order of 1 cm, the emergence
of higher-order excited waves is ignored.

If we set ε = εj = 1 in Eq. (6), the expansion of E takes
the form

E = 1
2

⎡
⎣∑

j

Ej ei(kj z−ωj t) + c.c.

⎤
⎦ . (7)

In Eq. (2), we insert Eq. (6) into ∂2(εE)/∂t2 and Eq. (7)
into ∇2E, where the relation ∂2E/∂x2 = ∂2E/∂y2 = 0
holds because of the assumption E = E(z, t). The spread
of the electric fields in the x and y directions is included as
a constant cross-section area of the waveguide.

A simplified equation for the left-hand side of Eq. (2) by
substitution of Eq. (7) for ∂2E/∂z2 is of the form

∂2E
∂z2 = 1

2

⎡
⎣∑

j

∂2Ej

∂z2 ei(kj z−ωj t) + 2
∑

j

ikj
∂Ej

∂z
ei(kj z−ωj t)

−
∑

j

k2
j Ej ei(kj z−ωj t) + c.c.

⎤
⎦

≈
∑

j

ikj
∂Ej

∂z
ei(kj z−ωj t) −

∑
j

k2
j

2
Ej ei(kj z−ωj t) + c.c.

(8)

Also, by substituting Eq. (6) for ∂2(εE)/∂t2, we obtain

∂2(εE)

∂t2
≈ −

∑
j

iεj ωj
∂Ej

∂t
ei(kj z−ωj t)

−
∑

j

εj
ω2

j

2
Ej ei(kj z−ωj t) + c.c. (9)

Inserting Eqs. (8) and (9) into the left-hand side of Eq. (2)
with the relation εj = n2

j (nj is the refractive index for the
j th wave), we obtain

∇2E − 1
c2

∂2(εE)

∂t2

≈
∑

j

ei(kj z−ωj t)

(
ikj

∂

∂z
+ i

n2
j

c2 ωj
∂

∂t

)
Ej + c.c.

=
∑

j

ei(kj z−ωj t)ikj

(
∂

∂z
+ nj

c
∂

∂t

)
Ej + c.c., (10)
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ω νω ν

ω −1 ω 0 ω 1 Frequency

Pump

Anti-stokes

Stokes

FIG. 2. Relation of ω−1, ω0, ω1, and ων .

where the relation ωj = (c/nj )kj is used. By replacing
nj (j = −1, 0, 1) with the averaged value n = 〈nj 〉 in
Eq. (10), we can further simplify the space and time deriva-
tives of Eq. (10). This replacement does not severely affect
the results because the refractive-index deviation (�n ≈
0.01) from n is only 0.3% of n = 〈nj 〉 = 3.09, which is
obtained from nj ≈ 3.08–3.10 at 1450–1600 nm [23]. We
then use the transformations znew = zold and tnew = told −
(n/c)zold [28], and obtain

ikj

(
∂

∂z
+ n

c
∂

∂t

)
Ej = ikj

∂

∂z
Ej . (11)

This transformation corresponds to a frame change such
that the optical pulse in the waveguide is observed from a
moving coordinate in the z direction with a velocity of c/n.

B. Derivation of terms for the Raman effect

To derive the coupled equations of the three waves with
j = −1, 0, 1, we first need to extract nonlinear polarization
terms for the Raman effect that satisfy ω0 − ω−1 = ων and
ω1 − ω0 = ων , which we call “resonant terms.” Here ω−1,
ω0, and ω1 stand for the frequencies of the Stokes, pump,
and anti-Stokes waves, respectively. The relation of ω−1,
ω0, ω1, and ων is illustrated in Fig. 2.

To calculate the nonlinear polarization in Eq. (3), we
insert the electric field E in Eq. (7) and the following
phonon-wave amplitude Q into Eq. (3):

Q = 1
2
[
qei(kν z−ων t) + c.c.

]
, (12)

where kν is the wavenumber of the phonon wave with a
frequency of ων . By this insertion, we have

PR
NL = ε0χ

′(3)

4

⎧⎨
⎩
∑

j

qEj −1ei[(kj −1+kν )z−ωj t]

+ q∗Ej +1ei[(kj +1−kν )z−ωj t] + c.c.

⎫⎬
⎭ . (13)

Next we obtain the second-order time derivative of PR
NL,

which is necessary for the calculation of the right-hand side

of Eq. (2):

μ0
∂2PR

NL

∂t2
≈ −ε0μ0χ

′(3)

4

⎧⎨
⎩
∑

j

ω2
j qEj −1ei[(kj −1+kν )z−ωj t]

+ ω2
j q∗Ej +1ei[(kj +1−kν )z−ωj t] + c.c.

⎫⎬
⎭ , (14)

where the slowly-varying-envelope approximations,
|ωj q| � |∂q/∂t|, |ωj Ej | � |∂Ej /∂t|, are used.

To extract resonant terms from Eq. (14) for ωj (j =
−1, 0, 1), we write down the terms resonant to ωj in
Eq. (13) as P

(ωj )
R and obtain μ0∂

2P
(ωj )
R /∂t2 for j = −1, 0, 1

as

μ0
∂2P(ω−1)

R

∂t2
= −ε0μ0χ

′(3)

4
ω2

−1q∗E0ei[(k0−kν )z−ω−1t], (15)

μ0
∂2P(ω0)

R

∂t2
= −ε0μ0χ

′(3)

4
ω2

0

{
qE−1ei[(k−1+kν )z−ω0t]

+q∗E1ei[(k1−kν )z−ω0t]} , (16)

μ0
∂2P(ω1)

R

∂t2
= −ε0μ0χ

′(3)

4
ω2

1qE0ei[(k0+kν )z−ω1t]. (17)

The q and q∗ in Eqs. (15)–(17) are related to Ej via Eqs. (4)
and (12). To clarify the relation between them, we calculate
Eq. (4) by inserting Eq. (12) into it. This calculation needs
the first- and the second-order time derivatives of Q, which
are of the form

∂Q
∂t

= 1
2

[
∂q
∂t

ei(kν z−ων t) − iωνqei(kν z−ων t) + c.c.
]

, (18)

∂2Q
∂t2

= 1
2

[
∂2q
∂t2

ei(kν z−ων t) − 2iων

∂q
∂t

ei(kν z−ων t)

− ω2
νqei(kν z−ων t) + c.c.

]

≈ 1
2

[
−2iων

∂q
∂t

ei(kν z−ων t) − ω2
νqei(kν z−ων t) + c.c.

]

= −
(

iων

∂q
∂t

+ ω2
ν

2
q
)

ei(kν z−ων t) + c.c., (19)

where the slowly-varying-envelope approximation is used
again.
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To obtain the relation between q (or q∗) and Ej , we
substitute Eqs. (18) and (19) into Eq. (4) and obtain
[(

−iων + 1
τ

)
∂q
∂t

− i
ων

τ
q
]

ei(kν z−ων t) + c.c. = γ E2,

(20)

−iων

(
∂q
∂t

+ q
τ

)
ei(kν z−ων t) + c.c. = γ E2, (21)

where the approximation ων � 1/τ is used, which arises
from the relaxation time τ that is much greater than the
timescale (∼ 1/ων) of high molecular eigenfrequencies.

Next we calculate the right-hand side of Eq. (21).
Inserting Eq. (7) into it, we obtain

γ E2 = γ

⎧⎨
⎩

1
2

⎡
⎣∑

j

Ej ei(kj z−ωj t) + c.c.

⎤
⎦
⎫⎬
⎭

2

= γ

4

⎧⎨
⎩
∑

j

∑
m

Ej Emei[(kj +km)z−(ωj +ωm)t]

+
∑

j

∑
m

Ej E∗
mei[(kj −km)z−(ωj −ωm)t] + c.c.

⎫⎬
⎭ . (22)

Extracting resonant terms from Eq. (22) that satisfy ωj −
ωm = ων (or ωj − ωj −1 = ων), and substituting them into

the right-hand side of Eq. (21), we obtain

− iων

(
∂q
∂t

+ q
τ

)
ei[kν z−ων t]

= γ

4

∑
j

Ej E∗
j −1ei[(kj −kj −1)z−(ωj −ωj −1)t], (23)

∂q
∂t

= 1
τ

⎡
⎣−q − γ τ

4iων

∑
j

Ej E∗
j −1ei(kj −kj −1−kν )z

⎤
⎦ , (24)

where ωj − ωj −1 = ων is used.
For j = −1, 0, 1, Eq. (24) takes the form

∂q
∂t

= 1
τ

{
−q − γ τ

4iων

[
E0E∗

−1ei(k0−k−1−kν )z

+E1E∗
0ei(k1−k0−kν )z]

}
. (25)

Equation (25) gives the relation that connects q (or q∗) to
Ej (j = −1, 0, 1).

C. Derivation of terms for the Kerr effect

In this section, we calculate the nonlinear polarization
[Eq. (5)] for the Kerr effect. To do this, we substitute
Eq. (7) into Eq. (5) and obtain

PK
NL = ε0χ

(3)

⎧⎨
⎩

1
2

⎡
⎣∑

j

Ej ei(kj z−ωj t) + c.c.

⎤
⎦
⎫⎬
⎭

3

= ε0χ
(3)

8

⎧⎨
⎩
∑

j

∑
l

∑
m

Ej ElEmei[(kj +kl+km)z−(ωj +ωl+ωm)t] + 3
∑

j

∑
l

∑
m

Ej ElE∗
mei[(kj +kl−km)z−(ωj +ωl−ωm)t] + c.c.

⎫⎬
⎭ .

(26)

By obtaining the second-order time derivative of PK
NL necessary to calculate the right-hand side of Eq. (2), we get

μ0
∂2PK

NL

∂t2
≈ −ε0μ0χ

(3)

8

⎧⎨
⎩
∑

j

∑
l

∑
m

(ωj + ωl + ωm)2Ej ElEmei[(kj +kl+km)z−(ωj +ωl+ωm)t]

+3
∑

j

∑
l

∑
m

(ωj + ωl − ωm)2Ej ElE∗
mei[(kj +kl−km)z−(ωj +ωl−ωm)t] + c.c.

⎫⎬
⎭ , (27)

where the slowly-varying-envelope approximation,
|ωj Ej | � |∂Ej /∂t|, is used.

To extract resonant terms from Eq. (27), we write down
the terms resonant to ωj in Eq. (26) as P

(ωj )
K and obtain
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μ0∂
2P

(ωj )
K /∂t2 for j = −1, 0, 1 as

μ0
∂2P(ω−1)

K

∂t2
= −3ε0μ0χ

(3)

8
ω2

−1

(
E−1|E−1|2 + 2E−1|E1|2

+2E−1|E0|2
)

ei(k−1z−ω−1t), (28)

μ0
∂2P(ω0)

K

∂t2
= −3ε0μ0χ

(3)

8
ω2

0

(
E0|E0|2 + 2E0|E1|2

+2E0|E−1|2
)

ei(k0z−ω0t), (29)

μ0
∂2P(ω1)

K

∂t2
= −3ε0μ0χ

(3)

8
ω2

1

(
E1|E1|2 + 2E1|E0|2

+2E1|E−1|2
)

ei(k1z−ω1t). (30)

In addition, because

ω0 − ω−1 = ω1 − ω0 = ων , (31)

ω1 + ω−1 − 2ω0 = 0, (32)

P(2ω0−ω1)

K , P(ω1+ω−1−ω0)

K , and P(2ω0−ω−1)

K are resonant to
ω−1, ω0, and ω1, respectively, and with the addition of μ0
their second-order time derivatives are of the form

μ0
∂2P(2ω0−ω1)

K

∂t2

= −3ε0μ0χ
(3)

8
(2ω0 − ω1)

2E2
0E∗

1ei[(2k0−k1)z−(2ω0−ω1)t]

= −3ε0μ0χ
(3)

8
ω2

−1E2
0E∗

1ei[(2k0−k1)z−ω−1t], (33)

μ0
∂2P(ω1+ω−1−ω0)

K

∂t2

= −6ε0μ0χ
(3)

8
(ω1 + ω−1 − ω0)

2

× E1E−1E∗
0ei[(k1+k−1−k0)z−(ω1+ω−1−ω0)t]

= −6ε0μ0χ
(3)

8
ω2

0E1E−1E∗
0ei[(k1+k−1−k0)z−ω0t], (34)

μ0
∂2P(2ω0−ω−1)

K

∂t2

= −3ε0μ0χ
(3)

8
(2ω0 − ω−1)

2

× E2
0E∗

−1ei[(2k0−k−1)z−(2ω0−ω−1)t]

= −3ε0μ0χ
(3)

8
ω2

1E2
0E∗

−1ei[(2k0−k−1)z−ω1t], (35)

where Eq. (32) is used.

D. Full coupled equations with the Raman and Kerr
terms

To complete building full coupled equations contain-
ing the Raman and Kerr effects, we insert the Raman
terms [Eqs. (15)–(17)] and the Kerr terms [Eqs. (28)–(30)
and (33)–(35)] into the right-hand side of Eq. (2) and also
insert Eqs. (10) and (11) into the left-hand side of Eq. (2).
Using resonant terms for each ωj (j = −1, 0, 1), we obtain
the following coupled equations:

∂E−1

∂z
= i

g
2

q∗E0ei�k0z + iκ−1
(
2|E0|2 + |E−1|2 + 2|E1|2

)

× E−1 + iκ−1E∗
1E2

0ei�kz, (36)

∂E0

∂z
= i

g
2

ω0

ω−1

(
qE−1e−i�k0z + q∗E1ei�k1z)

+ iκ0
(|E0|2 + 2|E−1|2 + 2|E1|2

)
E0

+ 2iκ0E∗
0E−1E1e−i�kz, (37)

∂E1

∂z
= i

g
2

ω1

ω−1
qE0e−i�k1z + iκ1

(
2|E0|2 + 2|E−1|2 + |E1|2

)

× E1 + iκ1E∗
−1E2

0ei�kz, (38)

∂q
∂t

= 1
τ

[−q + i
(
E0E∗

−1ei�k0z + E1E∗
0ei�k1z)] , (39)

where Eq. (39) is used to determine the motion of q
in Eqs. (36)–(38), which is given from Eq. (25). Equa-
tions (36)–(39) are already rewritten by our using the
following quantities:

Enew =
(ε0cn

2

)1/2
Eold, (40)

qnew = 2ωνε0cn
τγ

qold, (41)

g = ω−1τγ

4n2ε0c2ων

χ ′(3), (42)

κj = ωj

c
n2, (43)

n2 = 3
4cn2ε0

χ(3), (44)

�kj = kj − kj −1 − kν , (45)

�k = 2k0 − k1 − k−1, (46)

where g in Eq. (42) is the Raman gain, n2 in Eq. (44) is the
nonlinear refractive index, and ki (i = −1, 0, 1) in Eq. (46)
is given as ki = ki · z, where ki ‖ ẑ and ẑ is a unit vector in
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the z direction.
At the steady state, vibrating molecules with frequency

ων in the semiconductor used have a constant amplitude
for q in the motion of Q = [qei(kν z−ων t) + c.c.]/2. Thus, the
relation ∂q/∂t = 0 holds, and Eq. (39) gives

q = i
(
E0E∗

−1ei�k0z + E1E∗
0ei�k1z) . (47)

In this case, substituting Eq. (47) into Eqs. (36)–(38), we
obtain

∂E−1

∂z
= g

2
(
E∗

0E−1 + E∗
1E0ei�kz)E0

+ iκ−1
(
2|E0|2 + |E−1|2 + 2|E1|2

)
E−1

+ iκ−1E∗
1E2

0ei�kz, (48)

∂E0

∂z
= g

2
ω0

ω−1

(|E1|2 − |E−1|2
)

E0

+ iκ0
(|E0|2 + 2|E−1|2 + 2|E1|2

)
E0

+ 2iκ0E∗
0E−1E1e−i�kz, (49)

∂E1

∂z
= −g

2
ω1

ω−1

(
E0E∗

−1ei�kz + E1E∗
0

)
E0

+ iκ1
(
2|E0|2 + 2|E−1|2 + |E1|2

)
E1

+ iκ1E∗
−1E2

0ei�kz. (50)

If we include linear-loss terms with loss coefficient αj (j =
−1, 0, 1) and nonlinear-loss terms with TPA coefficient
βTPA, the coupled equations take the form

∂E−1

∂z
= g

2
(
E∗

0E−1 + E∗
1E0ei�kz)E0

+ iκ−1
(
2|E0|2 + |E−1|2 + 2|E1|2

)
E−1

+ iκ−1E∗
1E2

0ei�kz − 1
2
(
α−1 + αTPA

−1

)
E−1, (51)

∂E0

∂z
= g

2
ω0

ω−1

(|E1|2 − |E−1|2
)

E0

+ iκ0
(|E0|2 + 2|E−1|2 + 2|E1|2

)
E0

+ 2iκ0E∗
0E−1E1e−i�kz − 1

2
(
α0 + αTPA

0

)
E0, (52)

∂E1

∂z
= −g

2
ω1

ω−1

(
E0E∗

−1ei�kz + E1E∗
0

)
E0

+ iκ1
(
2|E0|2 + 2|E−1|2 + |E1|2

)
E1

+ iκ1E∗
−1E2

0ei�kz − 1
2
(
α1 + αTPA

1

)
E1, (53)

where αTPA
j is defined by [28,33]

αTPA
j = βTPA

⎛
⎝|Ej |2 + 2

∑
m =j

|Em|2
⎞
⎠ , (54)

and βTPA is defined by

βTPA = 3μ0ωj

2n2 χ ′(3). (55)

In the above equations, FCA is ignored because the p-n
junction in Fig. 1 soon drains off TPA-induced carriers (if
there is TPA).

The right-hand sides of Eqs. (51)–(53) contain the terms
for SRS, SPM, XPM, FWM (degenerate FWM), linear
loss, and TPA loss from the left to the right. The SPM,
XPM, and FWM terms are not negligible because the non-
linear coefficient κj in Eqs. (51)–(53) is comparable to the
Raman gain g for AlxGa1−xAs at around 1.55 μm: g ≈ 10
cm/GW [16] and κj ≈ 7.1 cm/GW [34]. For comparison,
for Si at around 1.55 μm, g ≈ 20 cm/GW [4] and κj ≈ 1.8
cm/GW [35]. For Si, the effect from the SRS terms is much
stronger than that from the Kerr terms, which is completely
different from the AlxGa1−xAs case.

In the next section, we solve Eqs. (51)–(53) by an ana-
lytical method with some approximations and also by a
numerical method when there is no QPM structure. After
checking numerical solutions at the initial evolution stage
by comparison with analytical solutions, we proceed to
numerically obtain the output efficiency with the QPM
structure out of the initial stage.

In what follows, |Ei|2 (i = −1, 0, 1) represents the opti-
cal intensity in the unit of gigawatts per square centimeter,
which is identical to the propagating beam power divided
by the waveguide cross-section area.

IV. RESULTS AND DISCUSSION

A. Analytical solutions with approximations

To obtain analytical solutions for the coupled nonlinear
equations [Eqs. (51)–(53)], we make the following approx-
imations, which are valid at the initial stage of growth of
the Stokes and anti-Stokes waves:

(1) The pump intensity |E0|2 is sufficiently large com-
pared with the intensities |E−1|2, |E1|2 of the Stokes and
anti-Stokes waves, respectively, where the depletion of the
pump beam is ignored. In this case, the condition

|E−1|, |E1| � |E0| = constant (56)

holds. The Stokes and anti-Stokes waves can grow from
small seed light and do not necessarily require high-power
seed beams at z = 0.
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(2) Since the anti-Stokes wave with a phase mismatch
�k grows much more weakly than the Stokes wave with
no such phase mismatch, the additional approximation

|E1| � |E−1| (57)

holds.
(3) We ignore the wavelength dependence of the loss

coefficients α−1, α1, and α0 of the Stokes, anti-Stokes, and
pump waves, respectively, because their differences are
small at wavelengths far from the band-gap wavelength
(actually they are near the half-band-gap wavelength). In
this case, we can set

α−1 ≈ α1 ≈ α0 ≡ α, (58)

where α is a constant.

Using Eqs. (56)–(58), we obtain the following simplified
equations for Eqs. (51)–(53):

∂E−1

∂z
≈
(g

2
− βTPA + 2iκ−1

)
|E0|2E−1 − α

2
E−1, (59)

∂E1

∂z
≈ −

(
g
2

ω1

ω−1
− iκ1

)
E2

0E∗
−1ei�kz − α

2
E1. (60)

In the approximations used above, the effects of SPM and
XPM are greatly reduced. (These effects are examined in
detail in Sec. IV B 4.)

In Eqs. (59) and (60), the linear-loss terms are easily
removed by our setting

E−1 = E−1(z) e− α
2 z, (61)

E1 = E1(z) e− α
2 z. (62)

We then obtain

∂E−1

∂z
≈
(g

2
− βTPA + 2iκ−1

)
|E0|2 E−1, (63)

∂E1

∂z
≈ −

(
g
2

ω1

ω−1
− iκ1

)
E2

0 E∗
−1ei�kz. (64)

To solve Eqs. (63) and (64), we integrate Eq. (63) from 0
to z and get

E−1(z) = E−1(0)e(g/2−βTPA+2iκ−1)|E0|2z. (65)

Next, inserting Eq. (65) into Eq. (64) and integrating
Eq. (64) from 0 to z, we obtain

E1(z) = E1(0) +
(

g
2

ω1

ω−1
− iκ1

)
E2

0E∗
−1(0)

× 1 − e
[
( g

2 −βTPA)|E0|2+i
(
�k−2κ−1|E0|2

)]
z

( g
2 − βTPA

) |E0|2 + i
(
�k − 2κ−1|E0|2

) , (66)

where E1(0) denotes the input electric field for the anti-
Stokes wave. In what follows, we set E1(0) ≈ 0 as E1(0) is
a very small quantity.

Finally, substituting Eqs. (65) and (66) into Eqs. (61)
and (62), we obtain

E−1(z) = E−1(0)e
[
( g

2 −βTPA+2iκ−1)|E0|2− α
2

]
z, (67)

E1(z) =
(

g
2

ω1

ω−1
− iκ1

)
E2

0E∗
−1(0)e−(α/2)z

× 1 − e
[
(g/2−βTPA)|E0|2+i

(
�k−2κ−1|E0|2

)]
z

(g/2 − βTPA) |E0|2 + i
(
�k − 2κ−1|E0|2

) ,

(68)

where the relations E1(0) = E1(0) and E−1(0) = E−1(0)

are used. From Eqs. (67) and (68), the output effi-
ciencies, ηS = |E−1(z)|2/|E0|2, ηAS = |E1(z)|2/|E0|2 (i.e.,
the z-dependent Stokes and anti-Stokes intensities,
|E−1(z)|2, |E1(z)|2, divided by the initial pump intensity
|E0(0)|2 = |E0|2) are given as follows:

ηS = |E−1(0)|2
|E0|2 e

[
(g−2βTPA)|E0|2−α

]
z, (69)

ηAS =
(

g2

4
ω2

1

ω2
−1

+ κ2
1

)
|E0|2|E−1(0)|2e−αz 1 − 2 cos

[(
�k − 2κ−1|E0|2

)
z
]

e(g/2−βTPA)|E0|2z + e(g−2βTPA)|E0|2z

(g/2 − βTPA)2 |E0|4 + (�k − 2κ−1|E0|2
)2 . (70)

From Eqs. (69) and (70), we can see some proper-
ties of the evolution of the Stokes and anti-Stokes
waves:

(1) SRS and TPA for both Stokes and anti-Stokes waves
in Eqs. (69) and (70) have the same dependence on the
pump intensity |E0|2, which originates from the property
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that their coefficients g, βTPA have the same origin of χ ′(3),
as seen in Eqs. (42) and (55), and have the same unit
(cm/GW).

(2) In addition to the linear optical loss (e−αz), SRS for
the Stokes wave is suppressed by TPA as e(g−2βTPA)|E0|2z,
as seen in Eq. (69). For the anti-Stokes wave in Eq. (70),
SRS with optical losses is seemingly complicated because
of the presence of �k in Eq. (70). But the basic feature
is that, in addition to the linear loss (e−αz), SRS with
eg|E0|2z is suppressed by TPA with e−βTPA|E0|2z, resulting in
e(g−2βTPA)|E0|2z and e(g/2−βTPA)|E0|2z.

(3) The output efficiency of the anti-Stokes wave in
Eq. (70) oscillates with a period of �′ = 2π/|�k −
2κ−1|E0|2|, which depends on 2κ−1|E0|2. Thus, the period
has an |E0|2 dependence.

(4) The output efficiency of the anti-Stokes wave in
Eq. (70) is enhanced by an additional factor κ2

1 that
stems from FWM, which is added to the SRS factor
(g2/4)(ω2

1/ω
2
−1).

As regards (1), since g and βTPA are proportional to
χ ′(3), as seen in Eqs. (42) and (55), and since n2 is pro-
portional to χ(3), as seen in Eq. (44), these coefficients
in the intermixed domains are smaller than those in the
as-grown domains because of blueshifted resonance for
χ(3) and χ ′(3). Thus, periodic g and n2 are produced in
the GaAs/AlAs-intermixed-superlattice waveguide. These
periodic g and n2 form the QPM structure that can remove
�k and enhance the output efficiency.

In connection with (2), if the photon energies of the
Stokes and anti-Stokes waves are smaller than the half-
band-gap energy, TPA that degrades SRS can be greatly
reduced. Even in this region, n2 has a finite value (and
becomes large near the half-band-gap energy) [29]. For
this reason, we use a semiconductor device with the pho-
ton energies of the pump, Stokes, and anti-Stokes waves
near and below the half-band-gap energy for highly effi-
cient output (or with their wavelengths near and greater
than the half-band-gap wavelength).

In relation to (3), the setting of the QPM period � to
�′ = 2π/|�k − 2κ−1|E0|2| is not practical in device appli-
cations because |E0|2 decreases as the pump wave prop-
agates through the QPM device, as shown in Sec. IV B,
which requires an aperiodic QPM structure. In addition,
|E0|2 at z = 0 is sometimes varied, and a corresponding
aperiodic QPM structure is necessary in this case. This
means that there is no tolerance of a wide change in input
pump intensity. For this reason, we set � = 2π/|�k| when
performing quasi-phase-matching.

With regard to (4), because κ2
1 ≈ 50.4 and (g2/4)

(ω2
1/ω

2
−1) ≈ 29.9 in our case, we can see that the FWM-

enhanced efficiency is about 2.7 times greater than the
efficiency without FWM. For comparison, we mention
that Si has κ2

1 ≈ 3.3 and (g2/4)(ω2
1/ω

2
−1) ≈ 119.6, which

means that Si has a little efficiency enhancement by FWM.
On the other hand, such enhancement has been reported in
an optical fiber (SiO2) with no QPM structure [36]. How-
ever, our device has a QPM structure, and we need to
investigate the effect of SRS with FWM in the QPM struc-
ture. At the same time, we need to take account of SPM
and XPM, which are much stronger than in SiO2 as well as
in Si. The numerical analysis containing all those effects
on the efficiency is given in the next section.

B. Numerical solutions

The solutions in Sec. IV A with approximations for non-
linear optical terms do not contain the effects of pump
depletion and very large growth of the Stokes wave under
the assumption that they are at the initial stage. To inves-
tigate the evolution of the three waves more precisely,
we obtain numerical solutions (i.e., without such approx-
imations) for the case without the QPM structure first by
the fourth-order Runge-Kutta method [37]. At the initial
wave evolution, since those two effects are not serious,
a comparison between the analytical and numerical solu-
tions can be made to check numerical accuracy, which is
described in Sec. IV B 4. After this check, we investigate
the solutions for the QPM case, and show improved output
characteristics in comparison with the no-QPM case.

1. Determination of the half-band-gap, Stokes, pump,
and anti-Stokes wavelengths

We use AlxGa1−xAs (x = 0.18), where the χ(3) prop-
erty of the as-grown GaAs/AlAs superlattice can be
well approximated. The AlxGa1−xAs (x = 0.18) and the
GaAs/AlAs superlattice have a quite similar χ(3) prop-
erty and almost the same band-gap energy [29]. We do
not have to focus on TPA in the intermixed regions
because they have a blueshifted absorption edge, and TPA
in the as-grown regions emerges first. In this superlat-
tice, we assume that the Stokes, pump, and anti-Stokes
wavelengths, λi (i = −1, 0, 1), respectively, are near and
greater than the half-band-gap wavelength λhalf, thus keep-
ing large n2 and very small (almost zero) βTPA. (Here a
large figure of merit, 4πn2/(βTPAλi) � 1, is kept even at
λi = λhalf [38,39].)

To show available λ−1, λ0, λ1, we need to calculate λhalf
(μm), which is defined by

λhalf = 2
hc
Eg

, (71)

where h is Planck’s constant, c is the velocity of light, and
Eg (eV) is the band-gap energy at temperature T (K). Eg in
Eq. (71) can be determined from Varshni’s equation [40]
for AlxGa1−xAs:

Eg = E(0)
g − aT2

b + T
, (72)
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where E(0)
g = (1.5194 + 1.36x + 0.22x2) eV (0.1 < x <

0.75) [41], a = (5.5 + 3.35x) × 10−4 eV/K, and b =
(225 + 88x) K (0 < x < 0.7), which are valid for 12–800
K [42].

Setting x = 0.18 and T = 300 K (room temperature) in
Eqs. (71) and (72), we obtain Eg = 1.67 eV and λhalf =
1.485 μm. Thus, for λ−1, λ0, and λ1 near and greater than
λhalf = 1.485 μm (0.835 eV), we obtain λ−1 = 1.63 μm
(0.761 eV), λ0 = 1.56 μm (0.795 eV), and λ1 = 1.49 μm
(0.832 eV). Here the spacing of λ−1, λ0, λ1 is determined
from the Raman shift (70.8 nm) of AlxGa1−xAs.

2. Determination of the phase mismatch �k

It is also necessary to determine the phase mismatch
�k in Eqs. (51)–(53) when one is numerically integrating
them. �k is defined by

�k = 2k0 − k1 − k−1

= 2π

[
2

n(λ0)

λ0
− n(λ1)

λ1
− n(λ−1)

λ−1

]
, (73)

where n(λi) is the refractive index for λi (i = −1, 0, 1). The
form of n(λi) is determined by Sellmeier’s equation for
AlxGa1−xAs at room temperature [43,44], which is given
by

n(λi)

=
[

a1 − a2x + a3

λ2
i − (a4 − a5x)2

− a6(a7x + 1)λ2
i

] 1
2

,

(74)

where for x ≤ 0.36, a1 = 10.906, a2 = 2.92, a3 = 0.97501,
a4 = 0.52886, a5 = 0.735, a6 = 0.002467, and a7 = 1.41.
For x > 0.36, a4 and a5 are changed to a4 = 0.30386
and a5 = 0.105. Since Sellmeier’s equation for the as-
grown regions has not been obtained, although there have
been some experimentally measured refractive indices at
around 1.55 μm [23], we use Eq. (74) with x = 0.18 as
an approximate refractive index for the as-grown regions.
When compared with the experimentally measured refrac-
tive index at 1.55 μm for TE modes [23], the deviation of
the refractive index from that in Eq. (74) with x = 0.18 at
1.55 μm is 5.8%.

From Eqs. (73) and (74), we can determine the period
� for first-order quasi-phase-matching as � = 2π/|�k|.
By inserting λ−1 = 1.63 μm, λ0 = 1.56 μm, and λ1 =
1.49 μm into Eqs. (73) and (74), we obtain � = 189.1 μm.

3. Determination of the linear-loss coefficient α

Since the Stokes, pump, and anti-Stokes wavelengths
are greater than the half-band-gap wavelength, the TPA
loss does not emerge, but the linear loss emerges at all

times. However, recent technological development has
achieved a small linear loss; for example, a loss of 1.2
dB/cm in AlxGa1−xAs (x = 0.18) at around 1.55 μm
for TE-mode beams [45]. We use this value in our cal-
culations. In addition, since wavelengths greater than
the half-band-gap wavelength are far from the band-gap
wavelength, we can justify the omission of the wave-
length dependence of the linear-loss coefficients αj (j =
−1, 0, 1), as given in Eq. (58), and we set αj = α =
0.276 cm−1. This is calculated from the loss of 1.2 dB/cm
so as to fit e−αz.

4. Output efficiencies for the cases with and without the
QPM structure

Using the phase mismatch �k, the refractive indices
n(λi) of the wavelengths λi (i = −1, 0, 1), the linear-loss
coefficient α, and the numerical factors of g and κj given in
Sec. III D, we numerically compute the output efficiencies,
ηS = |E−1(z)|2/|E0(0)|2, ηAS = |E1(z)|2/|E0(0)|2, for the
cases with and without the QPM structure.

In numerical calculations with the QPM structure, the
small difference between the refractive indices, nintermixed
and nas-grown, in the intermixed and as-grown domains,
respectively, is ignored because the difference nas-grown −
nintermixed = 0.01 is only 0.3% of the average refractive
index of the QPM structure, as mentioned in Sec. I. On
the other hand, a large change in χ(3) of the intermixed
domains is set as εχ(3) (0 ≤ ε ≤ 1) using the χ(3) of the as-
grown domains, as depicted in Fig. 3. This setting means
that when ε = 1, there is no QPM structure and that when
0 ≤ ε < 1, there is a QPM structure. In particular, ε = 0
gives a maximum QPM effect.

To calculate the output efficiencies, we use a waveg-
uide with a cross-section area of (0.5 μm)2 and a
pump power of 10 W [46], which can be achieved with
fiber lasers. In this case, the pump intensity at z = 0
is |E0(0)|2 = 4.0 GW/cm2. As seed-light intensities at
z = 0 for the Stokes and anti-Stokes waves, we ten-
tatively set |E−1(0)|2 = 0.01 GW/cm2 and |E1(0)|2 =
0.0001 GW/cm2. The setting of |E−1(0)|2 ≈ |E1(0)|2 =
0.01 GW/cm2 is also possible. But we numerically check
that within 0.0001 GW/cm2 ≤ |E1(0)|2 ≤ 0.01 GW/cm2

FIG. 3. Change in third-order nonlinear susceptibility χ(3) in
the QPM structure. χ(3) in the intermixed domains is set to εχ(3)

with 0 ≤ ε ≤ 1. � is the QPM period.
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there is no noticeable change in the growth of the Stokes
and anti-Stokes waves. We set |E0(0)|2 = 4.0 GW/cm2 �
|E−1(0)|2 = 0.01 GW/cm2 � |E1(0)|2 = 0.0001GW/

cm2 because this enables us to compare the numerical
results with the analytical results obtained with the approx-
imations in Eqs. (56) and (57).

The output efficiencies ηS, ηAS for ε = 1 (i.e., with-
out the QPM structure) as a function of the device length
z are shown in Fig. 4, indicated by the red and blue
curves, respectively. The pump intensity |E0(z)|2 divided
by |E0(0)|2 is also included in Fig. 4, indicated by the green
curve, which shows a rapid decrease with increasing z. The
inset in Fig. 4 shows a magnification of the behavior of ηAS
at around z = 0.15 cm, which shows that ηAS oscillates and
does not grow sufficiently due to a non-zero phase mis-
match �k and pump depletion. In this case, most of the
pump power is transferred to the Stokes wave, which has
no such phase mismatch.

From the inset in Fig. 4, we can roughly estimate
the ratio, |E1|2/|E−1|2, between the anti-Stokes-wave and
Stokes-wave intensities to be 10−3, which is rather larger
than 10−6 - 10−5 in Si waveguides [18,19]. This comes
from |E1|2/|E−1|2 being proportional to the pump intensity
|E0|2 [17] with the use of a larger |E0|2 in our case.

As mentioned above, the input-intensity setting in
numerical calculations that satisfies |E0| � |E−1| � |E1|
enables us to compare the numerical results with the ana-
lytical solutions in Eqs. (69) and (70) when βTPA = 0. This
is shown in Fig. 5, where the thin red and blue curves
represent the analytical results from Eqs. (69) and (70),
respectively, and the thick red, blue, and green curves
are the same as in Fig. 4. The inset displays the same
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FIG. 4. Output efficiencies ηS = |E−1(z)|2/|E0(0)|2 and ηAS =
|E1(z)|2/|E0(0)|2 of the Stokes and anti-Stokes waves, respec-
tively, for ε = 1 (i.e., without the QPM structure). The red and
blue curves indicate ηS and ηAS, respectively, and the green curve
indicates the normalized pump intensity |E0(z)|2/|E0(0)|2. The
inset shows magnification of the behavior of ηAS at around 0.15
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FIG. 5. Comparison between analytical and numerical results,
indicated by the thin and thick curves, respectively, where the
thick curves are the same as in Fig. 4. The inset shows the same
plot with a log10 scale for the vertical axis.

plot with a log10 scale for the vertical axis. At the ini-
tial stage of growth of the Stokes and anti-Stokes waves,
the numerical solutions well fit the analytical results, but
that as z increases they deviate from the analytical results.
The main cause of this is pump depletion, and there is
also another effect from SPM and XPM, which are greatly
reduced in the approximations for the analytical solutions.
The latter effect is described below (see Fig. 7).

Figure 6 shows the output efficiencies ηS, ηAS for ε = 0
(i.e., with the QPM structure that provides the maximum
efficiency), where we observe a great increase in ηAS due to
quasi-phase-matching, which reaches the same order of ηS
(but with a factor of about 1/7). In addition, we can see that
there is an optimal device length that provides the high-
est efficiency in ηAS at zpeak = 0.69 cm that is determined
from a balance between optical gain and loss. This gives
us useful information for determining the necessary device
length when we fabricate actual devices. In this case, ηS of
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FIG. 6. Output efficiencies ηS and ηAS of the Stokes and anti-
Stokes waves, respectively, for ε = 0 (i.e., with the QPM struc-
ture giving the maximum efficiency). The red and blue curves
show ηS and ηAS, respectively, and the green curve indicates the
normalized pump intensity.
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FIG. 7. Output efficiency ηAS without SPM and XPM, indi-
cated by the black curve. The blue curve shows the case when
SPM and XPM are included. The red curve indicates the case
when only SPM is taken into account.

the Stokes wave somewhat decreases because more pump
power is transferred to the anti-Stokes wave. We also check
the influence of an initial phase shift (i.e., at z = 0) of the
QPM period on ηAS, and observe very little effect on it.

To check the effects of SPM and XPM on SRS of the
anti-Stokes wave including FWM, we depict ηAS when
SPM and/or XPM effects are deliberately deleted. The
black curve in Fig. 7 depicts ηAS when only SRS and FWM
are taken into account. The blue curve shows ηAS contain-
ing both SPM and XPM effects, which is the same as that
in Fig. 6.

From the black curve, we can see that quasi-phase-
matching is more effective because there is no period
deviation from � = 2π/|�k| by a phase shift due to SPM
and XPM. Owing to this effective quasi-phase-matching,
ηAS grows more rapidly than that with SPM and XPM as
the anti-Stokes wave propagates in the z direction; in this
case, about 1.6 times larger ηAS is obtained at z = 0.4 cm.

Furthermore, to see only the SPM effect on ηAS, we
intentionally delete the XPM effect, as depicted in Fig. 7
by the red curve. We can see that this also causes a period
deviation from � = 2π/|�k|, thus decreasing ηAS. But,
in our semiconductor device, since we cannot remove
only SPM and/or XPM effects in an artificial manner, the
efficiency reduction in the device always occurs.

Next we check the dependence of ηAS on the ε (0 ≤
ε ≤ 1) while taking account of all the above-mentioned
nonlinear effects. Figure 8 shows the peak value of ηAS
at z = zpeak, denoted by ηAS,peak, as a function of ε. In
Fig. 8, we can see that as ε approaches 0 from 1, ηAS,peak
increases rapidly. To obtain the QPM enhancement as com-
pared with the no-QPM case (i.e., ε = 1), we calculate the
enhancement factor e (or figure of merit) defined by

e = ηAS,peak,ε

ηAS,peak,ε=1
= |E1|2peak,ε

|E1|2peak,ε=1
. (75)

FIG. 8. Output efficiency ηAS at z = zpeak as a function of ε

(0 ≤ ε ≤ 1). The inset depicts the enhancement factor e.

This is depicted in the inset in Fig. 8, which shows that e is
about 76 times greater at ε = 0 (with the maximum QPM
effect) than at ε = 1 (with no QPM effect). Since the actu-
ally achievable value of ε is approximately 0.5 [29], the
enhancement factor e in this case is approximately 11.5.

5. Dependence of QPM efficiency on the pump intensity

The enhancement factor e in the inset in Fig. 8 is
obtained when the initial pump intensity |E0(0)|2 is fixed
at 4.0 GW/cm2. As we can easily see, an increase in the
initial pump intensity |E0(0)|2 increases the anti-Stokes-
wave intensity |E1|2peak,ε, which is shown in Fig. 9. Thus,
our interest now turns to the dependence of e on |E0(0)|2.

The dependence of e on |E0(0)|2 is depicted in the
inset in Fig. 9, where the vertical axis has a log10 scale.
This shows that e has a very large value between 103

and 103.5 for 0 ≤ ε ≤ 0.5 at very small |E0(0)|2, where
|E0(0)|2 should be larger than the SRS threshold pump
intensity δ ≈ 10−2 GW/cm2 [47]. The increase in e occurs
because as |E0(0)|2 approaches δ, the intensity-dependent
period �′ = 2π/|�k − 2κ−1|E0|2| in (3) of Sec. IV A at

FIG. 9. Dependence of peak output intensity |E1|2peak,ε on the
input pump intensity |E0(0)|2 for ε = 0, 0.5, and 1. The inset
depicts a log10 plot of the enhancement factor e versus |E0(0)|2
when ε = 0 or 0.5.
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page 10 comes nearer to � = 2π/|�k|, thereby achieving
highly-efficient QPM effect. �′ will actually be affected
by not only SPM but also XPM in the region beyond the
approximations in Sec. IV A. But both SPM and XPM
simultaneously diminish as |E0(0)|2 approaches δ, and thus
the above simple interpretation holds in explaining the e
enhancement.

For a comparison, in the perfectly-phase-matched case
(i.e., �k = 0), we can calculate the enhancement factor
e′ = ηAS(�k = 0)/ηAS(�k = 0) from Eq. (70) and obtain
e′ � 5.9 × 103 ≈ 103.77 for |E0|2 ≈ 0 with z � 0.35 cm
(where 0.35 cm appears because zpeak > 0.35 cm at |E0|2 <

4 (GW/cm2) for ε ≤ 0.5, as shown in Fig. 10). This esti-
mation indicates that the above-mentioned e enhancement
between 103 and 103.5 is very large and yet still smaller
than that in the perfectly-phase-matched case.

6. Dependence of peak position on the pump intensity

In actual device fabrication, it is important to deter-
mine an optimal (i.e., the smallest) device length that gives
the highest output intensity. Figure 10 depicts the depen-
dence of the optimal device length zpeak on the pump
intensity |E0(0)|2, which shows that zpeak decreases as
|E0(0)|2 increases. This is because as |E0(0)|2 increases,
the Stokes and anti-Stokes waves grow rapidly, thus caus-
ing rapid pump depletion. After complete pump depletion,
the Stokes and anti-Stokes waves do not grow and are
attenuated by the linear optical loss. Thus z = zpeak is given
approximately from the complete-pump-depletion point.

The important information obtained from Fig. 10 is
that we can determine the lower limit of an input pump
intensity |E0(0)|2 for the optimal waveguide length; For
instance, as shown in the inset of Fig. 10 by the dashed line
for ε = 0.5, |E0(0)|2 = 1.2 (GW/cm2) is necessary such
that zpeak = 1 (cm) that is the length aiming to actual device
fabrication.

FIG. 10. Dependence of the peak position zpeak on the input
pump intensity |E0(0)|2 for ε = 0, 0.5, and 1. The inset shows
a magnification for the ranges 0 ≤ zpeak ≤ 1 (cm) and 0 <

|E0(0)|2 < 5 (GW/cm2). The dashed lines indicate the necessary
|E0(0)|2 for zpeak = 1 cm when ε = 0 or 0.5.

FIG. 11. Dependence on the input pump intensity |E0(0)|2 of
the peak output intensity |E1|2peak,ε of the anti-Stokes wave for
ε = 0, 0.5, and 1 with βTPA = 0.1 cm/GW, indicated by the
black curves, and with βTPA = 0 (cm/GW), indicated by the blue
curves. The inset shows the |E0(0)|2 dependence of the efficiency
ηAS,peak,ε = |E1|2peak,ε/|E0(0)|2 when βTPA is varied from 0 to 1
cm/GW.

7. Dependence of output efficiency on TPA

In Sec. IV B 1, since the Stokes, pump, and anti-Stokes
wavelengths, λi (i = −1, 0, 1), respectively, are near and
greater than the half-band-gap wavelength, λhalf, sizable n2
and negligibly small βTPA are obtained (i.e., high nonlin-
ear refraction and very small TPA). But, in the case of λi
(i = −1, 0, 1) less than λhalf, TPA will emerge strongly. We
examine this effect on the output efficiency.

TPA excites carriers, which give rise to FCA (i.e., an
additional optical absorption). But we can remove this
additional absorption by use of the reversed-biased p-n
junction in Fig. 1.

A detailed calculation containing FCA (e.g., in a Si
waveguide) shows a remarkable increase in the optical
losses of propagating beams with increasing input beam
power; that is, the influence of FCA is far greater than
that of only TPA [48]. Thus, the removal of TPA-induced
carriers is indispensable for device applications.

Here, without including FCA with the help of the p-n
junction, we discuss the effect of TPA on the peak value
|E1|2peak,ε at z = zpeak for ε = 0, 0.5, and 1. This is shown
in Fig. 11 with use of βTPA = 0.1 cm/GW measured for TE
modes [49], where the black curves depict |E1|2peak,ε with
βTPA = 0.1 cm/GW and the blue curves show |E1|2peak,ε
with βTPA = 0 cm/GW for comparison. In Fig. 11, we can
see that the decrease in |E1|2peak,ε due to non-zero βTPA
becomes larger for smaller ε, where for smaller ε, the anti-
Stokes-wave intensity is larger and thus there is stronger
TPA.

In the inset in Fig. 11, we plot the peak output effi-
ciency ηAS,peak,ε = |E1|2peak,ε/|E0(0)|2 for some different
βTPA values between 0 and 1 cm/GW when |E0(0)|2 =
4.0 GW/cm2, because a value of βTPA (0.35 cm/GW) dif-
ferent from 0.1 cm/GW has been reported [34]. In the inset,
we observe that ηAS,peak,ε decreases rapidly with increasing
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FIG. 12. Optical reflectance for dielectric multilayer mirrors or
photonic crystals (with 0 < R < 1 by controlling the thickness of
the dielectric multilayer mirrors or photonic crystals) that form a
cavity, where they reflect the Stokes waves back to the device
with their band gap and let the pump and anti-Stokes waves go
through them. By this method, the enhancement in the Stokes-
wave intensity |E−1|2 provides high anti-Stokes efficiency ηAS
because of ηAS ∝ |E−1|2.

βTPA, where the decrease is more rapid for smaller ε

because of stronger TPA with larger |E1|2peak,ε.
In the above, a great decrease in the output efficiency

ηAS due to TPA has been shown quantitatively, and we rec-
ognize the significance of keeping λi (i = −1, 0, 1) near
and greater than λhalf to avoid TPA and obtain highly-
efficient output for device applications.

In addition to this, to obtain much larger ηAS, we pro-
pose a cavity structure with dielectric multilayer mirrors
or photonic crystals [50–54] attached to both ends of the
device, which can also shorten the device. The dielectric
multilayer mirrors and photonic crystals reflect the Stokes
waves back to the device with their band gap with optical
reflectance R to enhance the Stokes-wave intensity |E−1|2
in the device and let the pump and anti-Stokes waves pass
through them, as illustrated in Fig. 12. This enhancement
in |E−1|2 increases ηAS (with no necessity of boosting the
pump intensity |E0|2) owing to the relation ηAS ∝ |E−1|2
in Eq. (70). If we use band-gap structures with R < 1,
it is possible to adjust the sizes of ηAS and ηS (and to
equalize them, if necessary). Quantitative analysis of such
efficiency adjustments will be provided in a forthcoming
paper.

V. SUMMARY

We propose a superlattice SRS device design using a
GaAs/AlAs intermixed superlattice with χ(3) nonlinear-
ity that can boost the anti-Stokes-wave efficiency ηAS
by quasi-phase-matching at 1.49 μm to the same order
as the Stokes-wave efficiency ηS at 1.63 μm with the
input of a 1.56-μm pump beam, which could be used
for channel amplification and/or conversion in gigabit-
Ethernet passive optical networks and wavelength-division
multiplexing systems.

In particular, having focused on the anti-Stokes-wave
amplification, we compute ηAS including the effects of
FWM, SPM, and XPM with coupled nonlinear equations
for the interacting pump, Stokes, and anti-Stokes waves,

because those effects are much stronger than in Si and
SiO2.

The solutions by an analytical method with approxima-
tions and by a numerical method show good agreement at
the initial stage of growth of the Stokes and anti-Stokes
waves for the no-QPM case. The analytical solutions show
that FWM enhances SRS, where the influence of SPM and
XPM is greatly reduced in the approximations. The numer-
ical calculations without such approximations reveal that
the difference between the analytical and numerical solu-
tions in the behavior out of the initial stage stems from
pump depletion and the SPM and XPM effects. To obtain
ηAS precisely, we numerically compute it for the cases with
and without the QPM structure containing FWM, SPM,
and XPM effects. A comparison between the two cases
shows that the efficiency is 3 orders of magnitude greater
with the QPM structure than without it for ε ≤ 0.5 for a
small pump intensity. The mechanism is clearly shown in
terms of nonlinear-optical analysis. A TPA effect on ηAS
at the optimal length is also examined, which indicates the
significance of TPA reduction for device applications. In
addition, we propose the use of a photonic-band-gap cav-
ity to obtain greater ηAS or to control the sizes of ηAS
and ηS.

The proposed device has potential in ultrahigh-speed
data processing/routing applications using channel conver-
sion and amplification via instantaneous optical nonlinear
interactions without any influence of carriers, or electron-
hole pairs, that distort the waveforms of optical signals.
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APPENDIX

The backward scattering of the beams due to the peri-
odic refractive-index structure is not included in the calcu-
lations because this is ignored safely: (i) Since its period
of approximately 189 μm (see Sec. IV B 2) is far greater
than the wavelengths used (1.49–1.63 μm), there is no
Bragg reflection. (ii) Another type of reflection due to
the difference �n = nas − nint between the as-grown-layer
refractive index (nas) and the intermixed-layer refractive
index (nint) is also ignored because of the very small �n
(i.e., �n/nas = 0.3%). This is shown as follows. At an
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interface of the domains, we obtain its reflectance R1 [56]:

R1 =
(

nas − nint

nas + nint

)2

≈
(

�n
2nas

)2

= 0.00152 = 0.00000225 = 0.000225%. (A1)

The transmittance TN through N domains is then calcu-
lated as

TN = (1 − R1)
N−1, (A2)

where the two ends of the full device are assumed to have
perfect antireflection coatings. Since the device length L
is on the order of centimeters for a small pump power
(see Fig. 10), if we take L ≈ 2 cm, for example, then N ≈
2 cm/189 μm ≈ 106. Inserting Eq. (A1) and N ≈ 106 into
Eq. (A2), we obtain TN ≈ 0.99976378 = 99.976378%,
which gives backward reflectance

RN = 1 − TN ≈ 0.00023622 = 0.023622%. (A3)

This is still very small and thus can be ignored safely.
In this paper we deal with the anti-Stokes waves

going forward, not backward, by using a phase-matching
condition for the forward anti-Stokes-wave generation.
Although the backward-beam reflection is not perfectly
zero, as seen in Eq. (A3), we can easily distinguish the for-
ward anti-Stokes-wave propagation from the (very little)
backward reflection by their propagation directions.
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