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Abstract  

Genetic transduction is a major evolutionary force that underlies bacterial adaptation. Here 

we report that the temperate bacteriophages of Staphylococcus aureus engage in a distinct 

form of transduction we term lateral transduction. Staphylococcal prophages do not follow 5 

the previously described excision-replication-packaging pathway, but instead excise late in 

their lytic program. Here, DNA packaging initiates in situ from integrated prophages, and 

large metameric spans including several hundred kilobases of the S. aureus genome are 

packaged in phage heads at very high frequency. In situ replication prior to DNA packaging 

creates multiple prophage genomes so that lateral transducing particles form during normal 10 

phage maturation, transforming parts of the S. aureus chromosome into hypermobile regions 

of gene transfer. 

 

 

One Sentence Summary: Genetic and genomic analyses reveal the most 15 

powerful mode of bacteriophage-mediated gene transfer, lateral transduction. 
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Bacteriophages are the most abundant gene-transfer particles and phage transduction is 

generally regarded as the most important mechanism of horizontal gene transfer (HGT) 

between bacterial cells. HGT is of considerable importance in medicine because it is the 

major route by which bacteria acquire virulence factors and antibiotic resistance.   

Prophages are phage genomes that are integrated into bacterial chromosomes and 5 

replicate passively along with the host genome. Mature phages are produced in the lytic cycle 

during host cell infection or lysogenic induction, where rapid viral DNA replication and 

capsid assembly lead to formation of infectious particles that are released after cell lysis (Fig. 

S1). Transducing particles are also produced during the phage lytic cycle, when bacterial 

DNA can also become packaged into newly formed procapsids. The acquisition of host DNA 10 

by transducing particles depends on the packaging mechanism. Most packaging begins with 

the cleavage of concatemeric DNA, generated by rolling circle replication of the phage 

genome. A phage-specific packaging site (pac or cos) is recognized by the phage small 

terminase (TerS), which forms hetero-oligomers with the phage large terminase (TerL) to 

process DNA into procapsids (1). To complete DNA packaging, pac-type terminases make a 15 

non-specific sequence cut when capsid ‘headful’ capacity (i.e., slightly longer than a genome 

unit length) has been reached. In an alternative mechanism, cos-type terminases require a 

second cos site for terminal cleavage and thus package precise genome monomers (2).   

Phage-mediated HGT is known to occur by either generalized or specialized transduction 

(GT or ST, respectively)(3-5). GT is the process by which pac-type phages can package any 20 

bacterial DNA and transfer it to another bacterium, whereas ST is limited to the transfer of 

specific sets of genes. GT results from the recognition of pac site homologs (also called 

pseudo-pac sites)(6, 7) in host chromosomal or plasmid DNA, by the pac-type headful 

mechanism (2). The cos-type phages typically are not involved in GT because the probability 
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of two cos site homologs being found in the host DNA at an optimal length apart is 

exceedingly rare (2).  

The formation of ST particles is more complicated than that of the GT mechanism, and 

our current understanding is based on the classical λ phage model, where aberrant excision 

events join part of the prophage to bacterial genes adjacent to their attachment site (attB) in 5 

the excised DNA (5). Since ST is limited to restricted sets of genes, it is assumed that most 

phage-mediated HGT events are governed by the GT mechanism. However, aberrant 

prophage excision is not the only means of ST particle formation, and other mechanisms 

involving the initiation of DNA packaging from the un-excised viral genome (in situ 

packaging) have been proposed (8). Early studies showed that artificially generated mutants 10 

of cos- and pac-type phages (λ and P22, respectively) could package headfuls of viral DNA 

still connected to adjacent bacterial DNA. These particles were not mature and required in 

vitro nuclease treatment (in λ) and the attachment of purified phage tails to be fully infective 

(8-10). Other studies focusing on headful packaging showed that completed ST particles 

could be formed in vivo from ‘locked-in’ prophage hybrids and mutants that were unable to 15 

excise; however, these experimental systems also did not produce viable phage (11-13). 

Therefore, most integrated phages are probably capable of ST, but the role of in situ 

packaging, if any, remains uncertain for normal phage production.   

Prophages typically excise and circularize early after induction, and the ensuing 

replication forms head-to-tail concatemers that are packaged by the terminase machinery. 20 

The order of this sequence of events is important, because DNA packaging prior to excision 

and replication would split the viral genome and render the phage nonviable. Accordingly, 

most phages, including the λ and P22 phages, follow this temporal program (14, 15).  

We have discovered that the resident prophages of Staphylococcus aureus have atypical 

lytic programs, because they do not excise until late in their life cycles. The potentially 25 
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detrimental effects of delayed excision are offset by in situ bidirectional replication, which 

creates multiple integrated genomes so that both in situ DNA packaging and phage 

maturation can proceed in parallel. As a result, staphylococcal phages naturally generate high 

titers of transducing particles in the process of wild type phage production.  

Delayed prophage excision results in DNA packaging from integrated viral 5 

genomes. 

In a previous study on phage transcriptional activators, by using tiling microarray analysis on 

a S. aureus strain lysogenic for phage 80α we showed that transcription of the excisionase 

gene (xis) was not activated until late (30-60 minutes) after induction (16). This result 

indicated that the 80α prophage may delay excision but is not defective for phage production. 10 

Therefore, we performed transcriptional profiling using 80α as a model and compared it with 

other staphylococcal phages, including ϕ11, ϕNM1, and ϕNM2. Lysogenic derivatives were 

treated with mitomycin C to elicit the SOS response, which activates the resident prophages, 

and total RNA for RNA-Seq analysis was isolated before prophage induction and at 30 and 

60 minutes afterwards. Consistent with our previous findings, transcriptional activation of xis 15 

occurred in all the phages between 30 to 60 minutes after prophage induction (Fig. 1, Fig. 

S2). To correlate the onset of xis expression with prophage excision, the 80α and φ11 

lysogens were induced under the same conditions but instead of RNA we isolated total 

chromosomal DNA for whole genome sequencing. At each time point, we identified the 

sequencing reads corresponding to empty attB sites (which gave a measure for excised 20 

prophage) and the reads covering attL sites (i.e., the left end of the integrated prophage), and 

represented the results as the percent of integrated prophage. The percent of integrated 80α 

steadily declined after 30 minutes (Fig. S3), matching the timing of xis transcriptional 

activation and confirmed excision was delayed. Interestingly, after 60 minutes, the decrease 

in percent of 80α integration began to slow and that of φ11 began to increase (see below).   25 
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We reasoned that DNA packaging could initiate from the integrated genome because of 

the delay in prophage excision, and since expression of the xis gene overlaps with the phage 

DNA-packaging module (late operon) (Fig. 1 and Fig. S2). To test this, we first identified the 

pac sites of packaging initiation for 80α and ϕ11. Phage pac sites are often embedded in 

structural terS genes and direct unidirectional packaging toward the 3’ end of the gene (1); 5 

likewise for the staphylococcal phages (Fig. S4). Since the terS genes are located near the 

center of the 80α and ϕ11 prophage genomes, unidirectional packaging initiated in situ can 

only reach headful capacity (~105% of a phage genome or ~46 kb) by including the adjacent 

host DNA (Fig. S5). Thus, to test for in situ prophage and host DNA packaging, a cadmium 

resistance cassette (CdR) was inserted in the S. aureus chromosome 5 kb downstream of the 10 

ϕ11 attB site (attBϕ11), in a phage-free or ϕ11 lysogen, for both intact wild type (wt) and terS 

deleted mutants (ΔterS)(Fig. S5). A distance of 5 kb was chosen because it is well within a 

headful capacity for ϕ11 (~32 kb from the terSϕ11), while providing sufficient flanking DNA 

for homologous recombination in the non-lysogenic recipient host strain. Since the viral 

genome is extrachromosomal after infection, a non-lysogenic host was infected with ϕ11 to 15 

measure GT. To measure in situ packaging the ϕ11 lysogenic derivatives were induced with 

mitomycin C, and the resulting lysates were tested as donors of cadmium resistance to S. 

aureus.  

The lysates resulting from ϕ11 infection of the non-lysogen transferred the CdR
1 marker at 

a frequency of 1E+2 to 1E+3 transductants ml-1 (Fig. 1B), consistent with GT frequencies of 20 

other chromosomal markers in S. aureus (17). In contrast, ϕ11 prophage induction transferred 

the CdR
1 at very high frequencies, three orders of magnitude greater than those observed for 

GT, in a terSφ11-dependent manner (Fig. 1B). Since expected low levels of GT were observed, 

it was unlikely that an exceptionally strong pseudo-pac site was directing high frequency 

transfer of the CdR
1 marker. Other explanations include ST by an unusually efficient aberrant 25 
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excision mechanism, super-infection by phages released early in the lytic cycle, or as the 

transcriptomic analyses indicates, the prophage initiated packaging prior to excision.   

For excision to be efficient, one possibility is that cryptic repeated sequences in both the 

ϕ11 genome and in the adjacent bacterial chromosome result in excision that generates ST 

particles. Changing the phage and/or the attB site should abolish this activity. First, we 5 

inserted a CdR
1 marker at 5kb distance downstream of the attB80α in an 80α lysogen and tested 

for transfer of Cd resistance. Induction of the 80α lysogen resulted in high transfer 

frequencies like those from ϕ11 induction (Fig. 1C). Other phages including, ϕNM1 and 

ϕNM2, which use the same attB as ϕ11 and 80α, also showed high frequency transduction of 

the CdR
1 markers after prophage induction (Fig. S6). Changing the phage and attB location did 10 

not abolish excision, and so it seemed unlikely that an aberrant excision mechanism was 

responsible for the high frequency transfer. To rule out recombination, we engineered a recA 

(N303D) mutant that is defective for recombination but not for LexA cleavage or the SOS 

response (18). Lysates from ϕ11 induction in a wt or recA (N303D) background transferred 

the CdR
1 marker at comparable frequencies (Fig. S7), showing that recombination is not 15 

involved in CdR
1 packaging. Moreover, polymerase chain reaction analysis of 100 Cd resistant 

colonies confirmed that the transductants of 80α prophage induction did not have integrated 

defective prophages linked to the transferred marker. Together, these results show that 

aberrant excision is unlikely to be involved.  

Next, we determined if phages released early after SOS-induction could superinfect the 20 

remaining cells to initiate packaging from the resident prophage genome. A previous study 

showed that Salmonella typhimurium carrying deleted P22 prophages that lost lysogenic 

immunity could be superinfected and the wt phage could initiate packaging from the un-

excised genomes (12). Therefore, we induced ϕ11 in the presence of sodium citrate at 100 

and 200 mM, which was sufficient to block all phage adsorption. This experiment showed 25 
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that the packaging and transfer frequencies of the CdR
1 marker was unaffected (Fig. S8). 

These results rule out a mechanism by which early released phages superinfect the remaining 

cells for in situ packaging. Hence, neither GT nor ST are involved, and we propose here the 

existence of a distinct mechanism of natural transduction, we term lateral transduction. 

Lateral transduction of large spans of the bacterial genome by the headful 5 

packaging mechanism. 

The high frequency of CdR
 transfer by the lateral transfer mechanism indicated headful 

packaging occurs off the integrated prophage after induction of the lysogen. To test this 

possibility, we inserted two additional downstream markers (CdR
2 and CdR

3) within a headful 

capacity, two markers (CdR
4 and CdR

5) beyond a headful capacity, and one marker (CdR
6) 10 

upstream of the attBϕ11 in non-lysogenic strains or ϕ11 lysogens. Next, lysates resulting from 

ϕ11 infection of a non-lysogenic strain or from prophage induction were tested for marker 

transfer. As expected, in lysates from ϕ11 infection we observed low levels of transfer typical 

of GT (Fig. 2A). In contrast, lysates from ϕ11 induction resulted in high frequencies of 

transduction for all markers, located in the directionality of packaging i.e., CdR
2-5 (Fig. 2A). 15 

Only minor reductions in the transfer frequencies of the CdR
4 and CdR

5 markers were observed, 

indicating either that packaging did not occur by the classical headful mechanism, or that 

initiation on the next successive headful was highly efficient.   

To test whether packaging occurred by the headful mechanism, we inserted tetracycline 

resistance (TetR) cassettes upstream and downstream of the attBϕ11, and paired them with the 20 

previous CdR markers i.e., with CdR
6 or downstream CdR

1-4, respectively, in non-lysogenic strains 

or ϕ11 lysogens (Fig. 2B). Then we tested the lysates generated from ϕ11 infection or by 

prophage induction (GT or lateral transduction, respectively) for co-transduction of the two 

markers by selecting for Cd resistance and scoring for TetR. As expected for GT, we found 
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that for lysates generated by ϕ11 infection, all co-transduction frequencies were inversely 

proportional to their distance apart, where the shortest distances exhibited the highest 

percentage of co-transduction (Fig. 2B). However, when we tested lysates generated by ϕ11 

induction, co-transduction was observed for markers within a headful, but even very close 

markers were completely unlinked when they were separated by the predicted headful limit 5 

(Fig. 2B). Next we determined if cos phages could also mediate lateral transduction, by 

testing for the transfer of CdR markers downstream of the ϕ12 or DI attB sites in non-

lysogenic or lysogenic strains. As expected, lysates of ϕ12 or DI produced by infection or 

lysogenic induction did not transfer cadmium resistance, showing that cos phages do not 

mediate lateral transduction. These results confirm our model that headful packaging initiates 10 

from the terSϕ11 gene and efficiently initiates the next headful.  

Since the frequency of lateral transduction was so high from the first ϕ11 headful, and 

because packaging initiated so efficiently for the second headful (Fig. 2A), we reasoned that 

the packaging machinery could continue for many headfuls before diminishing into the low 

levels of GT. To test this, we used previous markers (CdR
2 and CdR

5) for the first two headfuls, 15 

and inserted five additional markers 10 kb into each successive headful i.e., seven in total, 

into non-lysogenic strains or ϕ11 lysogens. As an additional control to measure GT by 

prophage induction, a strain was generated in which the attBϕ11 was deleted so that ϕ11 could 

be lysogenized at a new attBϕ11 inserted at the SaPI 4 attB; note that in this strain, the ϕ11 

prophage is not linked to the Cd markers. We found that for lysates generated by ϕ11 20 

induction, lateral transduction transferred up to seven headfuls of markers at levels that were 

significantly higher than the frequencies observed for lysates generated from ϕ11 infection or 

induction from ϕ11 (S4) (Fig. 2C). Results obtained with phage 80α, showed that lateral 

transduction-mediated CdR marker transfer was much greater than GT for at least seven 

headfuls (Fig. 2D).  In summary, these results show that lateral transduction can mediate high 25 
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frequency HGT of bacterial host DNA for several hundred kb before the frequencies diminish 

and smooth out into the basal levels of GT. 

To simulate a more natural test for HGT, we assayed for lateral transduction resulting 

from spontaneous lysogenic induction. To test this, we mixed intact cells carrying ϕ11 

lysogenic derivatives and containing CdR
2 with a streptomycin-resistant host recipient, and 5 

plated the mixture for cadmium resistance and streptomycin selection. As shown in Fig. S9, 

spontaneous induction of ϕ11 resulted in a steady increase in lateral transductants from 4, 8, 

and 24 hours (>4.0 E+03 transductants ml-1). In contrast, spontaneous GT by the strain 

carrying the ϕ11 prophage integrated into the SaPI 4 attB (strain S4) was just slightly more 

than that of the ϕ11 (ΔterS) negative control and of spontaneous streptomycin resistance of 10 

the donor strain. These results show that lateral transduction is a powerful mode of HGT that 

promotes significant levels of genetic exchange, even in natural conditions of rare 

spontaneous lysogenic induction. 

In situ  bidirectional replication enables phage maturation 

Phage production requires early genome excision, which is at odds with the in situ lateral 15 

transduction packaging mechanism. In situ replication, understood as the ability some 

prophages have to initiate replication before excision, could create sufficient genomic 

redundancy to enable both lateral transduction and phage maturation to proceed in parallel. In 

support of this hypothesis, λ and P22 mutants defective for excision have been observed to 

replicate in situ (10, 19). Moreover, transcriptional analysis of the staphylococcal phages 20 

shows that the genes required for phage replication are expressed early, before xis 

transcription (Fig. 1 and Fig. S2). 

 To test for in situ replication, first we determined whether the staphylococcal prophages 

exhibit escape replication: a phenomenon whereby the bacterial genome adjacent to occupied 
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attB sites is amplified, owing to the initiation of bidirectional (theta) replication prior to 

prophage excision. We either infected non-lysogenic strains or mitomycin C-induced 

lysogenic derivatives of 80α (carrying the wt or the rep-ori mutant prophage and thus 

incapable of replicating) in S. aureus and collected the total chromosomal DNA for whole 

genome sequencing. At 0, 30, 60, and 120 minutes, we quantified the reads corresponding to 5 

80α and the host DNA adjacent to the attB80α site and measured coverage relative to the 

average of the entire genome. Induction of the 80α lysogen showed strong amplification of 

80α DNA (Fig. 3). Phage replication started before 60 minutes and was robust by 60-120 

minutes post induction. Interestingly, host DNA flanking the 80α lysogen also showed 

significant amplification by 60-120 minutes, confirming that the phage was still integrated 10 

and that escape replication had indeed amplified these regions. This phenomenon also 

explains the earlier observation (Fig. S3) that the percentage of integrated ϕ11 began to 

increase 60 minutes after induction. Host DNA amplification was distinct from phage 

replication, as it decreased linearly away from the phage origin of replication, similarly to 

that observed for chromosomal replication (Fig. S10). In contrast, 80α infection of non-15 

lysogenic strains showed strong amplification of phage DNA but not of host DNA. Similar 

results were observed for ϕ11, φ52A and several Newman phages (Fig. 3B-C and Fig. S11). 

Hence, many staphylococcal prophages can initiate replication in situ.   

To determine the role of in situ replication in lateral transduction and phage production, 

we designed a system in which the replication of ϕ52a could be tightly regulated and 20 

inducible. To do this, we constructed a frame-shift mutant (ϕ52a-fs) of the ϕ52a rep gene 

(that controls bi-directional replication) so that the embedded origin of replication remained 

intact and the mutant could be complemented in trans with repϕ52a under the control of a 

tetracycline-inducible promoter. To test for lateral transduction, a CdR marker was inserted 

5kb downstream of the attBϕ52a site. Derivatives of these ϕ52a lysogenic strains were induced 25 
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with mitomycin C (t=0) and anhydrotetracycline was added at 0, 30, 60, 90, and 120 minutes 

for replicase expression. Because ϕ52a replicase mutants are unable to lyse open their host 

cells, owing to the lack of viral DNA replication, we used mechanical disruption to release all 

intracellular particles 2 hours after the addition of inducer. To assay for lateral transduction, 

the resulting phage lysates were tested as donors of cadmium resistance to S. aureus. For 5 

phage production, the lysates were tested for plaque formation on a recipient S. aureus that 

constitutively expressed repϕ52a. Wild type and the ϕ52a-fs mutants were capable of high 

frequency lateral transduction of the CdR marker (Fig. 4), indicating that in situ replication is 

not required for lateral transduction. However, the ϕ52a-fs mutants were completely unable 

to produce plaque-forming units without complementation with repϕ52a. More importantly, 10 

complementation of the ϕ52a-fs mutants only resulted in normal levels of phage production if 

repϕ52a was provided within 90 minutes of mitomycin C induction. This timing indicates that 

the ϕ52a-fs mutants were incapable of being complemented at later time points, presumably 

because in situ packaging had compromised the integrity of the genomes. These results are 

consistent with the model (Fig. S12) that early in situ replication provides genomic 15 

redundancy so that both in situ DNA packaging and excision (followed by phage maturation) 

can proceed in parallel.   

Lateral transduction drives genome organization and evolution 

Based on the high frequencies of lateral transduction, we speculated that the regions adjacent 

to phage attB sites in the direction of packaging could serve as platforms for high frequency 20 

mobility for any DNA element. There are 10 phage and 5 S. aureus pathogenicity islands 

(SaPIs) attB sites scattered throughout the S. aureus chromosome (20, 21). Further analysis of 

the regions flanking the phage attB sites revealed that nearly all of the SaPIs and the three 

staphylococcal chromosomal islands (νSaα, νSaβ and νSaγ) were positioned such that they 

could be highly transferred by lateral transduction (Fig S13). Remarkably, the localisation of 25 
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the phage attB sites and the directionality of the phage packaging suggest that most of the 

bacterial chromosome could also be mobilized by lateral transduction (Fig. S13).  

Although the SaPIs are well-characterized highly mobile parasites of helper phages (22), 

specific mechanisms of transfer have not been identified for most of the chromosomal islands 

of all bacterial species, including νSaα, νSaβ, and νSaγ. Lateral transduction could provide a 5 

mechanism to mobilize these islands too. In fact we have already shown lateral transduction-

mediated transfer of νSaγ by 80α in the Cd resistance transfer experiments, because the CdR
2 

marker in the second headful was inserted within this island (Fig. 2D). We have also directly 

tested for lateral transduction-mediated transfer of νSaα by prophage φ52a, and found that a 

CdR marker 83 kb from the Sa6 attB site was transferred at frequencies three orders of 10 

magnitude greater than those observed for GT (Fig. S14). These results indicate that lateral 

transduction is a general mechanism for the high frequency transfer of mobile genetic 

elements and pathogenicity islands in S. aureus.  

To investigate the impact of lateral transduction on genome structure, gene content and 

genetic variability, we compared 140 kb regions upstream and downstream of the Sa6 phage 15 

attB site from a hundred complete S. aureus genomes. We found that the upstream regions 

were more highly conserved than the downstream regions, in terms of both gene synteny and 

gene similarity (Fig. S15). This was primarily due to the presence of other phages and SaPIs 

downstream of the attB site. In addition, the number of predicted recombinant fragments in 

the conserved genes downstream of the attB site was significantly higher compared with 20 

those upstream (p= 1.066-07, paired Wilcoxon non-parametric hypothesis test for comparison 

of matched samples and unpaired t-test p-value length of recombinant fragments = 0.0316) 

(Fig. S16). By contrast, the nearby regions of the Sa2 phage attB site showed little gene 

variability and retained high levels of conservation, both upstream and downstream (Fig. 

S17). However, in these regions, recombination is significantly much greater distal to one 25 
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headful downstream of the attB site (Fig. S18; paired Wilcoxon test p-value = 1.308e-08, 

unpaired Wilcoxon test for recombinant nucleotides p-valueSa2 = 5.514e-07). This region can 

still be classed as a recombination hotspot and encompasses the gene encoding the surface 

giant protein Ebh, involved in adhesion, bacterial envelope stability and pathogenesis of 

staphylococcal infections (23, 24). Variants of Ebh are associated with increased sensitivity 5 

to certain antibiotics and reduced virulence (24). In genome-wide analysis of recombination 

in S. aureus, Everitt et al. found hot spots of recombination at insertion sites for mobile 

genetic elements (25). Moon et al. also observed phage-mediated transfer of virulence-

associated genes located in the νSaβ island flanking the phage ϕSaBov insertion site, without 

elucidating the mechanism (26). We found that HGT induced by lateral transduction has a 10 

major measurable impact on S. aureus genome structure and evolution. First, by promoting 

gene mobilization, lateral transduction leads to gain and loss of new functions; and second, it 

provides source material on which homologous recombination can act to generate genetic 

variability.  

Discussion 15 

Of the three modes of bacterial gene transfer (i.e., transformation, conjugation, and 

transduction), phage transduction is often regarded as the primary driving force of microbial 

evolution. In this report, we have identified and characterized not just an additional mode of 

natural phage transduction, but potentially the most powerful. In our model (Fig. S12), 

bidirectional replication creates multiple integrated prophages so that lateral transduction and 20 

normal phage maturation can proceed in parallel. Interestingly, a similar model was proposed 

long ago for λ phage, where the induction of docL mutants, unable to excise, resulted in the 

production of non-infectious particles carrying bacterial DNA located to the right of the λ cos 

site (8-10). Although the model was similar to lateral transduction, the result was quite 

different, as docL mutants were unable to produce viable phage and the transducing particles 25 
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required DNase treatment and the addition of purified tails to be infectious. In contrast, the 

staphylococcal phages naturally generate high titers of infectious transducing particles in the 

process of wild type phage production.  

While late prophage excision is the first step in lateral transduction, the timing of xis 

expression has been only investigated in a few of phages. In most phage genomes the int and 5 

xis genes are located in tandem and transcribed together; but for most staphylococcal phages, 

these genes are opposed, so that they are transcribed from different promoters. Since both 

integrase and excionase are generally required for efficient excision, phages with opposed int 

and xis genes or that differentially regulate these genes could be candidates for lateral 

transduction.  10 

We have demonstrated here that the headful mechanism is essential for lateral 

transduction. Since this mechanism is not exclusive of the S. aureus phages but widespread in 

nature, we anticipate lateral transduction will be a universal mechanism of gene transfer. This 

is currently under study.      

Because lateral transduction can promote the efficient transfer of several hundred 15 

kilobases, these spans essentially become large platforms of high frequency gene transfer for 

any DNA element located within their boundaries. Since bacterial chromosomes often 

contain multiple prophages, this mode of transduction can transmit a large portion of the 

bacterial genome at exceptionally high frequencies in a single lytic event. Thus, lateral 

transduction creates high volume channels of genetic exchange among hosts, but which in 20 

return, provides selection to keep prophages intact and functional. We believe this 

mechanism sheds light on many genomic conundrums that have gone unexplained for 

decades in microbiology, such as the mosaicism of the packaging modules of phages, why 

phage-carried toxins and virulence factors are typically found on certain ends of phage 

genomes, how some chromosomal islands can be highly transferred, and the occurrence of 25 
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inexplicable hot spots for recombination in bacterial genomes, just to name a few. Thus, our 

results indicate that phage-mediated lateral transduction is an extremely powerful force 

driving both bacterial and phage evolution.  
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Figure 1. DNA packaging initiates from the pac site within integrated 

prophage genomes. 

(A) Transcriptomic analysis of the early and late genes from phage 80α for the positive 

(Top) and the negative (Bottom) DNA strand. An 80α lysogen was treated with mitomycin C 

and samples were analyzed without induction (light blue) or at 30 (early genes, green) and 60 5 

minutes (late genes, red) after induction. (B and C) Transfer of Cd resistance markers 

downstream of attB sites for (B) ϕ11 and a CdR
1

 5 kilobase downstream of the attBϕ11 and (C) 

80α and a CdR 4 kilobase downstream of the attB80α. Non-lysogenic strains (light blue) were 

infected (F) or the lysogenic wt (+, dark blue) and terS deletion (Δ, gray) strains were 

induced (D) with mitomycin C and the lysates tested for transduction into S. aureus. 10 

Transduction units (TrU) ml-1 were normalized by plaque forming units (PFU) ml-1 and 

represented as the TrU of an average phage titer (1E+9 PFU). TrU ml-1 for ΔterS were <10. 

Values are means ± SD (n = 3 independent samples). 

 

Figure 2. Lateral transduction transfers large metameric spans of the 15 

bacterial chromosome at high frequencies by the headful packaging 

mechanism. 

(A) ϕ11 tested for transfer of CdR markers upstream (CdR
6) of the attBϕ11, and downstream 

within (CdR
1,2,3) and beyond (CdR

4,5) a capsid headful capacity (HF). (B) Co-transduction 

frequencies for strains containing both a CdR and a TetR marker at varying distances apart. 100 20 

CdR transductants from a ϕ11 infection (light blue) or lysogen induction (dark blue) were 

tested for TetR and the frequency represented as the (TetR/CdR) x 100%. The headful (HF) limit 

indicated does not account for marker expansion. (C and D) Transfer of CdR markers in 

seven successive headfuls for (C) ϕ11 and (D) 80α. (A, C, and D) Non-lysogenic strains 
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(light blue) were infected (F) or the lysogenic wt (+, dark blue), ϕ11 (S4, blue), and terS 

deletion (Δ, gray) strains were induced (D) with mitomycin C and the lysates tested for 

transduction into S. aureus. Strain ϕ11 (S4) has ϕ11 integrated at the SaPI 4 attB instead of 

the natural attBΦ11. Transduction units (TrU) ml-1 were normalized by plaque forming units 

(PFU) ml-1 and represented as the TrU of an average phage titer (1E+9 PFU). TrU ml-1 for 5 

ΔterS were <10. For all panels, values are means ± SD (n = 3 independent samples). 

 

Figure 3. Staphylococcal phages replicate in situ before excision.  

Relative abundance of phage genomic DNA and the chromosomal regions proximal to where 

they integrate for (A) 80α, (B) ϕ11, and (C) ϕ52a. Samples were analyzed at 0 (blue), 30 10 

(light blue), 60 (orange) and 120 minutes (red) post-induction with mitomycin C. Shaded 

grey rectangles represent the location of the prophages in the S. aureus chromosome. The 

following strains were analyzed: 80α lysogen, ϕ11 lysogen or ϕ52A lysogen; derivatives of 

these strains carrying mutations in both the ori site and rep genes (80α ori deletion or ϕ11 ori 

deletion), non-lysogenic strain infected with 80α, and the non-lysogenic strain. For the 80α 15 

and ϕ52A lysogens, the t = 0 samples obscure the t = 30 samples. 

 

Figure 4. In situ replication is required for phage reproduction but not for 

lateral transduction.  

(A) Lysogens of ϕ52a and ϕ52a-fs (repϕ52a frame-shift) were induced with mitomycin C. 20 

Anhydrotetracycline was added at 0, 30, 60, 90, and 120 minutes for complementation by Ptet-

repϕ52a or un-induced (U). The cells were mechanically lysed 2 hours after the addition of 

anhydrotetracycline and the lysates tested for plaque forming units (PFU) ml-1 on a S. aureus 

host that constitutively expresses repϕ52a. The results are represented as the (PFU / PFUwt) x 
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100%. (B) The same lysates in (A) were tested for lateral transduction of the CdR marker 5kb 

downstream of the attBϕ52a site to S. aureus. The results are represented as transduction units 

(TrU) ml-1. Values are means ± SD (n = 3 independent samples).     
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