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ABSTRACT This paper presents a novel energy-efficient and reliable connection to enhance the transmission
of data over a shared medium for wireless body area networks (WBAN). We propose a novel protocol of
two master nodes-based cooperative protocol. In the proposed protocol, two master nodes were considered,
that is, the belt master node and the outer body master node. The master nodes work cooperatively to avoid
the retransmission process by sensors due to fading and collision, reducing the bit error rate (BER), which
results in a reduction of the duty cycle and average transmission power. In addition, we have also presented
a mathematical model of the duty cycle with the proposed protocol for the WBAN. The results show that the
proposed cooperative protocol reduced the BER by a factor of 4. The average transmission power is reduced
by a factor of 0.21 and this shows the potential of the proposed technique to be used in future wearable
wireless sensors and systems.

INDEX TERMS Wireless body area network, cooperative communication, duty cycle, bit error rate, average
transmission power, energy efficiency.

I. INTRODUCTION
WBAN are communication networks of sensors (and/or actu-
ators) placed on, inside, or perhaps around the body that
represent a new generation of personal area networks and
present different implementation challenges [1]–[6]. Sensors
of WBAN are small, and they are embedded with a finite
source, which is not the case for traditional wireless sensor
networks (WSN). Finite batteries limit the energy available
for the use of the sensor nodes in sensing, processing, stor-
ing, and sending data, and this directly affects the overall
energy efficiency, the network’s lifetime, the transmission
rate, and the end-to-end delay of the WBAN [7], [8]. Thus,
the energy efficiency of WBAN is a critical issue, and it must
be addressed in any WBAN system [5].

The most suitable layers to deal with energy efficiency are
the network layer (such as the routing technique) and the
data link layer (such as a medium access control protocol).

Medium access control (MAC) protocol controls and orga-
nizes nodes access to the shared wireless medium. MAC is
an essential of any communication protocol stack used in
any wireless network, which provides the basis for setting
Quality of Service (QoS), a high data rate, end-to-end delay,
reliability, and decreased energy. The essential task of the
MAC protocol is to avoid both collisions. Therefore,
all the above issues must be considered when designing
MAC protocols.

The problem of saving energy in WBAN has been studied
extensively [7]–[11]. Since the sensors usually are battery-
powered, reducing the power consumption of the node to
prolong the lifetime of the network is essential because the
nodes are provided with a limited source of power. Retrans-
mission data due to fading and collision is the primary
source of wasted energy, so avoiding collisions is a technique
that it is used to achieve better power efficiency [12]–[15].
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Also, additional power can be saved by controlling the nodes’
access to the shared wireless medium in the active mode
of the superframe. The advantage of this approach is that it
provides additional opportunities to save more power in the
WBAN without having a negative impact on other important
performance metrics [16], [17].

The diversity method is a technique used to combat the
effect of fading of the wireless channel. Diversity can be
done through the embedded sensors with multiple anten-
nas or utilizing a cooperative communication [18], [19].
Nevertheless, such cooperative communication utilizes extra
sub-channels/time slots to transmit a single data symbol from
the source to the receiver that reduces the bandwidth effi-
ciency of wireless channels [20], [21].

Different cooperative communications were considered for
WBAN to improve their energy efficiency, reliability, and
end-to-end delay. In [22], Deepak and Babu investigated the
energy efficiency of an incremental relay-based cooperative
communication in WBAN, they considered two communica-
tion model, the in-body communication between implant sen-
sors and the gateway, and on-body communication between a
body surface node and the gateway with line-of-sight (LOS)
and non-LOS channels. In [23], Manirabona et al. proposed
a Decode and Merge method which maintains the relaying
mode by merging frames from relayed and relaying nodes.
The throughput has been studied with keeping the energy
consumption unchanged. In [24], Esteves et al. introduced a
cooperative MAC protocol, named cooperative energy har-
vesting (CEH)-MAC, that adapts its operation to the energy
harvesting (EH) conditions in WBAN. In [25], Link-Aware
and Energy Efficient protocol for WBAN (LAEEBA) and
Cooperative Link-Aware and Energy Efficient protocol for
WBAN (CoLAEEBA) routing protocols are presented, they
have investigated the throughput and the network lifetime.
In [26], Ahmed et al. introduced a cooperative compressed
sensing (CCS) approach, which takes into account the energy
efficiency of WBAN by exploiting the benefits of random
linear network coding (RLNC). Hiep et al. [27] analyzed
and investigated the performance of multiple-hops in WBAN
that was based on the IEEE 802.15.6 standard. The authors
analyzed the performance of multiple-hops in WBAN, which
include multiple node sensors and have many hops according
to the power transmitted, the distance between the sensors,
and the distance between the sensors and the coordinator.
The proposed technique considered the power consump-
tion and compared their protocol with the star-topology
scenario. Rout and Das [28] developed a multi-relay,
Ultra-Wideband (UWB)-based BAN system. Theoretical and
simulation results based on IEEE 802.15.6 with a CM3 chan-
nel model were analyzed and discussed. The work gen-
erally focused on the study of Amplify-and-Forward (AF)
and Decode-and-Forward (DF) relaying and direct trans-
mission for WBAN in the 3.1 - 10.6 GHz UWB band.
In [29], Yousaf et al. proposed proactive relays selection
for both on-body and in-body WBAN. The results showed
that a three-relay, incremental cooperative communication

performed better in terms of the probability error rate (PER).
In [30], Cui et al. proposed a joint relay selection and power
control scheme (JRP) that taking into account transmission
reliability. The proposed protocol achieved a good trade-
off between reliability and energy consumption. However,
the disadvantage of the multi-hop and cooperative commu-
nication, as presented in [22]–[30] is that the on-body sensor
nodes must retransmit the other sensors’ data in the case of
data packet losses, where these nodes may need to transmit
twice, i.e., it must transmit its own data and the data of other
sensors. This retransmissionmechanism results in a reduction
of the energy efficiency of the on-body sensors since more
energy is consumed in retransmitting the data of other sensors
to the destination (gateway). A comparison of the state-of-
the-art work is also shown in Table 1. Our proposed protocol
concerned with how to improve the reliability of the commu-
nication between on-body sensors, and coordinators.

The limitations of the proposed protocols in [22]–[30] can
be elaborated as follows: 1) The relay nodes in the coopera-
tive communication are sensors and they are involved in the
retransmitting of the data of other sensors, which reduces the
overall energy ofWBAN. 2)When the sensors are involved in
cooperation, they may have to transmit twice, once for their
own data and once for the other sensors’ data. In doing so,
the probability of collisions increases, and retransmissions
occur, which increases the duty cycles and reduces the energy
efficiency of the other sensors. 3) In the WBAN, it is possible
that not all sensors have data to transmit in the wakeup
period, so involving these sensors in relaying may increase
competition, thereby increasing the duty cycles and reducing
the energy efficiency.

However, to the best of our knowledge, none of the pre-
vious work utilized two master nodes architecture. In this
paper, we present Two Master Nodes Cooperative Protocol
(TMNCP) based on IEEE 802.15.6 CSMA policy. The con-
tributions of this paper are summarized as follows:

1) We propose incremental cooperative communication
that involves master nodes in relaying the data of the
sensors instead of other on-body sensors.

2) The belt master node performs all retransmission
and cooperation issues, which reduces competition
between sensors and lessens the probability of colli-
sions, consequently improving energy efficiency.

3) The master nodes are embedded with double
transceivers, one of them is used for communication
with the sensors and the other transceiver is used
for communication between master nodes. Thus, it is
unnecessary to leave time for the master nodes in the
time frame, and this reduces the active time of the
sensor significantly, also reduces competition between
sensors. In addition, the TMNCP does not require a
significant change in WBAN 802.15.6 standard and it
can be considered as plug and play protocol.

4) We derived the BER of the proposed protocol by taking
into account two types of channels, i.e., small-scale and
shadowing models. We demonstrated that the proposed
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TABLE 1. Comparison of state-of-art work.

protocol has reduced duty cycle, average transmission
power and achieve better energy efficiency.

The rest of the paper is organized as follows. The
system model and the architecture of the proposed pro-
tocol are presented in Section 2. In Section 3, the
proposed TMNCP is described in detail, including the inves-
tigation of Carrier Sense Multiple Access Collision Avoid-
ance (CSMA/CA) based on IEEE 802.15.6 and Duty Cycle
and Power Analysis for CSMA/CA based on IEEE 802.15.6
and IEEE 802.15.6 TMNCP. The required parameters,

a numerical example, and the analysis of the numerical are
provided in Section 4. Section 5 presents our conclusions and
the future work we have planned.

II. SYSTEM MODEL AND ARCHITECTURE
A. NETWORK ARCHITECTURE
The IoT (Internet of Things) health network topology
states the arrangement of various components of an
IoT healthcare network that shows representative scenar-
ios of seamless healthcare environments. Figure 1 refers
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FIGURE 1. A conceptual diagram of IoT-based for healthcare [31].

to how a heterogeneous computing grid gathers massive
amounts of vital signals and sensor data, for example, blood
pressure (BP), body temperature, electrocardiograms (ECG),
and oxygen saturation and forms a typical IoT Net topology.
Vitals are taken using portable medical devices and sensors
attached to his or her body. Taken data are then examined and
stored, and stored data from different sensors and machines
become useful for aggregation. Based on analyses, caregivers
can see patients from any place and react accordingly [31].

An example of WBAN architecture is shown
in Figure 2 and 3. Sensors are distributed over the surface
of the body to gather health data, and sensors transmit the
data to the coordinator for analysis. In a WBAN system
based on the one-hop star topology, all sensors send their
data to the coordinator. In such a scenario, the major causes
of power losses in WBAN are, retransmission process due
to fading and collisions, idle listening, overhearing, traffic
fluctuations, and protocol overhead, the first two of which can
be avoided partially or fully by utilizing two masters -slave
topology.

In this paper, two masters – slave architecture is proposed.
One of the master nodes is fixed on the body, such as a node
carried around the belt, which is called the on-body master
node (OBN). The other master node functions as a monitor
and can receive data from the sensor nodes (slaves) as the
carried node can, and it is referred to as the outer master
node (OMN). Because of the movement of the body, the dis-
tances between the sensor nodes and two master nodes vary.

FIGURE 2. WBAN network architecture with two master nodes.

Some sensors may be located far away from the outer master
node compared to the on-body master node and vice versa.
Therefore, some sensors may have better channel quality with
respect to the outer master node than to the on-body master
node.
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FIGURE 3. System model for WBAN cooperative communication.

The proposed protocol can significantly shift the retrans-
mission process from the sensors to the master nodes. Hence,
the energy efficiency of the sensors is increased.

B. COMMUNICATION MODEL OF TMNCP
The proposed protocol takes into consideration the principle
of ARQ, and it works in a cooperative fashion, as follows:
in the first phase, the sensor node broadcasts the data to the
master nodes (on-body nodes and outer nodes). In the sec-
ond phase, the OMN checks the received data to determine
whether it has been received accurately; then the OMN sends
back a positive ACK, and OBN drops the data that have been
received from the sensor, as shown in Figure 3. Otherwise,
the OMN sends NACK to the OBN, which re-sends the data
received from the sensor to the OMN and then combines the
signal data of the first and second phases via Maximal Ratio
Combining (MRC).

The aims of this work are summarized as follows:
1) Improve the reliability of the received data: if the signal

is not received correctly at the OMN, then the OBN
retransmits the data received from the sensor to OMN,
andOMN combines the received data (signals), thereby
improving the quality of the data.

2) Efficient use of energy at the sensor and the OBN: if
the data are received accurately at OMN, OBN does
not have to retransmit the sensors’ data which is hap-
pening in traditional WBAN communication system,
thereby reducing the power consumption ofOBN. If the
data received at OMN is corrupted, the OBN retrans-
mits an additional copy of the data to OMN that not
involve sensors in the retransmission process, which
is the most significant cause of energy drain in the
WBAN sensors.

III. PROPOSED COOPERATIVE MAC PROTOCOL
FOR WBAN
CSMA/CA and time-division multiple access (TDMA) are
suitable MAC protocols for WSN. The performance of
CSMA/CA and TDMA in terms of delay and power con-
sumption is reported in [27]. Because multiple WBAN, and
WBAN sensors, which frequently access, then leave the
medium, may be placed in the same area and share the
same transmission range, thus CSMA/CA is preferable to
TDMA [32].

A. COOPERATIVE MAC PROTOCOL FOR WBAN
A cooperative MAC protocol is proposed in this subsection.
Sensors in WBAN are distributed over a limited area, and
they usually are equipped with limited source power. Due
to the above limitation, it is necessary to have a coordinator
node in WBAN, which usually is carried around the belt.
A coordinator node usually is embedded with a larger source
of power than the sensors are. This network topology can
enhance the transmission power and reduce the transmission
range for the sensors and for operative CSMA/CA control.
In this work, we attempted to design the MAC protocol in
order to take care of some important issues:

1) Reliability: The proposed protocol is a cooperative pro-
tocol, which lowers the probability of losing data by
sending data over two independent paths.

2) Reduce the retransmission process due to fading and
collision: retransmission process is one of the main
factors that is draining the batteries in WBAN. This
protocol overcomes this issue by using two-master
nodes.

3) Energy efficiency: Since the OBN does retransmission
on behalf of the sensors, the number of retransmis-
sions can be reduced, and hence enhance the energy
efficiency.

B. INVESTIGATION OF CSMA/CA BASED ON
IEEE 802.15.6
In this work, CSMA/CA is incorporated in the proposed
TMNCP, and the basic procedures of IEEE 802.15.6 are
described in detail in [33]. In CSMA/CA, a back-off counter
(BO) has a random value between 1 and CW , and CW ∈
(CWmin,CWmax). The values of CWmin and CWmax vary
depending on the user’s priorities [33]. The sensor decreases
their BO by one for each idle CSMA slot that has a duration
equal to pCSMASlotLength and latterly denoted as Ts. If the
BO is equal to zer0, the sensor sends the frame. If the channel
is not free due to the frame is being sent from another node,
the node locks its BO until the channel is idle. The CW is
doubled for an even number of failures or number of retrans-
mission retrying, and it is maximum value 7 [33].

C. ANALYSIS OF THE DUTY CYCLE AND POWER FOR
CSMA/CA BASED ON IEEE 802.15.6
In this subsection, we address the duty cycle (DC) and power
for the traditional slave-master topology of CSMA/CA based
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on IEEE 802.15.6. The average transmission power is related
directly to the duty cycle. DC is defined as the ratio of the
RF active time to the sleeping time multiplied by the factor
(1+PER). DC is expressed as [9]:

DC =
Tactive
TSleep

(1+ PER) (1)

where Tactive is the RF activity time, which is given as [34]:

Tactive = Ton + TCW + Tdata + TACK + 2TpSIFS + 2Tα (2)

TCW is average contention time and it is given as:

TCW = 0.5 CW .Ts (3)

The required time to send a data is given as [34]:

TDATA = TP + TPHY + TMAC+TBODY + TFCS . (4)

The acknowledgment sending time is given by:

TACK = TP + TPHY + TMAC+TFCS . (5)

The average probability of error at the packet level at each
hop is given as [35], [36]:

PER = 1− (1− BER)Plngth (6)

The DC is given as:

DC =
Ton + TCW + Tdata + TACK + 2TpSIFS + 2α.

Tsleep

×

(
2− (1− BER)Plngth

)
(7)

The factor,(2− (1− BER)Plngth ), is taken into account,
which shows how the BER influences DC. DC and the aver-
age transmission power are affected directly by the factor
(2− (1− BER)Plngth ).

The average transmission power, Pav, is obtained via mul-
tiplying DC, Vdd , and Iact , where Vdd is the radiofrequency
(RF) of the module supply voltage, and Iact is RF average
active current [9].

Pav = DC × Vdd × Iactive (8)

TSleep : Sleep time
T : Total time to transmit packet
Ts : CSMA slot length or pCSMASlotLength
Tc : Collision time, Tc = Tactive
Ton : RF transceiver power-on start time
TCW : Average back-off time
Tdata : Time to transmit a data packet
TACK : Time to receive an ACK
PER: Packet Error Rate
BER : Bit Error Rate
α : Delay time
TP : preamble time
TPHY : physical header time
TMAC : MAC header
TBODY : MAC frame body time
TFCS : frame check sequence time
τ : Transmission probability
Plngth : Packet length

TABLE 2. CSMA/CA procedure as defined in the IEEE 802.15.6 standard.

D. PROPOSED COOPERATIVE PROTOCOL FOR WBAN
The main goal of this paper is to evaluate the duty
cycle and average transmission power utilizing the IEEE
802.15.6 standard with the proposed cooperative communi-
cation. CSMA/CA based on our proposed protocol, TMNCP,
is explained as follows. The sensor nodes in the proposed
protocol will not change their access algorithm to channel,
but instead of the sensor transmitting directly to OBN, the
sensor will broadcast the data to OBN and OMN, and this
communication occurs in the first phase. Therefore, the sen-
sor will obey the CSMA/CA algorithm provided in Table 2.
After OBN and OMN received the data sent by the sensor, the
OMNdecodes the data. At second phase, if the data have been
received correctly, the OMN transmits immediate Acknowl-
edgment (ACK) to the sensors and OBN. Thus, the sensor
and OBN know that the packet was delivered correctly, and
OBN drops the data received from the sensor. However, if the
sensor and OBN do not receive ACK or if the OMN does
not decode the data sent by the sensor, the OMN sends a
Negative Acknowledgment (N-ACK). The OBN retransmits
the data that were received from the sensor in the first phase,
and OMN sums the received data via MCR.

The question that must be answered concerns how the
master nodes communicate with each other. In fact, there
are different options for the communication between OBN
and OMN. In this work, it is assumed the master nodes are
embedded with double transceivers, one of them is used for
communication with the sensors and the other transceiver is
used for the communication between master nodes. Thus, it is
unnecessary to leave time for OBN in the time frame, and
this reduces the active time of the sensor significantly, also
reduce competition between sensors. According to proposed
protocol TMNCP, if the OMN does not receive the data from
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TABLE 3. CSMA/CA description of TMNCP for WBAN.

the sensor correctly, the OBN use the second transceiver to
retransmit the data to OMN. Table 3 describes the TMNCP.

It is expected that DC of OBN is increased, but the DC of
the sensor is reduced or remains unchanged. The proposed
protocol decreases the number of retransmissions by the
sensor.

E. BER OF TMNCP
The main aim of TMNCP is to minimize the number of
retransmissions by the sensor nodes by reducing BER, which
has a direct effect on the duty cycle and the average transmis-
sion power of each node. The BER of the proposed protocol
has two parts, i.e., 1) direct transmission between the sensor
nodes and the master nodes, and 2) cooperative transmission,
which occurs between the master nodes. The BER of the
proposed protocol is given as:

BERTMNCPDPSK

=

(
BERdS,OBN ∩ BER

d
S,OMN

)
︸ ︷︷ ︸

First Phase

∪

((
1− BERdS,OMN

)
∩ BERdS,OBN ∩ BER

coop
OBN ,OMN

)
︸ ︷︷ ︸

Second Phase

(9)

The event of the two phases and the events in each phase are
exclusively independent, so we can re-write (9) as:

BERTMNCPDPSK

=

(
BERdS,OBN · BER

d
S,OMN

)
︸ ︷︷ ︸

First Phase

+

((
1− BERdS,OMN

)
· BERdS,OBN · BER

coop
OBN ,OMN

)
︸ ︷︷ ︸

Second Phase

(10)

The modulation scheme used for the IEEE 802.15.6 standard
is DPSK [33]. Therefore, the BER on the node j due to the
transmission from the node i is given as [38]:

BERDPSK = Q
(
2γi,j

∣∣ai,j∣∣2) ∼= 1
2
e
−

(
γi,j·|ai,j|

2
.10Zij

)
(11)

where γi,j is the signal-to-noise ratio (SNR) between sen-
sors i and j;

∣∣ai,j∣∣2 = d−vij is the wireless channel gain;
d is the distance between two nodes; and v is the path loss
exponent, Z is represented by the shadowing model and it
is component Gaussian random variable with zero mean and
variance equal to σ 2

ij . In this work, we have two channels
for communication, i.e., sensors to the OBN node, which is
named as on-body communication channel. Then, the second
possible path is sensors to OMN and OBN to OMN, which
is named as off-body communication channel. The on-body
communication, which is the first channel represented as
the shadowing model, and the on-body to external device
communication, which is the second possible channel, and it
is represented as the Quasi-static channel model [37]. Taking
into account the BER of DPSK, which is given in (11), we can
rewrite (10) as:

BERTMNCPDPSK

=
1
4

e−
(
γS,OBN
dvs,OBM

10Zs.OBM+γS,OMNX2
S,OMN

)
+

((
1−

1
2
e−γS,OMNX

2
S,OMN

)
· e
−γ S,OBN
dvs,OBM

10Zs.OBN

·e
−

(
γS,OMNX2

S,OMN+γOBN ,OMNX
2
OBN ,OMN

))]
(12)

where γS,OBN , γS,OMN and γOBN ,OMN are the signal-to-noise
ratios between the sensors and OBN, the sensors and OMN,
and OBN and OMN, respectively. ZS,OBM is the channel gain
between the sensors and OBN, which is represented by the
shadowing model. The terms X2

S,OMN and X2
OBM ,OMN are the

channel gain from the sensors to OMN and from OBN to
OMN, respectively, which are represented by the Quasi-static
model, and it is an exponential random variable with a mean,
|a|2 = d−v, and a variance of unity. By inserting the (12)
in (7), then inserting the new DC in (8), we can obtain the
average transmission power of the proposed protocol.

F. ENRGY EFFICIENCY of TMNCP
The energy efficiency (0) is defined as the energy required to
successfully transmit and receive bits without errors divided
by the total energy required to transmit and receive bits
successfully, and it is expressed as:

0 =
Plngth

(
1− BERTMNCPDPSK

)
Etr

ETMNCPtr,data + E
TMNCP
tr,ACK/NACK

(13)

where Etr is energy is Etx + Pt/R; Etx and Erx are the
energies required for the transmitter and receiver to trans-
mit and receive one bit; Pt is the transmission power; and
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TABLE 4. Comparison of the energy efficiency of TMNCP and the protocol
proposed in [29].

ETMNCPtr,data is the total energy consumed in the transmission of a
data packet with TMNCP. The term ETMNCPtr,data is expressed as:

ETMNCPtr,clata

= Plngth(Etx + Pt/R)
(
BERdS,OBN · BER

d
S,OMN

)︸ ︷︷ ︸
First Phase

+PlngthErx
(
(1−BERdS,OMN ) · BER

d
S,OBN · BER

coop
OBN ,OMN

)︸ ︷︷ ︸
Seconcl Phase

(14)

In Eq. (14), Etx and Erx are the energies required for
the transmitter and receiver to transmit and receive one bit,
respectively. The first phase represents energy consumption
by the sensor to broadcast the packet from the sensor to OBN
and OMN, and the second phase represents energy consump-
tion by the sensor to transmit the packet from OBN to OMN,
and the sensor will only overhear the packet from OBN.
ETMNCPtr,ACK/NACK is the total energy consumed in the transmis-
sion of ACK and NACK with TMNCP:

ETMNCPtr,ACK/NACK

= AACK/NACK

(Erx)
(
BERdS,OBN · BER

d
S,OMN

)︸ ︷︷ ︸
First Phase

+ (Erx)
(
(1− BERdS,OMN ) · BER

d
S,OBNBER

coop
OBN ,OMN

)︸ ︷︷ ︸
Seconcl Phase


(15)

where AACK/NACK is the size of ACK/NACK in bits. The
first phase and second phase represent energy consumption
due to the overheating of ACK/NACK by the source sensor.
Inserting Eq. (14) and Eq. (15) into Eq. (13), we can obtain
the energy efficiency of TMNCP. Table 4 shows that the
TMNCP outperformed the incremental relay that was pro-
posed in [29] in terms of the energy efficiency. The evaluation
parameters used in the Table 4 are as follows: both Etx and
Erx are 50 nJ/bit, Plngth = 500 bits, AACK/NACK = 64 bits,
v = 4, transmission rate Rate = 2 Mbps, the shadowing
variance σ 2

s,OBM = 5 dB, and Pt = 1000 mW .
The results show that TMNCP outperformed the protocol

proposed in [29] in terms of energy efficiency, where, even for
greater distance between the sensors, the TMNCP had better
performance than was achieved in [29].

IV. NUMERICAL ANALYSIS FOR TMNCP IN WBAN
A. REQUIRED PARAMETERS AND NUMERICAL EXAMPLE
In this section, the numerical parameters and an example
are described. The Rate is 75.9 Kbps. RF transceiver power-
on start time (in seconds) for AD7020: Ton = 2 ms. The
minimum ofCWmin is 16 slots, and themaximum ofCWmax is
64 slots. Hence, the average back-off time is given as
(CWminTs)

/
2, where each CSMA slot length, Ts, is125 µs.

The short interframe spacing time for CSMA/CA of 802.15.6:
TPSIFS = 50 µs. The payload of MAC frame (frame body) is
250 kB, and the time required to transmit 250 kB: Tbody =
(250× 8)

/
(75.9× 1024) = 25.7 ms. The frame header and

frame check sequences were 56 and 16 bits, respectively.
Then the TMAC = 56

/
(75.9× 1024) = 0.72 ms and

TFCS = 16
/
(75.9× 1024) = 0.205 ms. The time required

to the physical header is 40 µs. The preamble bits are
88 bits, hence the time required to transmit 88 bits is
88
/
(75.9× 1024) = 1.13 ms. The delay time α = 1µs.

The BER parameters are explained here, and they depend
on the signal-to-noise ratios, the distance, the shadowing
model, and the quasi-fading components. The maximum
distance between sensors and OBN was 1m, then the path
loss exponential, v, varied between 2 and 6, depending on
the obstacles. In this work, we assumed that v = 2. The
shadowing variance was varied between 0 and 12. Fading is
an exponentially distributed random variable with the mean
value 1/δ, and the average channel power was defined as
1/δ = E[|Xij|2] = d−v. For simplicity, the packet length
was assumed to be 1. The duty cycle of the 802.15.6 standard
using DPSK modulation is:

DC=
Tact
Tsleep

(
2−

(
1−

1
2
e
−

(
γi,j·|ai,j|

2
))Plngth)

The Tact = 2ms+1ms+27.795ms+2.095ms+0.1ms+
0.002ms = 32.992ms, the Tsleep = 1 s. The BER is 0.3645 of
the DPSK for γi,j = −5 dB = 0.316, and 1/δ = d−v = 1.
Hence, the duty cycle is:

DC =
32.992× 10−3

1 s

(
2− (1− 0.3645)1

)
= 45.02× 10−3

The average transmission power of the RF module supply
voltage: Vdd = 3 v and the RF average active current:
Iact = 15.05 mA.

Pavg = DC × Vdd × Iact
= 45.02× 10−3 × 3× 15.05× 10−3

= 2.03 mW

Now, let’s examine the average transmission power of the
proposed protocol. The active time and sleep time do not
change, hence, Tact = 32.992ms, and the sleep time is 1s.
The dvs,OBM = 1 for v = 2, dvs,OMN = 4 for v = 2, and
dvOBM ,OMN = 1 for v = 2. The shadowing variance σ 2

s,OBM =

5 dB = 3.16. The signal-to-noise ratios are assumed
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to be equal between links sensor-OBN, sensor-OMN, and
OBN-OMN, which is −5 dB = 0.316. The BERTMNCPDPSK is:

BERTMNCPDPSK

=
1
4

[(
e
−

(
0.316
12

100.5+0.3162−2
))
+

((
1−

1
2
e−0.3162

−2
)

·e−
0.316
12

100.5
· e
−

(
0.316
12

100.5+0.3161−2
))]

= 0.25 (0.34+ 0.0759×0.368× 0.268) = 0.08

therefore, the duty cycle is:

DCTMNCP =
32.992× 10−3

1 s

(
2− (1− 0.08)1

)
= 35.63× 10−3

Then, the average transmission power is:

PTMNCPavg = DCTMNCP × Vdd×Iact

= 35.63× 10−3 × 3×15.05× 10−3 = 1.6 mW

It is observed an increase by a factor of 0.21 was achieved
by our proposed protocol.

B. NUMERICAL RESULTS AND DISCUSSION
In this subsection, the performance of the TMNCP proto-
col is evaluated in terms of BER, duty cycle, and average
transmission power. In the evaluation, we assumed the same
SNR from the sensors to OBN, OBN to OMN, and sensors
to OMN, while the distances between nodes were assumed to
be different.

Figure 4 shows a comparison of BER of the direct trans-
mission 802.15.6 standard and TMNCP for difference nor-
malized distances of dSOBN = {0.5, 0.75, 1} and dSOMN =
{0.5, 0.75, 2} over varying SNR, i.e., {-5, -4, -3. . . , 5}. The
important results that can be seen in the figure are summa-
rized as follows:

1) The direct transmission had less performance com-
pared to TMNCP, where BERs appeared less
for TMNCP.

2) At σSOBN = 5dB, the BER is high compared to
σSOBN = 7dB and 9dB for TMNCP.

3) The BERs of TMNCP decreased as the distances
between the nodes decreased.

4) At high SNR and at σSOBN = 9dB, the BER of the
TMNCP has better performance compared to the direct
transmission.

5) At low SNR and at σSOBN = 5dB and 7dB, the BER of
the direct transmission approach the BER of TMNCP.
However, At low SNR and at σSOBN = 9dB, the BER
of TMNCP show better performance compared to the
direct transmission.

Figure 5 shows the comparison of the DCs of direct trans-
mission and TMNCP for difference-normalized distances of
dSOBN = {0.5, 0.75, 1} and dSOMN = {0.5, 0.75, 2} over
SNRs of {−5,−4,−3. . . , 5}. The important results that can
be seen in the figure are summarized as follows:

FIGURE 4. DPSK BER comparison against SNR for v = 2.

FIGURE 5. WBAN duty cycle comparison against SNR for v = 2.

1) The DCs of direct transmission were greater than the
DCs of TMNCP because the proposed protocol had
better performance in the term of BER than the direct
transmissions that directly affect and reduce the DC.

2) When the sensors and the master nodes were close to
each other, the duty cycles were reduced due to the
distance between the nodes being less, which reduced
the BER, that lead to a direct reduction in the duty
cycle.

3) Larger shadowing parameters reduces the DCs because
the shadowing variance improved the quality of the
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FIGURE 6. Average transmission power comparison against SNR for v = 2.

links and reduced BER, which consequently reduced
the DCs.

4) At high SNR, the DCs of direct transmission and
TMNCP are approximately the same.

5) At low SNR, the DCs of TMNCP have better perfor-
mance compared to the DC of the direct transmission.

Figure 6 shows the comparison of average transmission
power over SNR. It is clear that the average transmission
power is less using the proposed protocol. The average
transmission power was reduced more when the distances
between the nodes were reduced and the shadowing variance
increased. At SNR equal to -4 dB, the improvement achieved
by the proposed protocol was 12.7% at the shadowing vari-
ance of 9 dB. However, the average transmission power of
the proposed protocol and direct transmission are equal for
the large SNR.

V. CONCLUSION
In this paper, we have presented a TMNCP that improved
reliability, average transmission power, and energy efficiency
of WBAN. TMNCP was transmitting the data over two inde-
pendent paths with the help two master nodes. It is worked
within two phases: a broadcast phase by which the on-body
sensor transmitted the data to the master nodes, and the sec-
ond phase where the master nodes cooperatively exchange
data received from the sensor. TMNCP enabled two mas-
ter nodes in WBAN systems which assisted the sensors to
retransmit the corrupted data and hence enhanced their energy
efficiency. The results showed that the proposed protocol is
better than direct transmission when the distances between
nodes are reduced and the shadowing variance is increased.
It was also observed that the average transmission power was
decreased by a factor of 0.21 when the TMNCP protocol was
used. In addition, we have shown that the energy efficiency

of TMNCP with respect to the proposed protocol of [29] is
improved by factor of 0.69. Furthermore, the BER of the
TMNCP is reduced by a factor of four compared to the direct
transmission.

In futurework, wewill analyze the proposed protocol using
a cognitive network that allows two different sensor nodes to
use dynamic spectrum allocation that reduces competition on
the single spectrum.
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