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Abstract 

This study investigates the debatable success of technical trading rules, through the years, on 

the trending energy market of crude oil. In particular, the large universe of 7846 trading rules 

proposed by Sullivan et al. (1999), divided into five families (filter rules, moving averages, 

support and resistance rules, channel breakouts, and on-balance volume averages), is applied 

to the daily prices of West Texas Intermediate (WTI) light, sweet crude oil futures as well as 

the United States Oil (USO) fund, from 2006 onwards. We employ the k-familywise error 

rate (k-FWER) and false discovery rate (FDR) techniques proposed by Romano and Wolf 

(2007) and Bajgrowicz and Scaillet (2012) respectively, accounting for data snooping in or-

der to identify significantly profitable trading strategies. Our findings explain that there is no 

persistent nature in rules performance, contrary to the in-sample outstanding results, although 

tiny profits can be achieved in some periods. Overall, our results seem to be in favor of inter-

im market inefficiencies. 

Keywords: Crude Oil; Technical Trading; Data Snooping; Transaction Costs; Persistence; 

Market Efficiency 

JEL classification: C12, C15, G11, G14 

                                                           
*The authors would like to acknowledge the gracious support for this work provided by the EPSRC 

and ESRC Centre for Doctoral Training on Quantification and Management of Risk & Uncertainty in 

Complex Systems & Environments (EP/L015927/1). We would like to thank participants at the Econ-

ometrics and Financial Data Science (EFDS 2017, ICMA centre) workshop Forecasting Financial 

Markets (FFM 2016), Quantitative Finance and Risk Analysis (QFRA 2016), and WFMA Xian Jia-

tong-Liverpool University conferences, and at the Universities of Liverpool and Glasgow, as well as 

Carol Alexander, Neil Kellard, Marcel Prokopczuk, Michalis Stamatogiannis, Andrea Roncoroni, 

Ehud Ronn, Ernest P. Chan, Chris Florackis, Vasileios Kallinterakis, and Michael A. H. Dempster for 

helpful comments. Any remaining errors are ours. 
† School of Economics & Finance, University of St Andrews, The Scores, KY16 9AR, St Andrews, UK 

* Department of Econometrics and Business Statistics, Monash Business School, Monash University, Clayton 

VIC 3800, Australia. Corresponding author: Athanasios.Pantelous@monash.edu  
‡ Management School, University of Liverpool, Chatham Street, L69 7ZH, Liverpool, UK 
§ Adam Smith Business School, University of Glasgow, University Avenue, G12 8QQ, Glasgow, UK 



2 

 

Performance of technical trading rules: Evidence from the crude oil market 

This version: 16th of September, 2018 

 

Abstract 

This study investigates the debatable success of technical trading rules, through the years, on 

the trending energy market of crude oil. In particular, the large universe of 7846 trading rules 

proposed by Sullivan et al. (1999), divided into five families (filter rules, moving averages, 

support and resistance rules, channel breakouts, and on-balance volume averages), is applied 

to the daily prices of West Texas Intermediate (WTI) light, sweet crude oil futures as well as 

the United States Oil (USO) fund, from 2006 onwards. We employ the k-familywise error 

rate (k-FWER) and false discovery rate (FDR) techniques proposed by Romano and Wolf 

(2007) and Bajgrowicz and Scaillet (2012) respectively, accounting for data snooping in or-

der to identify significantly profitable trading strategies. Our findings explain that there is no 

persistent nature in rules performance, contrary to the in-sample outstanding results, although 

tiny profits can be achieved in some periods. Overall, our results seem to be in favor of inter-

im market inefficiencies. 

 

Keywords: Crude Oil; Technical Trading; Data Snooping; Transaction Costs; Persistence; 

Market Efficiency 

JEL classification: C12, C15, G11, G14



3 

 

1. Introduction 

 

Technical analysis (sometimes referred to as chartism) is believed to be one of the longest-

established forms of investment analysis, being a set of graphical or mathematical techniques 

exploring future trading opportunities for financial assets just by analyzing the time-series his-

tory of their asset prices, volume data, and a summary of securities statistics. Brock et al. 

(1992) mention that technical trading rules “beating the market” is supposed to be as old as 

the U.S. stock market itself. Nowadays, investment funds, brokerage firms, and trading plat-

forms from all over the world utilize numerous types of technical indicators and oscillators as 

prospective moneymaking tools.  

On the other hand, despite the undisputable popularity of technical analysis among practi-

tioners, academia has been rather skeptical for a long time now about its merits, and there is 

an ongoing debate as to whether the generated profits are just lucky. On the effectiveness of 

this form of analysis and its power to yield profits, Malkiel (1981) describes it pertinently as 

the “anathema” of the academic world, which usually loves to pick on it. This argument is 

derived from the Efficient Market Hypothesis (EMH), which expresses that security prices 

reveal all the available information to investors. However, since the 1960s, prominent aca-

demics and practitioners have claimed that predictable patterns do exist in returns (especially 

in certain periods of time), which can lead to abnormal profits.1 In this regard, even Keynes 

(1936) outlines that most traders’ decisions can be deemed a consequence of “animal spirits”.  

This fruitful debate has culminated in a large number of empirical studies employing tech-

nical trading rules in several markets and for different indices. Some have found results to 

support the notion that trading strategies are able to deliver superior returns, at least in certain 

time periods (Neftci 1991; Brock et al. 1992; Neely et al. 1997; Conrad and Kaul 1998; Sulli-

                                                           
1 Earlier studies of technical analysis and patterns in stock returns include Alexander (1961, 1964), 

Fama (1965, 1970), Fama and Blume (1966), Levy (1967), James (1968), Jensen and Benington 

(1970), and Sweeney (1980). 
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van et al. 1999; Lo et al. 2000; Kavajecz and Odders-White 2004; Qi and Wu 2006; Hsu et al. 

2010; Neely and Weller 2011; Shynkevich 2012; Taylor 2014). Despite this, other papers re-

port that technical trading strategies are unable to predict future prices, especially when trans-

action costs are considered (Bessembinder and Chan 1998; Allen and Karjalainen 1999; 

Ready 2002; Marshall et al. 2008; Bajgrowicz and Scaillet 2012; Yamamoto 2012).  

Inevitably, data snooping effects arise in most of the studies mentioned above, particularly 

when a large number of trading strategies are implemented and tested. Amongst the pioneers 

in studying the data snooping effects are Jensen and Benninghton (1970), defining it as “se-

lection bias”, as well as Lo and MacKinlay (1990) who summarize that more likely patterns 

can emerge when data are severely exploited. This is apparently true if one considers that, by 

exploring a sizeable universe of different trading rules, it is highly likely one will find a rule 

that works well, even by chance. Many efforts have been made to minimize the undesirable 

consequences of data snooping, which are illustrated in the studies of White (2000), Romano 

and Wolf (2005), Hansen (2005), Romano and Wolf (2007), Romano et al. (2008), Hsu et al. 

(2010), Bajgrowicz and Scaillet (2012), and Hsu et al. (2014).  

In this paper, we evaluate the performance of the whole universe of 7846 technical trading 

rules (TTRs) proposed by Sullivan et al. (1999) on the crude oil market. This universe of rules 

is the most popular and common, and creates a connection with the previous literature in this 

field of research (Brajgowicz and Scaillet 2012; Marshall et al. 2008). In particular, we apply 

five families of strategies (i.e., filter rules, moving averages, support and resistance, channel 

breakout and on-balance volume) to the daily prices of West Texas Intermediate (WTI) light, 

sweet crude oil futures, as well as the United States Oil (USO) fund, covering a period from 

April 2006 to January 2016.2  

                                                           
2 We chose this specific period in order to examine the TTRs’ performance on the same trading days 

for crude oil futures and the USO, given that the inception date of the USO was in April 2006.  
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Crude oil futures offer the opportunity to trade one of the world's most liquid oil commodi-

ties on the New York Mercantile Exchange (NYMEX) for up to 108 consecutive months.3 In 

line with Wang and Yu (2004) and Marshall et al. (2008), we employ Datastream continuous 

price series of crude oil futures, which represent the price of the most actively traded contract. 

This guarantees that the underlying instrument should last longer than the observation period 

when analyzing the performance of the TTRs. Furthermore, futures markets are more attrac-

tive for pursuing active trading strategies than stock markets, since they involve much lower 

transaction costs (e.g. spreads and commissions), and short-selling is easily applied.  

The USO is the largest and most liquid oil-related exchange traded fund (ETF) ($3.7 bil-

lion in assets), and is designed to track the daily price movements of WTI light, sweet crude 

oil.4 It is exposed to crude oil prices by means of holding positions on front-month crude oil 

futures contracts. The USO is free of the substantial storage costs involved in other crude oil 

inventories, entailing low total costs of management, a feature that makes it very attractive to 

investors. As far as we are concerned, this is the first time that the effectiveness of TTRs will 

be tested specifically on the crude oil market. We believe that it is a rather interesting area of 

investigation, since crude oil prices have exhibited considerable fluctuations over the years in 

response to geopolitical and economic turmoil.5 Today the oil industry is being shaped by one 

of its most dramatic price movements of recent times, having experienced almost a 70% fall 

since June 2014. These extreme fluctuations mark the crude oil market out as a trending mar-

ket, potentially lucrative for applying the TTRs, since trend following is one of the key as-

pects of technical analysis. Furthermore, since previous empirical findings on the hedge fund 

                                                           
3 The final settlement date is the 4th U.S. business day prior to the 25th calendar day of the month pre-

ceding the contract month. 

4 The USO periodically "rolls over" its underlying futures contracts by selling those that are approach-

ing expiration and buying those that expire farther into the future. The investment objective of the 

USO is publicized on its website (http://www.unitedstatesoilfund.com/). 

5 For instance, in 2008, crude oil reached its highest value, followed by a fall below $50 per barrel due 

to the Lehman Brothers crisis in 2009. 

http://www.unitedstatesoilfund.com/
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industry and the Dow Jones Industrial Average (DJIA) index have shown that TTRs perform 

quite well when strong negative or positive returns occur in the market (Fung and Hsieh 

1997; Bajgrowicz and Scaillet 2012), we have a strong motivation to explore them on the 

crude oil market as well. 

In this paper, the first contribution is to revisit the historical success of TTRs in the oscil-

lated market of crude oil.6 This allow us to access the power of multiple hypothesis testing 

methods in an environment in which momentum trading rules tend to work well by definition, 

and so measure the level of significance of rules yielding positive performance. For this pur-

pose, we divide and assess the rules’ performance in four different subperiods, each one char-

acterized mostly by having bearish or bullish trends. As crude oil futures and ETFs have small 

expense ratios compared to other assets, there is a strong potential for trading rules to achieve 

gains. On the other hand, low transaction costs may help to increase market liquidity, leading 

to market efficiency (Hedge and McDermott 2004). Thus, the second contribution is to give 

an answer to the question of which one of the above two cases holds in the case of the crude 

oil market. With this aim, for the in-sample analysis, we compare the performance when ap-

plying TTRs to the USO and the crude oil futures to explore potential differences due to con-

tango or backwardation effects as a result of rolling over crude oil futures in the case of the 

USO. An in-sample analysis including the impact of transaction costs is also reported. The 

transaction costs are embodied endogenously in the trading rule selection process, each time a 

buy or sell signal is generated. This helps investors foresee which TTRs’ performance can 

outweigh transaction costs ex ante (Bajgrowicz and Scaillet 2012). The reason for this is that 

strategies’ predictability is occasionally neutralized when TTRs are selected before the im-

plementation of transaction costs because of frequent signals. Another contribution is that, 

                                                           
6 Marshal et al. (2008) evaluate the performance of the Sullivan et al. (1999) universe of TTRs in 15 

major commodities futures series, while considering naïve methods of accounting for data snooping 

effects. One of these series refers to crude oil futures covering the period 1984-2005. 
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instead of only using regular evaluation criteria, such as the mean return and the Sharpe ratio, 

we also employ the Calmar ratio criterion as an essential performance measure for technical 

traders, especially when momentum strategies are employed. Indeed, the Calmar ratio is an 

important indicator for the hedge fund industry in general since it displays the average annual 

return on an investment, per unit of maximum drawdown (Schuhmacher and Eling 2011). In 

technical analysis its usage is particularly useful, especially when momentum strategies, 

which can suffer significant drawdown, are employed. 

Finally, a comprehensive persistence analysis of TTRs is employed. For that analysis the 

false discovery rate (FDR) technique (Barras, Scaillet and Wermers 2010; Bajgrowicz and 

Scaillet 2012; Bajgrowicz et al., 2016) is used to minimize data snooping effects. The perfor-

mance of the FDR technique is compared with the equally powerful k-familywise error rate 

(k-FWER) technique of Romano and Wolf (2007) and Romano et al. (2008), rather than more 

conservative methods such as the bootstrap reality check (BRC) of White (2000) or its step-

wise extension proposed by Romano and Wolf (2005). The rationale behind this is our desire 

to investigate whether a generalized version of the conservative FWER measure could 

demonstrate the same performance level as the powerful FDR. In particular, we are the first to 

assess the out-of-sample performance of a portfolio of genuine TTRs, while applying the FDR 

and k-FWER methods respectively, and also including transaction costs. The portfolio is con-

structed and rebalanced on a semi-annual basis, each time using data from the previous six 

months and evaluating its profitability in the next half of the year. We report that the powerful 

nature of the FDR approach to identifying genuine TTRs is also verified in the case of crude 

oil. Furthermore, we observe that the less conservative k-FWER than the strict FWER of Ro-

mano and Wolf (2005) can achieve similar results to the FDR in terms of trading perfor-

mance, while also allowing a certain number of false selections to occur. Moreover, the FDR 

succeeds in selecting a larger amount of genuine TTRs than the k-FWER portfolio. 
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For the in-sample simulation period, the findings indicate that more than half of the TTRs 

exhibit great predictive power, especially in periods of substantial crude oil price movements. 

Additionally, the best TTRs are able to achieve high mean returns, as well as Sharpe and 

Calmar ratios, across the whole period considered. On the other hand, when it comes to per-

sistence analysis, the TTRs selected by the data snooping methods show no persistent nature 

in the out-of-sample period. Although, the portfolios are able to generate positive perfor-

mance in some periods, we observe that the superior returns are considerably small. However, 

there is only one period in which both portfolios achieve a Sharpe ratio slightly bigger than 1. 

Overall, we conclude that the best-performing TTRs mostly are accessible only to investors 

observing the returns ex post, in an in-sample period, and therefore it is not easy for them to 

foresee truly out-of-sample profitable rules ex ante, without hindsight. 

The remainder of the paper is structured as follows. In Section 2, a detailed description of 

the universe of TTRs proposed by Sullivan et al. (1999), as well the performance criteria, are 

provided. Section 3 describes the time series and the descriptive statistics of the data consid-

ered. Section 4 presents a synopsis of the existing methods accounting for data snooping. A 

detailed description of the FDR and k-FWER approaches, as well as the portfolios’ character-

istics, is provided in the same section. Section 5 provides evidence of the TTRs performance 

in the in-sample period, with and without consideration of transaction costs. In Section 6, the 

persistence analysis is presented, while accounting for transaction costs at the same time. Fi-

nally, Section 7 presents the concluding remarks. 

 

2. Technical trading rules universe and performance measures 

In Section 2.1, we review the universe of TTRs proposed by Sullivan et al. (1999). We briefly 

present the performance measurement tools of mean return, Sharpe ratio, and Calmar ratio 

(Brock et al. 1992; Sullivan et al. 1999; Bajgrowicz and Scaillet 2012) in Section 2.2.  
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2.1. Technical trading rules universe 

Technical analysis incorporates a large spectrum of approaches as a form of predictive 

modeling. Although these methods use mostly graphical rather than mathematical or statisti-

cal tools, they use time series of past prices, volumes, and other observables to define whether 

a buy (long), neutral (out of the market), or sell (short) strategy should be taken within the 

next time period. As stated earlier, we adopt the whole universe of 7846 TTRs for each sub-

period for comparison purposes. The universe is separated into five categories of indicators, 

while different parameterizations can be employed for each rule.7  

Filter rules: An investor buys if the price increases by a fixed percentage from a previous 

low, and he sells if the price decreases by a fixed percentage from a previous high. An alter-

native definition of subsequent highs (lows) can be defined as the highest (lowest) closing 

price observed over a prespecified number of previous days, excluding the current day. Thus, 

the filter rule allows the initiation of an investor’s position only in response to major price 

trends. We also consider the impact of two extra filters. The first one allows a neutral position 

when the price increases (decreases) from a previous low (high) by a smaller percentage than 

the percentage needed to initiate a buy (sell) position. The second one assumes a position is 

held for a fixed number of periods. 

Moving averages: Assumes a crossover between short-long moving averages to generate a 

trade. Usually, an investor buys (sells) when the short-moving average moves above (below) 

the long-moving average. These upside (downside) penetrations of a moving average help an 

investor to discover new trends and maintain his position as long as the crossover remains. 

Three extra filters are applied. The first one demands that the short-moving average penetrates 

                                                           
7 The interested reader can refer to the appendix of Sullivan et al. (1999) for a detailed description of 

each rule as well as the extra parameters used. 
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the long-moving average by a fixed percentage, otherwise no position is initiated. The second 

one applies a delay filter, which requires a signal to remain valid for a prespecified number of 

days before an action is taken. The third one considers a holding period similar to the one em-

ployed in filter rules. 

Support and resistance: A trader buys (sell) when the price rises above (below) the local 

maximum (minimum) over the previous n days. The intuition behind this rule is that usually 

investors think that sooner or later the movement of the equity’s price will tend to stop and 

return to a certain level (sell at the peak and buy at the bottom). However, if the price breaks 

through a certain resistance (support) level, it is more likely to continue drifting upward 

(downward) until it finds a new resistance (support) level. Thus, a buy (sell) signal is trig-

gered. An alternative definition of extreme highs/lows is also used, similar to the one em-

ployed in filter rules. In addition to that, fixed-percentage-band, delay and holding-period fil-

ters are imposed. 

Channel breakouts: An investor buys (sells) when the price moves above (below) the chan-

nel. A channel occurs when the high over the previous, prespecified, days is within a fixed 

percentage of the low over the previous prespecified days. The graphical representation of a 

price channel is equal to a pair of parallel trend lines. As soon as one of these trend lines is 

“broken”, a buy or sell signal is generated. A fixed percentage band is also exercised around 

the channel, as well as a holding period for each position triggered. 

On-balance volume averages: These operate in a similar way to the moving-average rules 

(crossover between short/long on-balance volumes). However, the indicator here is the vol-

ume. The economic meaning is that the volume is greater on days when the price movement 

is an extreme fall (bearish) or an extreme rise (bullish). A technical trader adds (subtracts) the 

daily volume to (from) that of the previous day, when the current closing price has increased 
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(decreased), in order to construct the new on-balance volume indicator. Then, a moving aver-

age is applied. Furthermore, the same filters as in the case of the moving average are used. 

All of the trading rules described above are considered momentum or trend-following TTRs 

except for the support and resistance rules that can be deemed contrarian (mean-reverting) 

trading strategies. 

 

2.2. Measuring performance 

The performance of the TTRs is assessed through the mean return and Sharpe ratio crite-

ria. The mean return is the absolute criterion of each rule’s returns, while the Sharpe ratio is a 

relative performance criterion since it represents the ratio of the average excess return to the 

total risk of the investment. Practically speaking, the TTRs earn the risk-free rate in periods 

when a neutral signal is triggered.8 In our analysis, we are the first in the relevant literature to 

evaluate the performance of TTRs by also employing the Calmar ratio. The Calmar ratio9 is 

an important indicator for investment banks as well as the hedge fund industry in general, 

since it displays the average annual return of an investment per unit of maximum drawdown. 

Furthermore, practitioners find it of great importance, especially when they are dealing with 

momentum strategies that can suffer a considerable drawdown. On the other hand, the Sharpe 

ratio is mostly applied for mean-reverting or contrarian strategies.10 We believe that evaluat-

ing the performance of TTRs using only the Sharpe ratio has some drawbacks that can be ra-

ther misleading when setting an optimal portfolio (Jondeau and Rockinger 2006). 

                                                           
8 Actually, following the studies of Brock et al. (1992), Sullivan et al. (1999), and Bajgrowicz and 

Scaillet (2012) who implement the “double-or-out” trading strategy, a buy signal leads a trader to bor-

row money at the “risk-free” rate in order to double the investment in the commodity portfolio, a neu-

tral signal leads to the trader simply holding the commodity, and when a sell signal occurs the trader 

liquidates and exits the market.  

9 Developed by Young (1991), the Calmar ratio stands for California Managed Account Reports. It is a 

performance measurement used to evaluate commodity trading advisors and hedge funds. 

10 We acknowledge Ernest P. Chan for pointing this out to us. 
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Specifically, let 𝑠𝑗,𝑡−1 denote the trading signal for each trading rule 𝑗, 1 ≤ 𝑗 ≤  𝑙 (where 

𝑙 = 7846) at the end of each prediction period 𝑡 − 1 (𝜏 ≤ 𝑡 ≤ 𝑇), where 𝑠𝑗,𝑡−1 = 1, 0, 𝑜𝑟 − 1 

represents a long, neutral or short position taken at time 𝑡. In addition to that let 𝑟𝑡  designate 

the return of the price series exercised, and 𝑟𝑡
𝑓

 be the “risk-free” rate.11 The mean return crite-

rion 𝑓
𝑗,𝑡

 for the trading rule 𝑗 at time 𝑡 is defined by  

𝑓
𝑗,𝑡

=
1

𝑁
∑ ln(1 + 𝑠𝑗,𝑡−1𝑟𝑡)𝑇

𝜏=𝑅 , 𝑗 = 1, … , 𝑙, 

where 𝑁 = 𝑇 − 𝜏 + 1 is the number of days examined. We denote as 𝜏 the start date for each 

subperiod, and even for the first one, since lagged values up to 250 days are employed in the 

universe of rules. Then, the Sharpe ratio criterion expression 𝑆𝑅𝑗  for trading rule 𝑗 at time 𝑡 is 

defined by 

𝑆𝑅𝑗,𝑡 =
1

𝑁
∑

ln(1+𝑠𝑗,𝑡−1𝑟𝑡−𝑟𝑡
𝑓

)

𝜎𝑗̂
,𝑇

𝑡=𝑅   𝑗 = 1, … , 𝑙, 

where 
1

𝑁
∑ ln(1 + 𝑠𝑗,𝑡−1𝑟𝑡 − 𝑟𝑡

𝑓
)𝑇

𝑡=𝑅  and 𝜎𝑗̂ are the mean excess return and the estimated 

standard deviation of the mean excess return respectively. Finally, the Calmar ratio criterion 

𝐶𝑎𝑙𝑚𝑎𝑟𝑗 is obtained as the annualized mean return of each rule j over its maximum draw-

down (𝑀𝐷𝐷𝑗): 

𝐶𝑎𝑙𝑚𝑎𝑟𝑗,𝑡 =
𝑓𝑗,𝑡∗252

𝑀𝐷𝐷𝑗
, 𝑗 = 1, … , 𝑙, 

where 𝑀𝐷𝐷𝑗 = min [𝑟𝑡 − max {∑ 𝑟𝑡}]𝑇
𝑡=𝑅 . 

 

 

 

                                                           
11 We use as a risk-free rate the daily effective federal funds rate, in accordance with all the previous 

literature. 
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3. Data description 

In this section, the settlement prices and trading volumes for the USO and crude oil futures 

for four different subperiods are analyzed. Table 1 reports the intervals covered for each one 

of them, while Fig. 1 represents the time series dynamics for the two underlying instruments 

examined from April 2007 to January 2016. 

 

[Insert Fig.1 somewhere here] 

 

[Insert Table 1 somewhere here] 

 

Subperiod 1 is characterized by a sharp increase and subsequent fall in crude oil prices for 

both CL futures and USO due to the Lehman Brothers collapse and so it is characterized by 

mixed trends. Subperiod 2 reveals an upward trend for the CL futures series, but this is not 

quite observable for USO ones. However, we define this period as a bullish due to the upward 

trend in crude oil spot prices. Subperiod 3 mainly dominated by mixed trends for both cases, 

while Subperiod 4 includes their recent extreme fall and for that reason is characterized as 

bearish in terms of trend. Moreover, we employ the nonparametric change point detection ap-

proach of Ross et al. (2011) for detecting location and scale changes respectively on the crude 

oil time series examined. The identified changes in both crude oil futures and USO time series 

lead to updated subperiods, which do not substantially differ from the ones we have initially 

set and defined above. The new subperiods along with the corresponding performance of 

TTRs are presented in Appendix A. 

The summary of descriptive statistics of daily buy-and-hold returns for the USO and crude 

oil futures for the four subperiods is reported in Table 2. We follow the existing literature and 
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calculate the daily returns as the natural logarithm of price relatives. The distribution charac-

teristics are described by the mean, standard deviation, skewness and kurtosis statistics as 

well as the first-order autocorrelation under the Ljung-Box (1978) Q statistics at the 5% sig-

nificance level. 

 

[Insert Table 2 somewhere here] 

 

The crude oil futures yield positive performance (with 10 basis points as the highest value) 

for the first three subperiods, with the only exception being the last one in which a highly 

negative mean return is reported, standing for the bearish market. The USO yields negative 

returns for all subperiods except the second. The standard deviation is also comparable across 

both USO and crude oil futures series. However, with regards to skewness, there is a split be-

tween negative and positive signs in the case of crude oil futures, while the USO exhibits 

mostly negative signs. Moreover, a considerable level of kurtosis is observed in both series 

for all subperiods. The Ljung-Box (1978) Q statistics test indicates that both crude oil futures 

and the USO have significant first-order autocorrelations in half of the subperiods.12 Finally, 

for the last subperiod describing the extreme fall, the first-order autocorrelation is significant 

for both series.   

 

4. Data snooping bias 

Data snooping bias should always be adjusted for when examining the predictive ability of 

a large number of trading strategies (i.e., technical trading indicators). The issue emerges 

when the financial dataset is severely exploited by trading rules dependent to each other, such 

                                                           
12 Most of the trading rules employed in this study are designed to capture momentum. Their effec-

tiveness is mainly based on the existence of significant autocorrelation of returns series.  
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as in our case (i.e., weak dependence between same family rules). This may result in the iden-

tification of TTRs that generate profits purely out of luck, and for that reason multiple hypoth-

esis testing is attempted to minimize data snooping bias. In addition, selecting one trading rule 

recognized as the best, without consideration of the entire universe of strategies that it is 

pooled from, when its statistical inference is tested can also lead to false discoveries. In our 

paper, we employ and compare the FDR and the k-FWER which are two of the most powerful 

data snooping methodologies in the relevant literature. In Section 4.1, we review the existing 

data snooping methods. The data snooping specifications employed in this study are outlined 

in Sections 4.2 and 4.3, respectively. The multiple hypothesis testing setup together with the 

construction of the portfolio of TTRs following the proposed methods are described in Sec-

tions 4.5 and 4.6.  

 

4.1. Existing data snooping methods  

The finance literature introduces several methods for mitigating data snooping bias. The 

majority of these focus on two main statistical approaches for testing multiple hypotheses: the 

FWER and the FDR. The difference between the two is mostly intuitive, rather than based on 

conscious reasoning. FWER is defined as the probability of making at least one false rejection 

(which is unacceptable), while FDR views “unacceptability” in terms of a proportion (Harvey 

and Liu 2014). For instance, a 10% false discovery rate denotes that more than 10 false dis-

coveries in 100 tests would be unacceptable. Thus, the FWER is more conservative than the 

FDR, especially when the universe of rules is large. 

In statistics, the most standard FWER method is the Bonferroni correction, in which indi-

vidual null hypotheses (for each one of the total universe of rules) are rejected for each p-

value less than a significance level of 𝛼 𝑙⁄  in a single-step procedure. This structure is em-

ployed in the BRC of White (2000) and is carried out in such a way as to reassure that the sig-
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nificance level of the contemporaneous test of all l rules is less than α. In this way, the BRC 

evaluates whether the “best” performing strategy (drawn from l strategies) has significant pre-

dictive power with respect to the performance of the whole universe in a two-tailed-hypothesis 

framework. The null hypothesis tested is that the performance of the best trading rule is no 

better than the benchmark (e.g. “risk-free” rate): 

𝐻0𝑗 : max
𝑗=1,..𝑙

𝜑𝑗 ≤ 0 , where 𝜑𝑗 is the performance measure of the jth rule. 

Even though the BRC is used by Sullivan et al. (1999), we believe that it is a rather con-

servative measure that lacks power since it focuses only to the best strategy. Now, by also ap-

plying the Bonferroni correction, Hansen (2005) presents his superior predictive ability (SPA) 

test, which minimizes the influence of poor and inconsistent strategies by using studentized 

instead of non-studentized test statistics.13 However, it also focuses on the rule that appears 

best for the observed financial series. Furthermore, the call to identify more outperforming 

strategies and not relying only on the best strategy when undertaking investment decisions led 

to the Holm (1979) method. The Holm method works in a stepwise structure, with individual 

p-values ordered from smallest (most significant) to largest (least significant), and each one 

compared with a less strict significance level moving “down” the list. Following the Holm 

procedure, Romano and Wolf (2005) introduce their stepwise multiple testing (StepM) method 

as an improvement to the single-step BRC testing method of White (2000), while Hsu et al. 

(2010) develop a stepwise extension of the SPA test of Hansen (2005). Although stepwise ap-

proaches are powerful tools, their main drawback is that they do not select further rules once 

they have detected a rule whose performance is due to luck.  

In practice, investors do not search only for the best rule, but invest money in all possible 

outperforming strategies. Romano and Wolf (2007) develop a generalized methodology, con-

                                                           
13 A studentized test statistic refers to a simple test statistic divided by the consistent estimator of its 

standard deviation. This helps one to compare objects in the same units of standard deviation. 
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trolling for the stringent FWER criterion. Their goal is to reject at least a specific number of 

false hypotheses to maximize diversification. In a similar way, Hsu et al. (2014) apply this 

generalization to the stepwise method of Hsu et al. (2010) to minimize the data snooping ef-

fects on the performance of the Commodity Trading Advisory fund. 

Moreover, the FDR tolerates a certain proportion of false rejections so as to construct a 

well-diversified portfolio of trading rules, while accounting for the data snooping effect. Thus, 

Bajgrowicz and Scaillet (2012) employ the modified FDR+/- version of Barras et al. (2010) in 

the context of identifying outperforming TTRs on the DJIA index. Their findings confirm the 

superiority of the FDR over the conservative FWER approach of Romano and Wolf (2005) in 

detecting and building a portfolio of genuine rules. 

 

4.2. Multiple hypothesis testing framework 

As data snooping techniques are actually multiple hypothesis testing procedures, in what 

follows we need first to define the test statistic. The Sharpe ratio criterion (as defined in Sec-

tion 2.2) is chosen as the test statistic when performing the multiple hypothesis testing using 

the k-FWER and FDR methods for data snooping.14 We selected this ratio not only for com-

parison with previous studies, but also for its undoubtable popularity across traders. The test 

statistic for each rule j defines the setup under the null hypothesis (𝐻0𝑗: 𝜑𝑗 = 0) that rule j 

does not outperform the benchmark, where 𝜑𝑗 = 𝑆𝑅𝑗 in this case. On the contrary, the alterna-

tive hypothesis assumes the presence of abnormal performance, positive or negative 

(𝐻𝐴𝑗: 𝜑𝑗 > 0 𝑜𝑟 𝜑𝑗 < 0) in a two-tailed test. However, since we are mainly interested in 

identifying significantly outperforming rules, we define a technical trading rule j as signifi-

                                                           
14 We do not apply the Calmar ratio criterion since its formulation is based on at least a couple years of 

previous data, while in our persistence analysis we use a rebalancing period of six months (see Section 

5). 
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cantly positive, if it displays abnormal performance (i.e., reject 𝐻0𝑗) and its performance met-

ric is positive (i.e., 𝜑𝑗 > 0). The “risk-free” rate is used as a benchmark, describing an inves-

tor being out of the market.  

 

4.3. The FDR+/- method 

The FDR+/- has its foundations in the FDR statistical criterion introduced by Benjamini and 

Hochberg (1995), which assumes that, by tolerating a small proportion of false discoveries 

amongst all rejections (e.g., significant TTRs), one obtains a more powerful multiple hypothe-

sis testing tool than via the conservative FWER method.15  

The FDR+/- has some unique features that make it suitable for traders that are not just look-

ing for the best rule, but also for a class of strategies with genuine predictive power that can 

help them diversify risk. In Bajgrowicz and Scaillet (2012), the FDR approach provides a sen-

sible trade-off between significantly positive and false selections, making it less strict than the 

FWER method. Additionally, its comparative advantage is the ability to find the outperform-

ing rules, even if the performance of the best rule in the sample is due to luck. In practice, it is 

not unusual for such a rule with no significant predictability to achieve the greatest perfor-

mance in terms of profits. This feature is not available in the other methods, whose stepwise 

nature prevents them from detecting further outperforming rules once a “lucky” rule has been 

identified. 

                                                           
15 The initial FDR version of Benjamini and Hochberg (1995) adopted independence across multiple 

hypotheses. Later, studies by Benjamini and Yekuteli (2001), Storey (2002), and Storey et al. (2004) 

proved that the FDR holds under “weak dependence” conditions when the number of hypotheses is 

very large. Also, Bajgrowicz and Scaillet (2012) explain that the Sullivan et al. (1999) trading rules 

satisfy this feature, since the rules are dependent in small blocks (within the same family) and inde-

pendent across different families. 
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The FDR concentrates on estimating the expected value of the ratio of erroneous selections 

over the rules showing significant performance. Specifically, the FDR+/- is defined as the ex-

pected value of the proportion of false selections, F, among the significant rules, R (positive or 

negative). The latter are just the rules that perform either better or worse than the benchmark 

while at the same time their p-value rejects the null hypothesis of no abnormal performance 

under some threshold γ. Thus, the estimate is given by 𝐹𝐷𝑅̂+ −⁄ = 𝐹̂+ −⁄ 𝑅̂+ −⁄⁄ , where  𝐹̂+ −⁄  

and 𝑅̂+ −⁄  are the estimators of 𝐹+/−and 𝑅+/−, respectively. For instance, an FDR+/- 100% 

conveys that, among both the outperforming and underperforming trading strategies, no rule 

generates genuine performance on average and vice versa. 

The estimation of FDR+/- is not very tedious, especially when the p-value of each rule’s 

corresponding test statistic has already been computed. In order to acquire the individual p-

values, we follow the resampling procedure of Sullivan et al. (1999). Using the stationary 

bootstrap method of Politis and Romano (1994) to resample the returns of each strategy, the 

corresponding test statistic for each bootstrap series of returns is calculated.16 The p-value is 

obtained by comparing the original test statistic (𝜑𝑗) to the quantiles of each bootstrapped test 

statistic vector. The estimate of 𝐹𝐷𝑅̂ is given by 

𝐹𝐷𝑅̂(𝛾) = 𝐹̂ 𝑅̂⁄ =
𝜋0̂𝑙𝛾

#{𝑝𝑗 ≤ 𝛾;   𝑗 = 1, … , 𝑙}
, 

where 𝑙 is the entire universe of TTRs, 𝛾 is the p-value cut-off and 𝜋0̂ =
#{𝑝𝑗>𝜆;  𝑗=1,…,𝑙}

𝑙(1−𝜆)
 is an 

estimator of the proportion of rules that show no abnormal (either positive or negative) per-

formance in the entire universe and for a two-sided framework. The estimation of 𝜋0̂ requires 

                                                           
16 The block length used is equal to q = 0.1, and the number of bootstrap realizations is set to B = 

1000, following previous studies. 
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us to define the tuning parameter λ by visually examining the histogram of all p-values.17 

Thus, in our study, λ is chosen by employing the same method. 

Following Barras et al. (2010), and after estimating 𝜋0̂, we then focus on the right tail of 

the test statistic distribution (i.e. 𝜑𝑗 > 0), where the outperforming TTRs lie. Thus, we can 

compute a separate estimator for 𝐹𝐷𝑅+̂(𝛾).18 This holds under the assumption that the false 

discoveries spread evenly between TTRs with positive and negative performance and with 

equal tail significance 𝛾 2⁄ . Thus, the estimator is 

𝐹𝐷𝑅+̂(𝛾) = 𝐹̂+ 𝑅̂+⁄ =
1/2𝜋0̂𝑙𝛾

#{𝑝𝑗 ≤ 𝛾, 𝜑𝑗 > 0;   𝑗 = 1, … , 𝑙}
. 

Furthermore, the number of TTRs showing abnormal performance can be extrapolated as 

𝜋𝛢 = 1 − 𝜋0. Now, defining the positive, 𝜋𝐴
+, and negative, 𝜋𝐴

−, proportions of rules in the 

population, we acquire 𝜋𝐴
+ =

𝑇(𝛾)++𝐴(𝛾)+

𝑙
 and 𝜋𝐴

− =
𝑇(𝛾)−+𝐴(𝛾)−

𝑙
, where 𝑇(𝛾)+ and 𝑇(𝛾)− sym-

bolize the number of strategies with positive and negative returns, respectively, and p-values 

less than γ. On the other hand, 𝐴(𝛾)+and 𝐴(𝛾)− indicate the size of alternative models show-

ing positive and negative performance without rejecting the null hypothesis (p-value greater 

than γ), respectively.  

To conclude, 𝑇̂(𝛾)+ (likewise 𝑇(𝛾)−) is defined as the estimator of the significantly positive 

rules minus the estimator of false selections: 

𝑇̂(𝛾)+ = 𝑅+( 𝛾)̂ − 𝐹+(𝛾)̂ = #{𝑝𝑗 ≤ 𝛾, 𝜑𝑗 > 0;   𝑗 = 1, … , 𝑙} −
1

2
𝜋0̂𝑙𝛾. 

However, the most crucial part of identifying the genuine TTRs is the method of controlling a 

predetermined level of FDR+ (i.e. 10%) or, in other words, finding the right p-value cutoff γ 

                                                           
17 Bajgrowicz and Scaillet (2012) set the value of λ just by looking for the level above which the histo-

gram of p-values becomes fairly flat, representing the region of null p-values. There is also an auto-

mated version of this process described by Storey (2002). 

18 The FDR- part can be calculated in a similar way. 
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above which lie the rules with no statistically significant performance. We achieve this by fol-

lowing Storey et al. (2004), while using point estimates of the FDR. In particular, the p-values 

of the TTRs with positive performance are placed in ascending order. Then, starting with the 

smallest one, while adding the next p-value corresponding to the second rule, the FDR+ is 

recomputed. This procedure is repeated until the desired FDR+ is attained. 

 

4.4. The k-FWER method 

The second method employed for data snooping bias in our study is the k-FWER approach 

developed by Romano and Wolf (2007) and Romano et al. (2008). The rationale for imple-

menting it in our case is its flexibility in detecting a great number of genuine trading strategies 

once the strict FWER criterion is eased, making it more suitable for investors who want to 

identify as many outperforming strategies as possible. However, we also want to examine 

whether a generalized version of the conservative FWER measure, allowing some false rejec-

tions, would achieve the same results as the powerful FDR+. Contrary to its predecessor, the k-

FWER criterion is defined as 

𝑘 − 𝐹𝑊𝐸𝑅𝑝 = 𝑃{𝑅𝑒𝑗𝑒𝑐𝑡 𝑎𝑡 𝑙𝑒𝑎𝑠𝑡 𝑘 𝑜𝑓 𝑡ℎ𝑒 𝐻0𝑗}, 

which is the probability of rejecting at least k true null hypotheses. In the multiple hypothesis 

testing setup, under a statistical significance level of α, the k-FWER is controlled if k-FWERp≤ 

α. The k-FWER framework has an analogous structure to that of the StepM-BRC technique of 

Romano and Wolf (2005). However, it allows for at least a small number of false selections to 

be retained. Moreover, a resampling mechanism also needs to be used. Thus, for comparison 

purposes, we also employ the stationary bootstrap of Politis and Romano (1994), while using 

the same procedure to calculate the bootstrapped test statistics and thus the critical values for 

the BRC, StepM-BRC, and FDR tests. Each bootstrap test statistic vector also needs to be cen-

tered on its original value. 
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After the computation of the empirical bootstrapped distribution and the critical values, 

since the setup of the k-FWER approach is similar to that of the StepM-BRC test, only a few 

other steps need to be modified. The more general k-FWER approach needs to satisfy the cri-

terion that at least k hypotheses will be rejected, instead of just one. Specifically, the TTR test 

statistics, 𝜑𝑗, of the strategies showing positive performance are relabeled in descending order, 

with the first referring to the largest. During the first stage, individual decisions are executed 

for each rule, the null hypothesis 𝐻0𝑗 being rejected if the test statistic, 𝜑𝑗, is greater than the 

critical value 

𝑐1̂ = 𝑐{1,…,𝑙}(1 − 𝑎, 𝑘, 𝑃𝑇̂) for 1 ≤ 𝑗 ≤ 𝑙, 19 

where 𝑐1̂ is the estimated smallest (1 − 𝑎) quantile of the re-centered sampling distribution of 

the kth largest rule under the bootstrapped probability measure 𝑃𝑇̂. Then, denote by 𝑅1  the 

number of statistically significant rules (hypotheses rejected) during the first stage. If 𝑅1 < 𝑘 

the procedure is terminated. This happens because it is feasible that all significant rules are 

true rejections. On the other hand, if 𝑅1 > 𝑘 there is a strong possibility that some false rejec-

tions will have been included in the total number of rejections. Therefore, we need to move on 

to the second stage, excluding the test statistics of the rejected strategies. The remaining ones 

are tested in a new hypothesis testing setup. This time, each of the test statistics, 𝜑𝑗, is com-

pared with the critical value 

𝑐2̂ = max {𝑐𝐾(1 − 𝑎, 𝑘, 𝑃𝑇̂)} for 𝑅1 + 1 ≤ 𝑗 ≤ 𝑙 

while individual decisions are also made, 𝑐2̂ depicts the maximum quantile of the set of quan-

tiles, including the rejected 𝑘 − 1  hypotheses from the first step, as well as all the hypotheses 

that have not been rejected yet. The intuition is that we are not certain which of the rejected 

                                                           
19 The critical value 𝑐1̂ asymptotically controls the k-FWER criterion. According to the theory  

𝑐1 = 𝑐𝐾(1 − 𝑎, 𝑘, 𝑃). However, the set K and the probability mechanism P are unknown. Therefore, K 

is replaced by the set of all rules {1, … , 𝑙} and the probability measure 𝑃𝑇̂ of the bootstrapped distribu-

tion is used instead of P. 
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hypotheses might be true so both rejected and non-rejected hypotheses, together with the larg-

est quantile, must be considered. Finally, if no further hypotheses are rejected in the second 

step, the procedure terminates. Otherwise, the stepwise setup is maintained, and new decisions 

are carried out involving new 𝑐𝑚̂ maximum critical values, until no other rejections occur.  

The steps described above reflect the one-sided framework, which is meaningful when 

searching for genuine TTRs among the entire set of rules, which display positive performance 

and fall within the right tail of the distribution. 

 

4.5. Portfolio construction 

We construct the portfolios of rules by selecting them in accordance with the FDR+ and  

k-FWER. In particular, we set the 𝐹𝐷𝑅+̂ and k-FWER equal to 10%, as a good trade-off be-

tween truly outperforming TTRs and wrongly chosen ones (Bajgrowicz and Scaillet 2012). 

Despite the fact that k is an integer in the case of k-FWER, we adjust it to a number that is 

equal to 10% of the rules showing positive performance for each interval examined. Thus, we 

acquire 10%-FDR+ and 10%-FWER portfolios, which means that which means that 90% of 

the total number of the portfolio’s rules, significantly outperform the benchmark. The signals 

of the chosen rules are pooled with equal weight, similarly to a forecast averaging technique. 

We do not attribute more weight to more effective rules since this would result in reducing the 

FDR+ and k-FWER portfolios below the desired level. We finally treat the neutral signals as 

totally liquidating our positions and do not invest a proportion of wealth, corresponding to 

them, at the “risk-free” rate. This assumption helps us to measure the true performance of the 

FDR portfolios. 
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5. In-sample performance 

5.1 In-sample performance with no transaction costs 

Table 3 reports the number of TTRs displaying a positive performance20 under the mean 

return, Sharpe ratio, and Calmar ratio criteria, for crude oil futures and USO, Subperiods 1-4. 

 

[Insert Table 3 somewhere here] 

 

Concerning Subperiods 1 (18 April 2007 – 29 May 2009) and 4 (1 August 2013 – 1 Janu-

ary 2016), that contain strong trends or an unstable environment, it seems that a significant 

proportion of the TTRs considered are able to achieve a positive performance for both crude 

oil futures and USO. This outcome could almost have been anticipated since the majority of 

the strategies are momentum or trend-following rules capturing extreme movements. On the 

other hand, the number of outperforming rules is reduced for the mean return and Sharpe ratio 

for Subperiods 2 (1 June 2009 – 31 May 2011) and 3 (1 April 2011 – 31 July 2013), which 

show a more balanced evolution of prices. Regarding the Calmar ratio, the number of outper-

forming rules is even less (at most 25%), as a TTR needs to achieve a Calmar ratio above 1 to 

be considered a good strategy.21 It is also worth mentioning that, during Subperiod 3, the out-

performed TTRs on crude oil futures are almost half of those on the USO for the mean return, 

the Sharpe and the Calmar ratio. Moreover, the number of outperforming rules identified, 

based on the Sharpe ratio, is consistently less than or (almost) equal to those identified by the 

mean return criterion, for crude oil futures and USO. This feature stems from the subtraction 

of the risk-free rate, which results in the elimination of returns of a very small magnitude.     

                                                           
20 Positive performance means a mean return or Sharpe ratio above zero, or a Calmar ratio above one. 

21 A Calmar ratio value of 1-2 is assumed a good strategy, a value between 2-5 very good, and a value 

greater than 5 recognized as excellent (Young 1991). 
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For the same sample periods, Table 4 shows the in-sample performance of the best rule 

under the mean return, Sharpe ratio and Calmar ratio criteria respectively, free of transaction 

costs, for crude oil futures (Panel A) and USO (Panel B). The corresponding p-value of the 

BRC test for the best rule and for each performance criterion is also displayed in parenthesis.  

The buy-and-hold strategy for the crude oil futures and the USO is also displayed in the col-

umns on the right-hand side of the table.  

 

[Insert Table 4 somewhere here] 

 

For both Panels A and B, the best rule results seem very encouraging compared with the 

buy-and-hold strategies, for crude oil futures and USO. The best rule’s performance indicates 

that outperformed trading strategies exist in all subperiods, according to all criteria. Specifi-

cally, the Sharpe and Calmar ratios are high enough that the best rules can be characterized as 

very good trading opportunities in the majority of the years covered. However, we should 

mention that the evidence provided above has no economic value, since transaction costs are 

not considered, and it is just a trivial experiment concerning predictability. Moreover, the cor-

responding BRC p-values are quite high in half the cases, indicating that the performance of 

some of the best rules is not significant. Also, the information reported in Table 4 relies only 

on findings that are discovered ex post, and there is no guarantee that a trader will have se-

lected the potentially best rule in advance only by looking at its long-term historical behavior. 

In practice, investors rebalance their positions more frequently to capture any changes in the 

economic and financial milieu. Despite the above, Tables 3 and 4 still reveal the existence of 

technical indicators that are able to capture patterns in the daily prices for both crude oil fu-

tures and the USO.  
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5.2 In-sample performance including transaction costs 

Since predictive power is not always synonymous with profitability, an investor should al-

ways check carefully whether the returns gained from trading strategies are sufficient to can-

cel out the transaction costs. Indeed, trading rules pooled before transaction costs are more 

likely to generate frequent signals, thus increasing the probability of their performance bene-

fits being eliminated once the transaction costs are included. 

The majority of the previous studies examine the performance of TTRs through a breake-

ven analysis, wherein the effect of transaction costs is computed ex post, once outperforming 

rules have been identified. However, this undoubtedly makes it more complicated for a trader 

to foresee profitable rules that will offset transaction costs a priori. Contrary to that, we again 

follow Bajgrowicz and Scaillet (2012), handling transaction costs “endogenously” and not 

“exogenously” to the selection process. In particular, we subtract the transaction costs every 

time a buy or sell signal is triggered. Following the study of Locke and Venkatesh (1997), 

who estimate that futures markets’ one-way transaction costs range from 0.04 to 3.3 basis 

points, we consider the second, larger amount for the crude oil futures. Furthermore, we as-

sume that an investor funds their position with 100% equity rather than using a margin, since 

we measure daily returns as the log of the difference in price relatives (Bessembinder, 1992; 

Miffre and Rallis, 2007; Marshall et al., 2008). For the case of the USO, we incorporate one-

way transaction costs of 5 basis points on each trade. This level of transaction costs is justi-

fied based on the literature, as well as information from floor traders (Hsu et al. 2010), for the 

trading of ETFs.  

Tables 5 and 6 display the number of outperforming rules as well as the in-sample perfor-

mance for the crude oil futures and the USO when one-way transaction costs of 3.3 and 5 ba-

sis points are considered, respectively, ex ante. Comparing the results with Table 3, in Table 5 
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we can see that the number of corresponding outperforming rules has decreased considerably 

for all evaluation methods, especially when the Calmar ratio is employed.  

 

[Insert Table 5 somewhere here] 

 

[Insert Table 6 somewhere here] 

 

In Table 6, the in-sample performance with transaction costs provides a similar picture. 

Thus, as expected, the values for all evaluation criteria are reduced. However, in Table 6, we 

also observe that the best trading rules are still able to achieve better performance than the 

buy-and-hold strategy, for all criteria and across all subperiods. Interestingly, compared with 

the values in Table 4, the Sharpe ratios for the best rules are lower. However, the trading 

strategies remain very promising, as the Sharpe ratios are still above 1.5. Similarly, in Table 

6, the Calmar ratios are high enough that we can conclude that the generated returns are suffi-

cient to outweigh the transaction costs. When it comes to the statistical significance of the 

best rules’ performance, Table 6 demonstrates that none of the p-values from the BRC test are 

significant. However, this does not mean that TTRs with genuinely good performance do not 

exist among the most profitable rules. 

Tables 7 and 8 demonstrate the impact of transaction costs on the historically best TTRs, 

selected with respect to the mean return, Sharpe ratio and Calmar ratio criteria, while account-

ing for zero and non-zero one-way transaction costs, for the crude oil futures and the USO, 

respectively, in each subperiod.  

 

[Insert Table 7 somewhere here] 
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[Insert Table 8 somewhere here] 

 

Generally speaking, the best trading strategy nominated remains within the same family of 

rules, before and after one-way transaction costs are considered, in most cases, and for both 

the crude oil futures and the USO. In addition to this, Table 7 demonstrates that, in the case of 

crude oil futures, the small magnitude of transaction costs does not have a strong impact on 

the chosen best rule, and this applies to all criteria and across all subperiods. However, Table 

8 portrays a contradictory picture, especially under the mean return and Sharpe ratio criteria, 

for the case of the USO. TTRs selected without consideration of the transaction costs produce 

more frequent trading signals than those for which the transaction costs have been taken into 

account endogenously. For instance, under the Sharpe ratio measure and Subperiod 1, a 25-50 

day on-balance volume rule is more likely to trigger frequent signals than a channel breakout 

rule with a 20-100 window of days, 0.075 channel width and a five-day holding period, which 

suffers more constraints. The best rules after the inclusion of transaction costs are not usually 

among the best ones before their inclusion. One explanation might be that trading the USO 

entails larger transaction costs than trading crude oil futures. Moreover, the successful rules 

do not trade on longer-term price movements once transaction costs are incorporated, in either 

case. While there are cases (under the Sharpe ratio and in Subperiod 2 for the USO) where the 

best rule, in-sample, uses a larger window of 200 days of data when transaction costs are in-

cluded, compared to a window of 10 days used by the best rule under zero transaction costs, 

this is not true in most of the cases. 

Another interesting finding emerges when employing the Calmar ratio criterion. The best 

rules derived before and after the inclusion of transaction costs are closely related, perhaps 

due to the maximum drawdown factor employed. Searching for the best strategy, while mini-
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mizing the maximum drawdown of its returns, increases an investor’s probability of ending 

up with a rule that generates less frequent signals, even before the inclusion of transaction 

costs to avoid larger drawdowns. This might be the reason for TTRs selected under the 

Calmar ratio approach being almost the same before and after consideration of transaction 

costs in each sample period. 

Finally, the most important evidence gleaned from observing both tables together, is that 

the rules selected as the best ones based on technical analysis for the crude oil futures belong 

to a different family from those selected when trading the USO, under all criteria and across 

all subperiods considered. This may be a potential justification for the different dynamics that 

characterize the crude oil futures compared to the USO, with contango or backwardation out-

comes having a significant effect on the calculation and redemption procedures for ETFs. On 

the other hand, the above findings may just reveal the considerable effects of data snooping 

bias, in that the best rule’s performance may be achieved merely through luck in most cases, 

leading to different rules being identified as the best for the two assets and for the different 

subperiods.  

 

6. Persistence analysis 

The economic evaluation of TTRs’ performance in the crude oil market is covered in this 

section. One of the fundamental questions that technical traders must answer when evaluating 

TTRs’ predictive power is whether the rules selected as superior ex ante during backtesting 

are also able to generate abnormal returns once the transaction costs are considered, for an 

out-of-sample period. We shed light on whether some of the outperforming rules would have 

been able to produce profits in practice due to the high volatility in the crude oil market, using 

only past price data.  
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A persistence (out-of-sample) analysis of TTRs’ performance in the crude oil market is ap-

plied here for the very first time. With this aim, we build portfolios of outperforming rules, 

and re-evaluate the portfolios’ performance on a semi-annual basis. In the first six months, 

when the total universe of rules’ performance is tested, we construct equally weighted portfo-

lios while accounting for data snooping bias using the FDR+ and k-FWER methods as de-

scribed in Sections 4.2 - 4.5. Specifically, every six months, two portfolios are constructed 

employing price data from the previous six months. Then, the out-of-sample performance of 

the chosen rules is evaluated over the following half of the year. As mentioned earlier, the 

“risk-free” rate is considered as the benchmark. In particular, we assess the performance of 

rules in-sample (IS), before constructing portfolios of the “genuine” (statistically significant) 

in-sample rules and measuring their performance out-of-sample (OOS). This structure match-

es how investors in practice set up their own strategies based only on a priori information. 

Table 9 displays the results of the persistence analysis under the annualized Sharpe ratio 

and 3.3 and 5 basis points of transaction costs for the crude oil futures and the USO respec-

tively, in accordance with the 10%-FDR+ and 10%-FWER rules selection criteria, as well as 

the best rule’s performance, observed across the different in-sample and out-of-sample peri-

ods. The table also includes each portfolio’s median size as well as its percentage amount 

over the total universe of TTRs in brackets.22  

 

[Insert Table 9 somewhere here] 

 

The results clearly indicate that there is no persistence in the trading rules’ performance, as 

both selection criteria verify. However, in periods when both portfolios are able to generate 

                                                           
22 The relevant table and results of the persistence analysis considering the subperiods given by the 

nonparametric change point detection approach of Ross et al, (2011) are presented in Appendix A. 
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positive performance out-of-sample, the Sharpe ratio levels are considerably smaller than 

those of the in-sample performance. For instance, no investor will choose a portfolio whose 

Sharpe ratio level is below one. However, the only case of a Sharpe ratio exceeding one is in 

Subperiod 2 for the trading of crude oil futures contracts, for both portfolios. Overall, the pic-

ture is opposed to the evidence found regarding the in-sample performance in Section 5, 

which implies that the best-performing rules are accessible only to investors observing the 

returns ex post. Additionally, comparing the 10%-FWER and 10%-FDR+ portfolios with the 

best rule’s performance, we notice that, in most cases, both portfolios achieve better perfor-

mance out-of-sample than just employing the best rule, verifying the benefits of employing 

the proposed data snooping methods as portfolio construction techniques. To summarize, in-

terestingly, the no hot hands phenomenon that is confirmed in Bajgrowicz and Scaillet (2012) 

for the DJIA also appears in the crude oil market. 

As presented in Table 9, one of the most important findings is the overall performance of 

the 10%-FWER and 10%-FDR+ specifications for data snooping as portfolio compilers. We 

could say that the two approaches don’t seem able to achieve attractive Sharpe ratios (i.e., 

above 1) for both the crude oil futures and USO in most cases apart from the Subperiod 2 

when trading the crude oil futures. The generalization of the FWER measure (to allow for 

some false selections) improves its performance, which is demonstrated by the achievement 

of more or less similar Sharpe ratios to the FDR+ portfolio. The k-FWER circumvents the 

lucky rules that do not produce significantly good performance, while keeping only the genu-

ine ones. Furthermore, it does not suffer from preventing the selection of further rules once it 

has identified a lucky one, as its predecessor did. We also note that the number of the rules 

selected by the two methods (i.e., Median size) varies significantly. For example, for the 10%-

FWER approach this ranges from 24 to 167 rules, while for the 10%-FDR+ approach this 

ranges from 37 to 300 rules. 



32 

 

Finally, Table 10 presents both the 10%-FWER and 10%-FDR+ portfolios’ average de-

composition according to each of the five families of TTRs for the crude oil futures and the 

USO respectively. In particular, we report the number of rules selected from each family di-

vided by the total number of rules included in each portfolio, as a percentage.23  

 

[Insert Table 10 somewhere here] 

 

We observe that the 10%-FWER and 10%-FDR+ portfolios show different selection pref-

erences among the five families of rules. Furthermore, the preferences seem to differ depend-

ing on whether the crude oil futures or the USO are being traded. For instance, the 10%-

FWER portfolio seems to mostly choose TTRs from the on-balance volume and channel 

breakout families, followed by the support and resistance rules, while the 10%-FDR+ portfolio 

selects TTRs mostly from the support and resistance and channel breakout families, with the 

on-balance volume rules coming next in order of preference. The filter rules family displays 

the smallest percentages for both portfolios, crude oil futures and USO, as well as across all 

subperiods. In general, the support and resistance, channel breakouts and on-balance volume 

rule families are the most significant in capturing the patterns of the crude oil market.  

 

7. Conclusion 

Evidence of the historical success of technical trading rules is revisited, this time in the 

trending crude oil market. Although, numerous efforts have been made in the field of evaluat-

ing the performance of technical trading rules (forex, stock, large/small cap markets, etc.), this 

                                                           
23 We should mention that the number of rules chosen varies substantially from one six-month period 

to the next. Sometimes, the portfolio consists of almost exclusively new rules, even after the first re-

balancing.    
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is the first time it has been done for crude oil. Findings from previous studies are divided on 

whether technical analysis can achieve genuine abnormal performance. The motivation of this 

study was to examine whether technical trading indicators and oscillators could benefit from 

the severe fluctuations characterizing the crude oil market lately. The majority of these rules 

are designed to capture such patterns, being momentum and trend following strategies. We 

focus on the crude oil futures and the United States Oil fund (USO) as the largest and most 

liquid crude oil exchange traded fund (ETFs), developed to track the daily price movements 

of West Texas Intermediate ("WTI") light, sweet crude oil. 

First, we reassess the predictive power of Sullivan et al. (1999)’s universe of trading rules 

in the overall crude oil market, to verify that patterns exist. Evidence of the rules’ perfor-

mance on crude oil futures as well as the USO in an in-sample simulation demonstrates that, 

during periods of dramatic crude oil price movements, more than half of the rules show great 

predictive power. However, the corresponding p-values of the best rules of the bootstrap real-

ity check (BRC) test of White (2000) are not statistically significant most of the time. Popular 

performance measures used by fund managers and traders, such as the Sharpe and Calmar ra-

tios, are employed to measure the profitability of rules. All of them show the best rule for 

each period to be a very good trading opportunity.  

Second, we endogenously incorporate transaction costs when evaluating trading rules’ per-

formance in the case of crude oil futures contracts and the USO. Strategies employed by 

Brock et al. (1992) and Sullivan et al. (1999) can trigger very frequent signals, which might 

lead to the elimination of superior returns when transaction costs are considered. However, 

technical trading rules are still able to achieve profits, although their performance is de-

creased, because of the relatively small transaction costs applied when trading commodities 

futures and ETFs. 
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Third, we employ two of the most powerful techniques for accounting for data snooping, in 

order to identify significantly profitable trading strategies. The false discovery rate (FDR) ap-

proach, as described by Bajgrowicz and Scaillet (2012) when evaluating technical trading 

rules on the DJIA index, is used to control false discoveries. The k-familywise error rate (k-

FWER) methodology developed by Romano and Wolf (2007) is also applied to check wheth-

er a generalized version of the conservative FWER criterion allowing for some false rejec-

tions performs equally well to the powerful FDR method. Both specifications are able to se-

lect more rules and better diversify against model uncertainty than the previous BRC and 

Romano and Wolf approaches that are prevented from searching for more rules once a 

“lucky” one has been detected.  

Finally, a persistence analysis is carried out for the purpose of economically evaluating the 

rules’ performance. The question that needs to be answered here is whether investors can 

foresee which rules will generate future returns – that will outweigh transaction costs – with-

out prior knowledge. We respond to this argument by creating portfolios with the FDR and k-

FWER approaches, using only past data in an in-sample period, and evaluating their perfor-

mance out-of-sample. The findings show that there is no persistent nature to the rules’ per-

formance, contrary to the outstanding in-sample results, although tiny profits can be achieved 

in some periods. The results seem to be in favor of some short-term anomalies of efficient 

market hypothesis or an extreme tail risk episode of returns Moreover, the FDR+ and k-FWER 

approaches show almost equal performance. 
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Table 1. Sample periods for crude oil futures and USO 

Sample period Dates Trading days Market trend 

Subperiod 1: 18 April 2007- 29 May 2009 534 Mixed 

Subperiod 2: 1 June 2009- 31 March 2011 464 Bullish 

Subperiod 3: 1 April 2011- 31 July 2013 586 Mixed 

Subperiod 4: 1 August 2013- 1 January 2016 618 Bearish 

 

 

 

 

 

 

Table 2. Descriptive statistics of daily returns on crude oil futures and USO 

Instrument Subperiod Mean (%) St.dev. (%) Skewness Kurtosis First AC 

Crude oil Subperiod 1 0.01 3.03 0.44 11.4 0.01 

futures Subperiod 2 0.10 1.59 -0.01 4.55 0.18** 

 Subperiod 3 0.01 1.42 -0.35 4.88 0.08 

 Subperiod 4 -0.19 1.77 0.66 5.97 0.12** 

       

USO Subperiod 1 -0.06 2.91 -0.19 4.28 -0.11** 

 Subperiod 2 0.04 1.92 -0.07 3.23 0.00 

 Subperiod 3 -0.02 1.75 -0.57 6.24 -0.06 

 Subperiod 4 -0.22 1.99 0.00 5.36 -0.10** 

This table reports the descriptive statistics of daily returns on the crude oil futures and the USO. 

Means and standard deviations are reported in percentage points (%). “First AC” stands for first-order 

autocorrelation. Asterisks (**) denote significant first-order autocorrelation for returns at the 5% level 

according to the Ljung-Box (1978) Q statistics. 
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Table 3. Numbers of outperforming rules for in-sample performance 

 with no transaction costs 

Instrument Sample period Outperforming rules 

  Mean return Sharpe ratio Calmar ratio 

Crude oil futures  Subperiod 1 4049 

[51%] 

3979 

[50%] 

574 

[7%] 

 Subperiod 2 2226 

[28%] 

2222 

[28%] 

406 

[5%] 

 Subperiod 3 840 

[10%] 

838 

[10%] 

82 

[1%] 

 Subperiod 4 5148 

[65%] 

5147 

[65%] 

485 

[6%] 

     

USO Subperiod 1 4114 

[52%] 

4096 

[52%] 

2025 

[25%] 

 Subperiod 2 1774 

[22%] 

1774 

[22%] 

341 

[4%] 

 Subperiod 3 1920 

[24%] 

1919 

[24%] 

166 

[2%] 

 Subperiod 4 5000 

[63%] 

5000 

[63%] 

1445 

[18%] 

This table presents the outperforming rules in levels, and as percentages over the total universe in 

brackets, identified according to the positive daily mean return, annualized Sharpe ratio, and Calmar 

ratio criteria respectively, for the crude oil futures and the USO, across the different subperiods. 
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Table 4. In-sample performance with no transaction costs 

Sample period Best rule Buy-and-hold strategy 

Panel A 

Crude oil futures 
Mean  

 return (%) 

Sharpe  

ratio 

Calmar 

ratio 

Mean  

return (%) 

Sharpe  

ratio 

Calmar 

ratio 

Subperiod 1 0.34 

(0.09)* 

1.82 

(0.05)** 

8.21 

(0.03)** 

0.01 0.30 0.25 

Subperiod 2 0.14 

(0.99) 

2.30 

(0.39) 

7.70 

(0.83) 

0.10 0.95 1.45 

Subperiod 3 0.12 

(0.97) 

1.71 

(0.80) 

8.83 

(0.43) 

0.01 0.09 0.07 

Subperiod 4 0.26 

(0.08)* 

2.10 

(0.06)* 

9.80 

(0.10)* 

-0.19 -1.3 -0.62 

  

Best rule 

 

Buy-and-hold strategy  

Panel B 

USO 
Mean  

return (%) 

Sharpe  

ratio 

Calmar 

ratio 

Mean  

return (%) 

Sharpe  

ratio 

Calmar 

ratio 

Subperiod 1 0.38 

(0.09)* 

2.05 

(0.07)* 

6.95 

(0.11) 

-0.06 -0.13 -0.04 

Subperiod 2 0.17 

(0.96) 

2.07 

(0.71) 

8.92 

(0.69) 

0.04 0.37 0.54 

Subperiod 3 0.13 

(0.98) 

1.78 

(0.74) 

7.31 

(0.23) 

-0.02 -0.09 -0.05 

Subperiod 4 0.23 

(0.08)* 

2.19 

(0.07)* 

9.35 

(0.06)* 

-0.22 -1.69 -0.69 

This table reports the performance results of the best rule, and its corresponding BRC p-value in-

sample in parenthesis, as well as the buy-and-hold strategy for the crude oil futures and the USO re-

spectively, under the daily mean return, annualized Sharpe ratio, and Calmar ratio criteria, and across 

the different subperiods. * denotes a rejection of the null hypothesis at the 10% level of significance, 

** denotes rejection at the 5% level. 
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Table 5. Numbers of outperforming rules for in-sample performance 

 with transaction costs 

Instrument/ 

Transaction costs 

Sample period Outperforming rules 

Crude oil futures  

(3.3 bps) 
 Mean return Sharpe ratio Calmar ratio 

 Subperiod 1 3623 

[46%] 

3558 

[45%] 

320 

[4%] 

 Subperiod 2 1555 

[19%] 

1559 

[19%] 

274 

[3%] 

 Subperiod 3 525 

[6%] 

525 

[6%] 

69 

[0.8%] 

 Subperiod 4 4569 

[58%] 

4565 

[58%] 

250 

[3%] 

USO  

(5 bps) 
    

 Subperiod 1 3777 

[48%] 

3739 

[47%] 

1341 

[17%] 

 Subperiod 2 1066 

[13%] 

1065 

[13%] 

168 

[2%] 

 Subperiod 3 931 

[11%] 

929 

[11%] 

79 

[1%] 

 Subperiod 4 4346 

[55%] 

4346 

[55%] 

363 

[4%] 

This table presents the outperforming rules in levels, and in percentages over the total universe in 

brackets, identified according to the positive daily mean return, annualized Sharpe ratio, and Calmar 

ratio criteria, for the crude oil futures and the USO, assuming 3.3 and 5 basis points (bps) one-way 

transaction costs respectively, across the different subperiods. 
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Table 6. In-sample performance with transaction costs 

Sample period Best rule Buy-and-hold strategy 

Panel A 
Crude oil futures 

Mean  

 return (%) 

Sharpe 

ratio 

Calmar 

ratio 

Mean  

return (%) 

Sharpe 

ratio 

Calmar 

ratio 

Subperiod 1 0.30 

(0.25) 

1.73 

(0.15) 

7.76 

(0.29) 

0.01 0.30 0.25 

Subperiod 2 0.11 

(1.00) 

2.21 

(0.49) 

7.13 

(0.82) 

0.10 0.95 1.45 

Subperiod 3 0.08 

(0.99) 

1.69 

(0.81) 

7.80 

(0.42) 

0.01 0.09 0.07 

Subperiod 4 0.23 

(0.31) 

 

1.89 

(0.27) 

8.53 

(0.35) 

-0.19 -1.3 -0.62 

 Best rule Buy-and-hold strategy 

Panel B 
USO 

Mean  

 return (%) 

Sharpe 

ratio 

Calmar 

ratio 

Mean  

return (%) 

Sharpe 

ratio 

Calmar 

ratio 

Subperiod 1 0.33 

(0.44) 

1.87  

(0.68) 

6.00 

(0.39) 

-0.06 -0.13 -0.04 

Subperiod 2 0.13 

(1.00) 

1.89 

(0.88) 

6.05 

(0.74) 

0.04 0.37 0.54 

Subperiod 3 0.08 

(1.00) 

1.60 

(0.91) 

5.11 

(0.53) 

-0.02 -0.09 -0.05 

Subperiod 4 0.18 

(0.33) 

2.09 

(0.22) 

8.67 

(0.28) 

-0.22 -1.69 -0.69 

This table reports the performance results of the best rule, and its corresponding BRC p-value in-sample in 

parenthesis, including one-way transaction costs for the crude oil futures and the USO, as well as the buy-

and-hold strategies for the crude oil futures and the USO respectively, under the daily mean return, annual-

ized Sharpe ratio, and Calmar ratio criteria, across the different subperiods. 
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Table 7. Best in-sample technical trading rules for crude oil futures 

Sample period Costs Best rule 

Mean return  

Subperiod 1 Zero Sup.&Res. (10-day alt. extrema, 0.05 band) 

 3 bps Sup.&Res. (20-day alt. extrema, 0.05 band) 

Subperiod 2 Zero Filter (0.01 pos. initiation, 5-day hold. per.) 

 3bps Filter (0.01 pos. initiation, 5-day hold. per.) 

Subperiod 3 Zero Moving Avg. (25-30 day, 25-day hold. per.) 

 3 bps Moving Avg. (25-30 day, 25-day hold. per.) 

Subperiod 4 Zero On-Bal.-Vol. (40-50 day, 10-day hold. per.) 

 3 bps On-Bal.-Vol. (40-50 day, 10-day hold. per.) 

Sharpe ratio  

Subperiod 1 Zero Chan.Br. (20-day, 0.075 width, 10-day hold. per.) 

 3 bps Chan.Br. (20-day, 0.075 width, 0.01 band, 10-day hold. per.) 

Subperiod 2 Zero Sup.&Res. (10-day, 0.1 band) 

 3 bps Sup.&Res. (20-day, 0.03 band) 

Subperiod 3 Zero Chan.Br. (15-day, 0.05 width, 0.03 band 10-day hold. per.) 

 3 bps Chan.Br. (15-day, 0.05 width, 0.03 band 10-day hold. per.) 

Subperiod 4 Zero Chan. Br. (10-day, 0.05 width, 0.01 band 25-day hold. per.) 

 3 bps Chan. Br. (10-day, 0.03 width, 0.001 band 25-day hold. per.) 

Calmar ratio  

Subperiod 1 Zero Sup.&Res. (4-day al. extrema, 4-day delay, 5-day hold. per.) 

 3 bps Sup.&Res. (4-day alt. extrema 4-day delay, 25-day hold. per.) 

Subperiod 2 Zero Sup.&Res. (200-day, 0.03 band, 5-day hold. per.) 

 3 bps Sup.&Res. (200-day, 0.03 band, 5-day hold. per.) 

Subperiod 3 Zero Chan.Br. (100-day, 0.1 width, 0.001 band, 50-day hold. per.) 

 3 bps Chan.Br. (100-day, 0.15 width, 0.01 band, 5-day hold. per.) 

Subperiod 4 Zero Sup.&Res. (150-day, 2-day delay, 25-day hold. per.) 

 3 bps Sup.&Res. (200-day, 2-day delay, 50-day hold. per.) 

This table presents the historically best-performing trading rule, chosen under the daily mean, an-

nualized Sharpe ratio, and Calmar ratio criteria, for the crude oil futures, in each sample period 

and for either zero or 3.3 basis points (bps) one-way transaction costs. 
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Table 8. Best in-sample technical trading rules for USO 

Sample period Costs Best rule 

Mean return  

Subperiod 1 Zero Moving Avg. (5-25 day, 50-day hold. per.) 

 5 bps Moving Avg. (1-250 day, 50-day hold. per.) 

Subperiod 2 Zero On-Bal.-Vol. (10-50 day, 0.001 band) 

 5 bps On-Bal.-Vol. (5-50 day, 0.003 band) 

Subperiod 3 Zero On-Bal.-Vol. (15-200 day, 0.005 band) 

 5 bps On-Bal.-Vol. (50-125 day, 0.005 band) 

Subperiod 4 Zero Moving Avg. (1-25 day, 10-day hold. per.) 

 5 bps Moving Avg. (1-25 day, 10-day hold. per.) 

Sharpe ratio  

Subperiod 1 Zero On-Bal.-Vol. (25-50 day) 

 5 bps Chan.Br. (20-100 day, 0.075 width, 5-day hold. per.) 

Subperiod 2 Zero Sup.&Res. (10-day, 0.01 band) 

 5 bps Sup.&Res. (200-day, 0.04 band, 10-day hold. per.) 

Subperiod 3 Zero On-Bal.-Vol. (75-100 day, 0.04 band) 

 5 bps Chan.Br. (25-day, 0.03 width, 0.05 band 10-day hold. per.) 

Subperiod 4 Zero Chan.Br. (10-day, 0.05 width, 0.1 band 25-day hold. per.) 

 5 bps Chan.Br. (10-day, 0.05 width, 0.1 band 25-day hold. per.) 

Calmar ratio  

Subperiod 1 Zero Chan.Br. (15-day, 0.075 width, 5-day hold. per.) 

 5 bps Chan.Br. (50-day, 0.1 width, 0.005 band 5-day hold. per.) 

Subperiod 2 Zero Sup.&Res. (5-day, 3-day delay, 50-day hold. per.) 

 5 bps Sup.&Res. (5-day, 3-day delay, 50-day hold. per.) 

Subperiod 3 Zero Chan.Br. (25-day, 0.03 width, 0.05 band 10-day hold. per.) 

 5 bps Sup.&Res. (20-day, 4-day delay, 5-day hold. per.) 

Subperiod 4 Zero Chan.Br. (10-day, 0.01 width, 5-day hold. per.) 

 5 bps Chan.Br. (10-day, 0.01 width, 5-day hold. per.) 

This table presents the historically best-performing trading rule, chosen under the daily mean, an-

nualized Sharpe ratio, and Calmar ratio criteria, for the USO, in each sample period and for either 

zero or 5 basis points (bps) one-way transaction costs. 
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Table 9. Performance persistence analysis under the Sharpe ratio criterion with  

transaction costs and risk-free rate as benchmark 

Sample period 10%-FWER portfolio 10%-FDR+ portfolio Best rule 

Crude oil futures Median size IS OOS Median size IS OOS IS OOS 

Subperiod 1 47 

[0.6%] 

3.37 0.19 50 

[0.6%] 

2.71 -0.32 3.64 -0.64 

Subperiod 2 26 

[0.3%] 

4.32 1.06 37 

[0.4%] 

4.44 1.01 3.46 0.68 

Subperiod 3 24 

[0.3%] 

3.27 -1.13 40 

[0.4%] 

3.44 -0.62 3.05 -0.72 

Subperiod 4 25 

[0.3%] 

3.20 -0.24 112 

[1.4%] 

3.98 -0.48 3.72 -1.20 

USO Median size IS OOS Median size IS OOS IS OOS 

Subperiod 1 123 

[1.5%] 

2.82 0.28 170 

[2.1%] 

2.71 0.37 3.64 -0.64 

Subperiod 2 28 

[0.3%] 

4.19 -0.15 73 

[0.9%] 

3.98 -0.29 3.46 0.68 

Subperiod 3 42 

[0.5%] 

3.30 -1.27 70 

[0.9%] 

3.00 -0.42 3.05 -0.72 

Subperiod 4 167 

[2.1%] 

3.37 -0.26 300 

[3.8%] 

3.66 0.23 3.72 -1.20 

This table indicates the in-sample (IS) and out-of-sample (OOS) annualized Sharpe ratio of trading rules 

chosen according to the 10%-FWER portfolio of Romano and Wolf (2007), and the 10%-FDR+ portfolio of 

Bajrowicz and Scaillet (2012), with a semi-annual rebalancing and a risk-free rate as benchmark, as well as 

the best rule in-sample. The table also displays the portfolios’ median sizes in levels, and in percentages of 

the total rules universe in brackets, across different subperiods.  

 

 

 

 

 

 

 

 



49 

 

 

Table 10. Portfolio decomposition into families of rules 

Sample period F   MA SR CB OBV 

Crude oil futures      

Subperiod 1 2% (1%) 18% (28%) 5% (22%) 30% (8%) 45% (39%) 

Subperiod 2 1% (2%) 0% (3%) 56% (64%) 40% (31%) 3% (0%) 

Subperiod 3 6% (0%) 8% (3%) 2% (66%) 26% (25%) 58% (6%) 

Subperiod 4 4% (1%) 16% (16%) 15% (49%) 43% (16%) 21% (18%) 

USO      

Subperiod 1 13% (1%) 34% (43%) 10% (24%) 21% (14%) 22% (17%) 

Subperiod 2 2% (2%) 1% (3%) 64% (81%) 9% (11%) 22% (2%) 

Subperiod 3 11% (0%) 17% (2%) 5% (95%) 25% (0%) 42% (2%) 

Subperiod 4 1% (1%) 15% (16%) 11% (26%) 29% (31%) 42% (25%) 

This table reports the average percentage of rules belonging to each family, in each portfolio 

constructed using the 10%-FWER (10%-FDR) methods, for the crude oil futures and the 

USO respectively, across each subperiod. F: filter rules, MA: moving averages, SR: support 

and resistance rules, CB: channel breakouts, and OBV: on-balance volume averages. 
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 Fig.1.  The time series dynamics of crude oil futures (CL) and United States oil fund (USO) 
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Appendix A 

In the Appendix, we report the subperiod intervals selection and the corresponding OOS 

persistence analysis as a result of utilizing the nonparametric change point detection approach 

of Ross et al, (2011), for robustness purposes. Their method introduces a streaming change 

detection algorithm in time series (location and scale changes), especially when the distribu-

tional form of the stream variables is unknown, under hypothesis tests involving ranking data 

points, in which observations are received and processed sequentially over time. Table A1 

displays the range of each subperiod defined by the above method, while Fig. A1 presents the 

graphical representation of the time series dynamics for the two underlying instruments along 

with the location and scale changing points (i.e., vertical dotted lines) examined from April 

2007 to January 2016. 

[Insert Figure A1 somewhere here] 

[Insert Table A1 somewhere here] 

In general, the full sample dataset is separated again in four subperiods. Subperiod 1 is 

characterized by a sharp increase (bullish), while Subperiod 2 depicts the subsequent fall in 

crude oil prices due to the global financial crisis (bearish). In fact, Subperiod 1 defined in Sec-

tion 3 has now divided in in two subperiods with different trends. Subperiod 3 has now signif-

icantly increased almost to double but no clear trends appear during that period, which is 

characterized by mixed movements. Finally, even though Subperiod 4 might be of a smaller 

size now, it still represents the extreme recent fall of the crude oil market. We could say that 

the change detection method of Ross et al, (2011) makes no substantial changes to the periods 

initially defined based on historical events but it slightly adjusts them in order to reveal only 

major movements (bullish/bearish), leaving only one bigger period characterized by mixed 

trends. 
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Similar to Section 6, Table A.2 reports the corresponding evidence of the persistence anal-

ysis under the annualized Sharpe ratio criterion and based on the 10%-FDR+ and 10%-FWER 

portfolios of significant rules, realized across the new in-sample and out-of-sample periods as 

explained above. 

 

[Insert Table A2 somewhere] 

 

Likewise, Section 6, the results obtained reveal once again limited outperformance in terms 

of Sharpe ratios. We observe almost equal trends with those of Table 9 in both periods of 

negative and positive performance, sometimes of a different magnitude though. For example, 

Subperiod 2 still remains a promising period for exploiting technical analysis in crude oil 

market, this time not only when trading the crude oil futures but also the USO. A major ex-

ception appears in Subperiod 1 when investing on the futures contracts, in which the 10%-

FWER portfolio achieves a very healthy Sharpe ratio of 1.69, while the 10%-FDR+ portfolio 

faces loses, which provide a Sharpe ratio of -1.77. Again, the power of both methods to allow 

for some false selections doesn’t lead to “empty” portfolios. However, median size of portfo-

lios constructed under the two approaches has decreased on average across all subperiods 

compared to those of Table 9. We should also mention that the median size between the two 

selection criteria varies considerably here as well. For example, for the 10%-FWER method 

this spans from 1 to 92 rules, while for the 10%-FDR+ method this spans from 3 to 85 rules. 
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Table A1. Sample periods for crude oil futures and USO under the nonparametric change 

point detection model of Ross et al, (2011) 

Sample period Dates Trading days Market trend 

Subperiod 1: 18 April 2007 - 11 July 2008  311 Bullish 

Subperiod 2: 14 July 2008 - 12 February 2009  151 Bearish 

Subperiod 3: 13 February 2009 - 26 September 2014 1415 Mixed 

Subperiod 4: 27 September 2014 - 1 January 2016 325 Bearish 

 

 

 

 

Fig.1.  Time series nonparametric change detection points of crude oil futures (CL) and United States 

oil fund (USO) under the Ross et al, (2011) method. 
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Table A2. Performance persistence analysis under the Sharpe ratio criterion based on sequen-

tial change detection periods. 

Sample period 10%-FWER portfolio 10%-FDR+ portfolio Best rule 

Crude oil futures Median size IS OOS Median size IS OOS IS OOS 

Subperiod 1 12 

[0.1%] 

3.89 1.69 6 

[0.05%] 

2.79 -1.77 2.06 -0.64 

Subperiod 2 75 

[2.5%] 

3.36 0.42 68 

[0.8%] 

3.75 1.24 3.46 0.68 

Subperiod 3 1 

[0.0%] 

1.74 0.13 3 

[0.04%] 

3.87 -0.52 3.35 -0.09 

Subperiod 4 92 

[1.1%] 

3.79 -0.63 57 

[0.7%] 

3.21 -1.42 2.99 -2.57 

USO Median size IS OOS Median size IS OOS IS OOS 

Subperiod 1 4 

[0.05%] 

3.94 -0.29 21 

[0.3%] 

3.71 -2.61 3.20 0.00 

Subperiod 2 45 

[0.5%] 

3.61 0.98 5 

[0.05%] 

3.52 1.12 2.96 0.00 

Subperiod 3 1 

[0.0%] 

3.63 -0.27 9 

[0.1%] 

2.74 -0.66 2.66 0.15 

Subperiod 4 65 

[0.8%] 

3.69 -1.20 85 

[1.0%] 

3.74 -1.22 3.50 0.00 

This table indicates the in-sample (IS) and out-of-sample (OOS) annualized Sharpe ratio of trading rules 

chosen according to the 10%-FWER portfolio of Romano and Wolf (2007), and the 10%-FDR+ portfolio 

of Bajrowicz and Scaillet (2012) based on subperiods chosen with the nonparametric change point 

detection approach of Ross et al. (2011). Semi-annual rebalancing is employed using the risk-free rate 

as benchmark, as well as the best rule in-sample. The table also displays the portfolios’ median sizes in 

levels, and in percentages of the total rules universe in brackets, across different subperiods. 
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