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Abstract 

The activation of dioxygen by metal ions is critical in chemical and bio-chemical 

processes.  A scientific challenge is the elucidation of the activation site of dioxygen, 

in some copper metalloproteins, which is either the metal center or the substrate. In an 

effort to address this challenge, we prepared a series of new copper(II) complexes 

(1.2H2O, 2.CH3OH, 3)with bio-inspired amidate ligands and investigated their activity 

towards dioxygen activation.  The ligated to the copper(II) secondary amine group of 

the complex 1.2H2O in methyl alcohol is oxidized (2e-) by air dioxygen in a stepwise 

fashion to imine group, giving the complex 2. The copper(II) complex 2 in methyl 

alcohol induces the 4e- oxidation of the ligated to copper(II) imine functionality, by 

air dioxygen, to an azinate group resulting in the isolation of a dinuclearazinate 

copper(II) compound (4). Experimental and theoretical studies including X-bandc. w. 

EPR, UV-vis and ESI-MS spectroscopies and density functional theory computations 

indicate a direct attack of the dioxygen to the ligated to copper(II) –HC=N- group and 

a possible mechanism of the oxidation of the ligated to copper(II) –HC=N- 

functionality to an azinate group is provided. This unprecedented dioxygen activation 

by copper’s substrate paves the way for further exploration of the O2 activation 

mechanisms in enzymes and development of effective catalysts in the O2-involved 

green organic synthesis. 
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Introduction 

The activation of dioxygen by metal ions1 is a central reaction in biological,2-5 

catalytic6, 7, 8  and energy storage9-12 processes. Several copper-based metalloenzymes 

activate dioxygen in a variety of biological functions,13-20 such as, the regulation of 

neurotransmitters, dioxygen transport, and cellular respiration. 

Copper is one the most frequently used metals in enzymes to activate dioxygen20-

25and thus far, a variety of model copper compounds have been developed to stabilize 

mononuclear CuII-superoxide species.26-37 The common oxidation states of copper 

found in biological systemsare considered to be I and II, but the last years there is a 

strong belief that oxidation state III might have potential importance in copper 

enzymes in biology.38-43
 

Combined enzymatic and model studies have been used to unveil the mechanisms of 

dioxygen activation by copper proteins.5, 25, 44-47 It has been suggested for the most of 

the copper enzymes that the first step in dioxygen activation is the coordinationof 

dioxygen to copper ion and formation of the metal superoxo species.18 Although, 

several modes of dioxygen ligation to copper have been observed in model 

compounds, only the 1-superoxide and the -2:2-peroxide modes of ligation have 

been identified crystallographically in mononuclear and dinuclear copper 

metalloprotein active sites respectively (Scheme 1A). 

An example of 1-superoxide mode of ligation has been found in copper amine 

oxidases (CAOs), which utilize dioxygen to promote aerobic oxidation of primary 

amines to aldehydes. Mechanistic studies in CAOs and model systems revealed that 

the reaction proceeds via a transamination pathway; however the mechanism is still a 

subject of controversy.17, 48-51The electron transfer from aminotopaquinol to dioxygen 

results in the formation of superoxide which oxidizes imino-topaquinone (Scheme 
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1B).17, 50, 52-54Anice example of copper enzyme with a -2:2-peroxide mode of 

ligation is the recently discovered binuclear copper enzyme NspF, which activates 

dioxygen to convert 3-amino-4-hydroxybenzamide to 4-hydroxy-3-nitrosobenzamide 

(Scheme 1B).55 The NspFenzyme, like in other copper monoxygenases, reacts with 

dioxygen to form a -2:2-peroxide adduct. 

 

Scheme 1 The crystallographically identified modes of dioxygen ligation in copper 

metalloproteins (A);  

  In some other copper metalloproteins, the activation site of dioxygen is under debate, 

and it is either the metal center or the substrate. For example, a mechanism of 

dioxygen activation that has been proposed for quercetinase,56 a copper dioxygenase 

which breaks down quercetin and other flavonols to depsides, is  its  direct reaction 

with the substrate’s radical.57Studies on catechol58-60 and p-semiquinone12, 61 radical 

metal-complexes, models of oxidases, proved that dioxygen is activated by the 

ligand’s radical and thus, support the proposed mechanism for quercetinase. 
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In this study, new bioinspired model copper(II) complexes have been employed in 

order to better understand the O2 activation mechanism by copper based 

metalloproteins.62 More specifically, the synthesis, the structural and physicochemical 

characterization of a series of copper(II) compounds with the tetradentateamidate 

ligands, N-{2-[(2-pyridylmethylene)amino]phenyl}pyridine-2-carboxamide (Hcapca, 

Scheme 2) and its reduced analogue N-{2-[(pyridylmethyl)amino]phenyl}pyridine-2-

carboxamide (H2capcah, Scheme 2) are reported. These ligands were chosen because 

they have nitrogen donor atoms to mimic the environment of the copper in the 

oxidases, oxygenases and dioxygenases. 

 

Scheme 2 The three ligands used for the synthesis of the copper(II) complexes. 

 

The CuII/Hcapcah- and CuII/capca- compounds mimic the activity of the oxidases and 

oxygenases respectively inducing 2e-oxidation of amine to imine and deamination of 

aromatic imine, by 4e- oxidation of the imine nitrogen atom to an azinate group.  

The copper(II) complex 2.CH3OH constitutes the first example of a direct activation 

of dioxygen by a ligated to copper(II) –HC=N- moiety as it was proven 

experimentally and theoretically. The mechanism of the oxidation of the ligated to 

copper(II) –HC=N- functionality to an azinate group by means of a theoretical 

approach based on the Density Functional Theory (DFT) is also reported.  

 

Experimental Materials.   
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All chemicals and solvents were purchased from Sigma-Aldrich and Merck, were of 

reagent grade and used without further purification, except pyridine-2-carboxaldehyde 

and 2-acetylpyridine which were distilled under high vacuum just prior to use. The 

condensation reaction of N-(2-aminophenyl)pyridine-2-carboxamide (Hpyca, see 

Scheme 3) with pyridine-2-carboxaldehyde or with 2-acetylpyridine was performed 

under high purity argon.  

The mononuclear copper(II) compounds 1.2H2O-3 were synthesized under high purity 

argon at ambient temperature (≈ 20 oC), though compound 3 is stable in solution in 

air. C, H, and N analyses were conducted by the micro-analytical service of the 

School of Chemistry, the University of Glasgow. Copper was determined by atomic 

absorption and chloride gravimetrically as AgCl.   

Merck silica gel 60 F254 TLC plates were used for thin layer chromatography. 

N-(2-Nitrophenyl)pyridine-2-carboxamide (Hpycan).  To a mixture of pyridine-2-

carboxylic acid (71.48 g,580.6mmol) and 2-nitroaniline (80.12 g, 580.6 mmol) were 

added pyridine (25mL) and triphenylphosphite (76.25 mL, 89.98 g, 290.3 mmol).  

The mixture was refluxed for 12 h under magneticstirring.  The resulting solution was 

refrigerated overnight at -20 oCyielding a brown-yellow precipitate.  The solid was 

filtered off and washed with ethyl alcohol (2x50 mL), diethyl ether (2x 50 mL) and 

vacuum-dried. The yellow-brown solid was triturated with cold (≈ 10 0C) ethyl 

alcohol (50 mL), filtered, and washed with diethyl ether (2 x 30 mL) and vacuum-

dried to give 61.13 g of bright yellow solid.  Yield, 43%.  Mp 167 0C.  Anal. Calcd for 

C12H9N3O3 (Mr = 243.10): C, 59.24; H, 3.73; N, 17.29.  Found: C, 59.31; H, 3.76; N, 

17.25. Rf= 0.55 (4:1 chloroform / n-hexane).  [HR-ESI(+)-MS]: calcd for 

(C12H10N3O3Na) {[M+Na)]+} m/z266.0536, found 266.0532 (100%). 
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N-{2-[(2-Pyridylmethylene)amino]phenyl}pyridine-2-carboxamide (Hcapca). To 

a suspension of Hpycan(10.00 g, 41.14 mmol) and 1.50 g of hydrogenation catalyst 

(10% Pd on activated carbon) in acetone (350 mL), pure hydrogen was admitted for 

24h under magnetic stirring. The mixture was filtered and the filtrate was evaporated 

to dryness to yield N-(2-aminophenyl)pyridine-2-carboxamide (Hpyca, Scheme 3) as 

a gold-yellow oil. The oil was redissolved in methyl alcohol (70 mL), 3.91 mL of 

pyridine-2-carboxaldehyde (4.410 g, 41.14 mmol) was added in one portion and the 

mixture was refluxed overnight under argon. The solution was cooled to -20oC for 5h 

and the resulting yellow-brown precipitate was filtered off, washed with diethyl ether 

(3x20mL) and vacuum-dried. The product was purified by Soxhlet extraction with n-

hexane (200 mL) overnight. The volume of hexane was reduced to 50mL and was 

first cooled to room temperature (≈ 20oC) and then to 0 oC for an hour.  The resulting 

bright yellow precipitate was filtered off and washed with cold hexane (2 x 10 mL) 

and vacuum-dried to give 9.95g of product (80% based on Hpycan). Mp: 116-117 

oC.Anal.Calcd for C18H14N4O (Mr = 302.16):  C, 71.49; H, 4.67; N, 18.54.  Found: C, 

71.53; H, 4.67; N, 18.49.Rf = 0.16 (4:1 chloroform / n-hexane, v/v).  [HR-ESI(+)-

MS]: calcd for (C18H15N4ONa){[M+Na)]+} m/z325.1060, found 325.1056 (100%). 

N-{2-[(Pyridylmethyl)amino]phenyl}pyridine-2-carboxamide (H2capcah). The 

organic molecule was synthesized according to literature63 and its purity was checked 

with positive HR-ESI-MS, 1H-, 13C-NMR spectra and elemental analysis. Anal.Calcd 

for C18H16N4O (Mr = 304.18):  C, 71.02; H, 5.30; N, 18.41.  Found: C, 71.05; H, 5.31; 

N, 18.39. Mp: 104-105oC. Rf= 0.07 (4:1 chloroform/n-hexane, v/v). [HR-ESI(+)-MS]: 

calcd for (C18H16N4ONa){[M+Na)]+} m/z 327.1216, found 327.1212 (100%). 

N-{2-[1-(pyridine-2-yl)ethylideneamino]phenyl}picolinamide (Hmcapca). The 

ligand Hmcapca was prepared in a similar fashion to Hcapca except that 2-
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acetylpyridine was used instead of pyridine-2-carboxaldehyde in yield 50%. Melting 

point: 94-95 0C.  Anal.Calcd for C18H14N4O (Mr = 316.15):  C, 72.13; H, 5.10; N, 

17.71.  Found: C, 72.03; H, 5.05; N, 17.65. Rf = 0.12 (4:1 chloroform / n-hexane, v/v). 

[HR-ESI(+)MS]: cald for (C18H14N4ONa) {[M+Na]+} m/z 339.1216, found 339.1211 

(100%). 

N-{2-[(Pyridylmethyl)amino]phenyl}pyridine-2-carboxamido-(Npy, Nam, Nim, 

Npy)}chloridocopper(II), [CuII(Hcapcah)Cl].2H2O (1.2H2O).  CuCl2
.2H2O (0.112 g, 

0.657mmol) was dissolved under argon in methyl alcohol (5 mL) and then, solid 

H2capcah (0.200 g, 0.657 mmol) was added in one portion to the stirred solution.  

Upon addition of the ligand the blue color of the solution turned to green and a green 

precipitate was formed.  The mixture was stirred for three hours and then, it was 

filtered off, washed with cold methyl alcohol (2 x 3 mL) and diethyl ether (2 x 5 mL) 

and vacuum-dried to give 0.275 g of a green solid. Yield, 95% (based on 

CuCl2
.2H2O). Anal. Calcd for 1.2H2O, [C18H19ClCuN4O3 (Mr = 438.19)]:  C, 49.30; 

H, 4.37; Cl, 8.09; Cu, 14.50; N, 12.79. Found: C, 49.26; H, 4.38; Cl, 8.18; Cu, 14.67; 

N, 12.77. [HR-ESI(+)-MS]: calcd forC18H15N4OCu {[M-Cl-2H2O)]+} m/z 366.0536, 

found 366.0531 (100%). 

Green crystals of 1suitable for X-ray diffraction analysis were obtained by layering a 

methyl alcohol solution of H2capcah into a methyl alcohol solution of CuCl2
.2H2O. 

{N-[2-((2-Pyridylmethylene)amino)phenyl]pyridine-2-carboxamido-(Npy, Nam, 

Nim, Npy)}chloridocopper(II), [CuII(capca)Cl].CH3OH (2.CH3OH).  The compound 

2.CH3OH was prepared (in 88% yield) in the same way as compound 1.2H2O except 

that Hcapca was used instead of H2capcah.  The color of the compound 2.2H2O is 

brick red. Yield: Anal. Calcd for 2.CH3OH, [C19H17ClCuN4O2 (Mr = 432.18)]:  C, 

52.76; H, 3.96; Cl, 8.20; Cu, 14.70; N, 12.96. Found: C, 52.66; H, 3.89; Cl, 8.18; Cu, 
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14.67; N, 12.88. [HR-ESI(+)-MS]: calcd for C18H13CuN4O {[M-Cl-CH3OH)]+} m/z 

364.0380, found 364.0374 (100%). 

Crystals of 2.CH3OH suitable for X-ray diffraction analysis were obtained by layering 

a methyl alcohol solution of Hcapca into a methyl alcohol solution of CuCl2
.2H2O. 

{N-(2-(1-(pyridine-2-yl)ethylideneamino)phenyl)picolinamido-(Npyr, Nam, 

Nim,Npyr)}chloridocopper(II), [CuII(mcapca)Cl] (3). Complex 3 was prepared in a 

similar way to complex 2.CH3OH except that Hmcapca was used instead of Hcapca. 

Yield: 91% (based on CuCl2
.2H2O). Anal. Calcd for, [C19H17ClCuN4O2 (Mr = 

432.16)]:  C, 52.70; H, 3.96; Cl, 8.20; Cu, 14.70; N, 12.96. Found: C, 52.67; H, 3.84; 

Cl, 8.18; Cu, 14.67; N, 13.18. [HR-ESI(+)-MS]: cald for (C19H15CuN4O) {[M-Cl]+} 

m/z, 378.0536 found 378.0532 (100%). 

Crystals of 3 suitable for X-ray diffraction analysis were obtained by layering diethyl 

ether into a concentrated methyl alcohol solution of 3. 

μ-Bis-{(Z)-[(E)-2-(2-(picolinamido)phenylimino)-2-(pyridin-2-

yl)ethylidene]azinate}dicopper(II), [CuII
2(μ-η1, η1-pipyaz-O,O′)2], (4). 

Method A. Compound 1.2H2OH or 2.CH3OH was dissolved in CH3OH (≈ 4 mg/ml) 

at ambient temperature (30 oC). The solution magnetically stirred for 5 hours in air 

and then, diethyl ether was layered on it to get just a few yellow-brown crystals of 4 

suitable for X-ray diffraction analysis. 

Method B.  Compound 4, as yellow-brown crystals, was prepared in yield 10% using 

the same method for the preparation of 2.CH3OH except that i) [CuII(CH3COO)2]
.H2O 

was substituted for CuCl2
.2H2O, ii) the experiment was conducted in air at  ambient 

temperature (30 oC) for 4 hours andiii) the solution was layered with diethyl ether.  
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Anal. Calcd for [C38H26Cu2N10O6] (Mr = 845.40):  C, 53.81; H, 3.09; Cu, 14.99; N, 

16.52. Found: C, 53.90; H, 3.13; Cu, 14.97; N, 16.44. 

Results and discussion 

Synthesis of the ligands and copper(II) compounds 

The synthesis of the three ligands,i. e.,Hcapca, its reduced and methylated analogues 

H2capcah and Hmcapca respectively used in this study for the synthesis of the 

copper(II) compounds, and the structure of the azinate molecule H2pipyaz, formed as 

its copper(II) complex from the interaction of the species [CuII(capca)]+ with 

dioxygen(vide infra), are depicted in Scheme 3. 

The organic molecules Hpycan and Hcapca(Scheme 3) were synthesized by 

modifications of reported procedures64, 65to obtain better product yields, and to avoid 

the isolation of Hpyca (Scheme 3), while the organic molecule H2capcah was 

prepared according to literature.63  The completion of the reductions of Hpycan to 

Hpyca (-NO2 to -NH2) and of Hcapca to H2capcah (-N=CH- to –NH-CH2-) was 

followed by TLC. The molecule Hpyca was not isolated, but it was condensed with 

pyridine-2-carboxaldehyde or 2-acetylpyridine under high purity argon to avoid the 

oxidation of the amine group. Soxhlet extraction of the crude Hcapca or Hmcapca 

proved quite effective purification method. 
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Scheme 3 The synthesis of the three ligands used in this study and the structural formula of 

the ligand H2pipyaz. 

 

The synthesis of the copper(II) compounds with the ligands H2capcah,Hcapca and 

Hmcapca is depicted in Scheme 4.  The methyl alcohol solutions ofthe mononuclear 

copper(II) compounds, 1.2H2O and 2.CH3OH, are oxidized by air to complex 4, 

whilethe methyl alcohol solution of the copper(II) compound 3remains stable in air. 
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Scheme 4 The synthesis ofthe copper(II) complexes 1, 2, 3, and 4. 

X-ray crystallographic results   

A summary of the crystallographic data and the final refinement details for 

compounds 1−4 are given in Table S1. Interatomic distances and bond angles 

relevant to the copper(II) coordination sphere are listed in Table 1. Fig. 1A shows a 

perspective view of compound 1. In 1 the copper (II) atom is bonded to the two 

pyridine [N(1) and N(4)], the deprotonated amide N(2), and the secondary amine N(3) 

nitrogen atoms of the singly deprotonated ligand Hcapcah- and one chloride ion. The 

coordination geometry for the CuII center is best described as a distorted square 

pyramidal; the distortion parameter τ,66 is calculated to be 0.090.   The copper(II)atom 

is displaced from the N3Cl coordination plane [root mean square (rms) 0.149Å] by 

0.254(2) Å towards the pyridine nitrogen atom N(4), which occupies the apical 

position.  Of the four CuII-N bonds, the bond length to N(2) [d(CuII-Namide) = 1.942(2) 
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Å], that is, the deprotonated amide nitrogen, is consistent with the literature values.67-

69The bond length to N(3) [2.046(2) Å], the secondary amine nitrogen, is substantially 

longer (about 0.1 Å) than theCuII-Niminebond length [1.942(3) Å] of compound 

2.CH3OH (vide infra).The bond lengths to N(1)[1.994(2) Å] and N(4) [2.273(1) 

Å],the pyridine nitrogens, are longer than the CuII-Namidebond length and different 

from each other as a consequence ofthe difference in their positions:basal plane for 

[N(1)], versus apex for [N(4)] of the square pyramid.  

The crystal structure of 2.CH3OH is shown in Fig. 1B. A notable difference between 

the X-ray crystal structure of 1 and 2.CH3OH is the almost planar conformation of the 

ligand capca-in the latter as opposed to non-planar conformation of ligand Hcapcah- in 

1, due to sp3 hybridization of C(13) (Fig. 1A). The coordination geometry for the CuII 

center in 2.CH3OH is best described as a slightly distorted square pyramidal; the 

distortion parameter τ,66 is calculated to be  0.048.  The copper(II) ion is displaced 

from the N4 basal plane [root mean square (rms) 0.025Å] by 0.261 Å towards the 

Cl(1) which is the apex of the square pyramid. The chloride provides the longest bond 

to the copper(II) ion, 2.527(1)Å, and the two pyridine nitrogen bond distances  

[2.041(3) and 2.060(4)Å] are longer than the amide [1.939(4) Å]  and imine [1.942(3) 

Å] ones.  The almost identical CuII-Namideand CuII-Niminebond lengths in compound 

2.CH3OH imply a considerable delocalization of π-electron density in the skeleton of 

the ligand capca-. The CuII-Namideand CuII-Npyridinebond lengths are in the expected 

range.67-69 

Table 1 Interatomic distances (Å) and angles (deg) relevant to the copper(II) coordination 

sphere. 

parameter 1 2.CH3OH 3 4 

Cu(1) - Xa 2.2684(6) 2.527(1) 2.473(1) 2.685(2) 
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Cu(1) - N(1) 1.994(2) 2.041(3) 2.015(2) 1.989(2) 

Cu(1) - N(2) 1.942(2) 1.939(4) 1.942(2) 1.891(3) 

Cu(1) - N(3) 2.046(2) 1.942(3) 1.982(2) 1.945(2) 

Cu(1) - N(4) 2.273(1) 2.060(4) 2.039(2) 1.897(2) 

X - Cu(1) - N(1) 98.68(5) 94.9(1) 96.9(7) 93.33(7) 

X - Cu(1) -  N(2) 160.09(5) 102.7(1) 104.5(6) 94.01(9) 

X - Cu(1) - N(3) 94.21(5) 99.7(1) 104.2(7) 92.57(8) 

X - Cu(1) - N(4) 99.16(4) 94.5(1) 95.8(6) 86.48(7) 

N(1) - Cu(1) -N(2) 82.18(6) 82.1(1) 81.9(8) 83.6(1) 

N(1) - Cu(1) - N(3) 165.48(6) 160.5(1) 155.8(8) 167.72(9) 

N(1) - Cu(1) -  N(4) 105.96(6) 110.9(1) 109.6(8) 94.36(8) 

N(2) - Cu(1) -  N(3) 83.43(6) 82.0(2) 81.3(8) 85.2(1) 

N(2) - Cu(1) - N(4) 99.70(6) 157.6(1) 155.4(8) 178.0(1) 

N(3) - Cu(1) -  N(4) 78.35(6) 81.0(1) 80.4(7) 96.75(9) 

 

aX corresponds to Cl(1) and O(3) for compounds 1, 2.CH3OH, 3 and 4 respectively. 

 

It is worth noting that the large difference in CuII-Cl bond lengths, 2.2684(6) Å vs 

2.527(1) Å in compounds 1 and 2.CH3OH respectively, is nicely reflected in the Far-

IR spectra of them with ν(Cu-Cl) at 359 (1) and 268 cm-1 (2.CH3OH). Compound 3 

with a d(CuII-Cl) = 2.473(1) Å gave a  ν(Cu-Cl) at 306 cm-1.  Details for the IR 

spectra of all the copper(II) compounds are presented in the SI (pages S5, S6 and 

Table S2). 
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Fig. 1  Structural representation of 1 (A) and 2.CH3OH (B) with thermal ellipsoids drawn at 

50% probability level.  Hydrogen atoms and solvent molecules are omitted for clarity. 

The structural features of complex 3 (Fig. 2) are very similar with those of 2.CH3OH 

and thus, this structure will not be further discussed. 

 

Fig. 2Structural representation of compound 3 (thermal ellipsoids represent 50% probability).  

Hydrogen atoms are omitted for clarity. 

The molecular structure of the compound [CuII
2(μ-η1-η1-pipyaz-O,O′)2] (Fig. 3)is a 

centrosymmetric dimer formed by two bridging azinateO,O′-ligands. It represents the 

first structurally characterized copper(II) complex, and in general of any transition 

metal complex, that contains a bridging η1-η1 azinate-O,O′coordination mode, where 

the azinate group is part of a chelate ring (Scheme 5c). The coordination modes 5a 

and 5b for azinates have been observed for copper(II)70 and the mode 5d for 
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copper(II)71and iridium(III)72 compounds. In [CuII
2(μ-η1-η1-pipyaz-O,O′)2] each 

copper(II) atom is coordinated by the three nitrogen atoms [i.e., the pyridine [N(1)], 

the deprotonated amide N(2), and the imine N(3) nitrogen] provided by the same 

doubly deprotonated pipyaz2- ligand and by two oxygen atoms O(2) and O(3)′ from 

the two azinate moieties one of them provided by the symmetry-related unit, while the 

pyridine nitrogen [N(4)] and its symmetry related [N(4)]′ atoms remain 

uncoordinated. The two oxygen donor atoms bridge the two copper(II) atoms in the 

complex, keeping them 5.118Å apart. The configuration of the pipyaz2- ligand with 

respect to the N(3) = C(13) and C(19) =N(5) bonds is E, and Z respectively. 

 

Scheme 5 The bonding modes (a, b and d) of the azinate group observed in transition metal 

complexes and the new bonding mode (c) present in [CuII
2(μ-η1,η2-pipyaz-O,O′)2] (4). 
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Fig. 3 Structural representation of the centrosymmetric dinuclear compound [CuII
2(μ-η1-η1-

pipyaz-O,O′)2] (4) with thermal ellipsoids at 50% probability. Hydrogen atoms are omitted for 

clarity. 

The coordination sphere around each copper(II) atom in [CuII
2(μ-η1-η1-pipyaz-

O,O′)2]can be described as a distorted square pyramidal; the distortion parameter τ,66is 

calculated to be  0.171.  The oxygen O(3)′ occupies the apex at a distance of 2.685 Å, 

while, the three nitrogen atoms and the azinate oxygen atom O(2) of the bridging 

ligand pipyaz2- constitute the basal plane around Cu(II).  The root mean squared 

(r.m.s.) deviation of the four basally coordinated atoms of Cu(1) from the mean plane 

is 0.217 Å,with the metal atom placed at 0.071(1) Å away from the plane, toward the 

O(3)′ atom. 

It is worth noting that the two azinate units in the dinuclear compound [CuII
2(μ-η1-η1-

pipyaz-O,O′)2] form with the two copper atoms an eight-membered ring (Fig. 3). 

 

UV-vis spectroscopy 

The UV-vis spectral data of the compounds 1.2H2O-4 are listed in Table 2. The peaks 

of all complexes were assigned to intraligand and charge transfer transitions. In 

addition to these peaks 1.2H2O gave one peak at 675 nm, which was assigned to a d-d 
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transition.The oxidation of compounds 1.2H2O and 2.CH3OHin CH3OH by air was 

followed with UV-vis spectroscopy.  In Fig. 4A, it is shown the variation of the 

absorbance in the UV-vis spectrum of the compound 1.2H2O (0.16 mM) in CH3OH with time. 

The initial rates of the oxidation of complexes 1.2H2O and 2.CH3OH by air dioxygen 

are linearly dependent on their concentrations (Fig. 4B).  The rate constants of the 

oxidation reactions, were calculated from the slopes of the lines (Fig. 4B), and were:  

0.013 ± 0.001 min-1, 0.10 ± 0.01 min-1, and 2.3 ± 0.1 min-1 for 1.2H2O, 2.CH3OH, and 

2.CH3OH with one equivalent of Et3N respectively. The smaller rate of oxidation 

of1.2H2O in comparison to 2.CH3OH reflects the additional oxidation step required 

for 1.2H2O (1.2H2O is oxidized first to 2.CH3OH).The addition of the base increases 

dramatically the reaction rate, and this is in agreement with the proposed proton 

released mechanism of the formation of compound 4(vide infra). 

Table 2 UV-vis spectral data for the copper(II) compounds 1.2H2O-4 

Compound Solvent λmax[nm] (ε [M-1cm-1] ) 

1. 2H2O acetonitrile 675 (100), 336 (4 600) 

2.CH3OH acetonitrile 449 (1500), 332 (5 000) 

3 methanol 274 (17 500), 325 sh (8 000) 

4 methanol 647 (600), 448 (8 700), 327 (26 000), 292 (14 500) 
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Fig. 4 A) Variation of the absorbance in the UV-vis spectrum of the compound 1.2H2O (0.16 

mM) in CH3OH with time. B) Diagram of the initial oxidation rates of the copper(II) 

complexes 1.2H2O, 2.CH3OH, and 2.CH3OHwith one equivalent Et3Nin methyl alcohol in 

relation to their concentration.  

The UV-vis spectral changes of compounds 2.CH3OH(0.080 mM)and 3 (0.080 mM)  

in CH3OH with time (0 to 30 min) are shown in Fig. 5. The spectrum of 3, up to 24 

hours, does not show any change, suggesting that the oxidation rate of 3 by air 

dioxygen, is much slower in comparison to 2.  

 

Fig. 5 Variation of the absorbance in the UV-vis spectra of the compounds 2.CH3OH (black 

line) and 3 (red line)in CH3OH with time.  

EPR spectroscopy 

The X-band c. w. EPR spectra of frozen methyl alcohol solutions of complexes 

1.2H2O, and2.CH3OH gave an unresolved broad peak for each complex, at g=2.048 
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and 2.191 respectively. The X-band c. w. EPR spectrum of a frozen methyl alcohol 

solution of 3 gave a rhombic anisotropic spectrum exhibiting a superhyperfine 

splitting with the four equatorial nitrogen atoms (Fig. 6). The simulated spectrum was 

best fitted using the following parameters: gz=2.211, gy=2.063, gy=2.034 andAz=182, 

Ay=12 , Ax=12, AzN1=8, AyN1=7 , AxN1=11, AzN2=11, AyN2=11 , AxN2=17, AzN3=13, 

AyN3=12 , AxN3=8, AzN4=12,AyN4=11 , AxN4=16 x 10-4cm-1.The parameters are 

consistent with a CuII-N4 system.73 

 

 

Fig. 6  X-band c. w. EPR spectrum of 3 (0.16 mM) in frozen MeOH (black line) and its 

simulated one (red line). 

The X-band c. w. EPR spectrum of complex 4 in frozen CH3OH gave also a rhombic 

anisotropic spectrum exhibiting a superhyperfine splitting with the three equatorial 

nitrogen atoms (Fig. 7) and its simulated spectrum was best fitted using the following 

parameters:gz=2.213, gy=2.067, gy=2.035 and Az=186, Ay=11 , Ax=11, AzN1=7, 

AyN1=12 , AxN1=14, AzN2=16, AyN2=10 , AxN2=12, AzN3=10, AyN3=15 , AxN3=5 x 10-4cm-

1.  The parameters are consistent with a CuII-N3O system.73 
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Fig. 7  The X-band c. w. EPR spectrum of  compound 4 (0.16 mM) in frozen MeOH (black 

line) and its simulated one (red line). 

 

 

 

Fig. 8  The X-band c. w. EPR spectrum of 2.CH3OH in frozen CH3OH (0.80 mM) with time.  

The oxidation of 1.2H2Oand 2.CH3OH to 4 in CH3OH by air was also monitored by 

X-band c. w. EPR spectroscopy. In Fig. 8, they are shown the X-band c. w. EPR 
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spectra of 2.CH3OH as a function of the time. In addition to the peaks of compound 4 

a broad (~20 gauss) peak at g=1.941 was formed. This value is very low for a 

CuIIcentered radical and thus, it was assigned to an organic centered radical.74 The 

formation of the organic radical is justified by the first step of the mechanism of 

oxidation of [CuII(capca)]+ to the azinate compex (Fig. 13) proposed by the theory, in 

which the O2 binds to the carbon atom of the imine group of [CuII(capca)]+(Fig. 11) 

transforming dioxygen to a superoxy radical. The X-band c. w. EPR spectrum of 3 in 

CH3OH does not show any change after the exposure of the solution to air for 24 h. 

ESI-MS spectroscopy 

The oxidation of [CuII(Hcapcah)]+ (1′)  to [CuII(capca)]+ (2′) in CH3OH solution was 

monitored by ESI-MS in real time and it takes  approximately 24 h, however in 

the presence of one equivalent of Et3N the reaction proceeds to completion 

almost instantly in agreement with UV-vis studies. Concurrently with the 

distribution envelopes of the species [CuII(Hcapcah)]+ and [CuII(capca)]+centred 

at m/z = 364.03 and 366.05 respectively, an additional envelope 

centredatm/z=786.09 was observed which can be assigned to 

{[CuII(pipyaz)][CuII(capca)]+} which became dominant after 24 h (Fig. S1). 

This is in agreement with the results found from UV-vis kinetic studies, whereas 

the oxidation of [CuII(capca)]+  to [CuII(pipyaz)] is faster than the oxidation of 

[CuII(Hcapcah)]+ to [CuII(capca)]+. 

In addition, MS studies were contacted in solutions containing one equivalent 

[CuII(CH3COO)2]
.H2O and one or two equivalents of Hcapca immediately and 6 hours 

after mixing the solutions. The recorded spectra revealed a major distribution 

envelope centered at 364.03 which can be assigned to [CuII(capca)]+. The additional 

distribution envelope centered at 286.11 was assigned to the [Hcapca(-H2O)+H+] 
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species, whereas minor envelopes centered at 303.20 and 325.12 can be assigned to 

the [Hcapca+H+] and [Hcapca+Na+] respectively. The 1:2 solutions revealed 

additionally an envelope assigned to {[Cu(capca)]++Hcapca} (m/z = 666.25) adduct. 

The envelopeobservedat m/z786.09can be assigned to {[CuII(pipyaz)][CuII(capca)]+} 

species. This peak is present in both CuII(CH3COO)2-Hcapca mixtures and becomes 

dominant in the region 300-900 m/z  values after 6 hours. The envelopes originated 

from [CuII(capca)]+-Hcapca adducts as well the Hcapca ionized and dehydrated 

species are reduced as a function of the time, while the amount of Hcapca present in 

the reaction mixture is consumed.  

Finally, MS studies were contacted in CH3OH solutions containing one equivalent of 

CuIICl2
.H2O and one equivalent of Hmcapca immediately, 6 hours and 24 hours after 

mixing the solutions (Fig. 9). The recorded spectra revealed a major distribution 

envelope centered at 378.06 which can be assigned to [CuII(mcapca)]+ with traces of 

[(CuII mcapca)2Cl]+ (798.08) (Fig. 9) and some tiny peaks of unreacted material. After 

6hrs the only difference is that the unreacted material is almost gone and the peak 

which corresponds to two individual clusters “flying” together becomes more intense 

(Fig. 9). Finally, after 24hrs the unreacted material has completely disappeared, and 

the two remaining distribution envelopes attributed to the complex is the only species 

that we can detect (Fig. 9). 
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Fig. 9 ESI-MS of the system CuIICl2
.H2O/Hmcapca (1:1 molar ratio) in methyl 

alcohol at 0, 6 and 24 hours after mixing CuIICl2
.H2O and Hmcapca. 

Theoretical studies 

First we calculated the potential energy surface (PES) for the transformation of the 

amine-Cu(II) complex, [CuII(Hcapcah)]+ (1′) to imine-Cu(II) complex, [CuII(capca)]+ 

(2′) by air oxidation. The geometric and energetic reaction profile for the 1′ → 2′ 

transformation by air oxidation, calculated at the PBE0/Def2-TZVP level of theory in 

methyl alcohol solution is depicted schematically in Fig. 10. 

 

Fig. 10 Geometric and energetic reaction profile for the 1′ → 2′ transformation by air 

oxidation, calculated at the PBE0/Def2-TZVP level of theory in methyl alcohol solution. 
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The first step of the reaction pathway of the oxidation of 1′ to 2′ involves the 

activation of dioxygen by interaction with it. Calculations located on the PES revealed 

a local minimum corresponding to a [CuII(Hcapcah)(OOH)]+ association involving 

coordination of a hydroperoxyl group to Cu(II) metal center resulted through a 

homolytic amine H atom abstraction by dioxygen. The estimated O-O bond distance 

of 1.390 Å and the harmonic vibrational stretching frequency, νO-O, of 988 cm-

1characterize the hydroperoxyl nature of the coordinated •OOH radical. 

The [CuII(Hcapcah)(OOH)]+ intermediate is a transient species, since immediately 

releases the •OOH radical yielding the [CuII(capcah•)]+ (S = 1) intermediate, which 

abstracts a methylenic H atom to produce the imine-Cu(II) species 2′. The release of 

the •OOH radical followed by the methylenic H atom abstraction corresponds to an 

exothermic process (ΔH = -46.8 kcal/mol). Alternatively the coordinated •OOH 

radical could attack and abstract the methylenic H atom, which is found 2.628 Å far 

from the coordinated O donor atom of •OOH, yielding the imine-Cu(II) species 2′. 

To understand why the copper(II) atom in the complex 1′ coordinates the dioxygen 

reduced species (•OOH) and does not coordinate the molecular O2 we looked at the 

Frontier Molecular Orbitals (FMOs) and the natural atomic charge distribution of the 

complexes and the possible transient intermediate (Fig. S2). 

Inspection of Fig. S2 reveals that the Singly Occupied Molecular Orbital (SOMO) 

and the Lowest Unoccupied Molecular Orbital (LUMO) of [CuII(Hcapcah)]+ are 

mainly localized on the aromatic phenyl moieties of the [CuII(Hcapcah)]+] species. 

The SOMO involves only very small components located on the amine N (0.55%) and 

H (0.36%) atoms as well as on the methylenic C atom (0.12%). Therefore, the 

interaction of the Highest Occupied Molecular Orbital (HOMO) of triplet dioxygen 
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(π1g* MO) with the SOMO and LUMO of [CuII(Hcapcah)]+ is not possible to drive 

the coordination of dioxygen to Cu(II) forming a [Cu(Hcapcah)(O2)]
+ adduct. In 

effect dioxygen abstracting the amine H atom from the Hcapcah- ligand is converted 

to a hydroperoxyl (•OOH) radical which could be coordinated to the Cu(II) metal 

center yielding the transient [CuII(capcah)(•OOH)]+ intermediate. The natural atomic 

charges on the coordinated O donor atom of OOH (qO = -0.342 |e|) and the methylenic 

H atom (qH = 0.255 |e|) in the transient [CuII(capcah)(•OOH)]+ intermediate support 

electrostatic interactions which are responsible for the •H atom abstraction and 

formation of hydrogen peroxide, H2O2.
75 

Next we calculated the potential energy surface (PES) for the transformation of the 

imine-Cu(II) complex 2′ to azinate-Cu(II), [CuII(pipyaz)] complex by air oxidation. 

As it is the case for the [CuII(Hcapcah)]+ (1′) complex, coordination of dioxygen to 

CuII metal center in either in an end-on or a side-on coordination mode was not 

possible. Indeed all attempts to locate on the potential energy surface (PES) a 

[CuII(capca)(O2)]
+ complex with O2 coordinated to Cu(II) in either an end-on or a 

side-on coordination mode were not successful. Using as starting geometries for 

possible [CuII(capca)(O2)]
+ adducts involving coordination of dioxygen to Cu(II) 

metal center either in an end-on or a side-on coordination mode the optimization 

procedures pushed dioxygen to dissociation. No local minimum corresponding to 1:1 

CuII:O2 adducts formulated as [CuII(capca)(O2)]
+ was found even in some cases 

solving the SCF convergence problems. Coordination of O2 to Cu(II) center in 

complex 2′could not be supported by the nature of the FMOs and the natural atomic 

charge distribution of the complex 2′ (Fig. S2). The SOMO and LUMO of complex 

2′are mainly localized on the N(3)-C(13) bond [20.1% on N(3) and 4.8% on C(13) 

and 14.3% on N(3) and 23.1% on C(13) respectively]. Therefore, the interaction of 
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the π1g*-HOMO of 3O2 with the SOMO and LUMO of 2′is localized on the N(3)-

C(13) bond yielding the [CuII(capca-O2)]
+intermediate shown in Fig. 11. 

In [CuII(capca-O2)]
+ the dioxygen has been activated and transformed to a peroxy 

group with the O-O bond distance of 1.447 Å (estimated Wiberg Bond Index, WBI = 

0.982) being longer than the O-O bond distance of 1.423 Å in H2O2 (WBI = 1.014) 

calculated at the same level of theory. The O(2) of the peroxy moiety forms a weak 

N(3)-O(2) bond with a bond length of 1.469 Å (WBI = 0.917) while O(2’) forms a 

slightly stronger C(13)-O(2’) bond with a bond length of 1.433 Å (WBI = 0.931) (Fig. 

11). The estimated WBI for the N(3)-C(13) bond is 0.939 indicates a remarkable 

weakening of the N(3)-C(13) bond compared to the N(3)-C(13) bond of the complex 

2’ having a WBI value of 1.664. 

 

Fig. 11 Selected structural parameters, natural atomic charges, and Frontier Molecular 

Orbitals (FMOs) and the 3D plots of the spin density (isosurface = 0.002),calculated at the 

PBE0/def2-TZVP level in methyl alcohol solution (arbitrary numbering), of the complex 

intermediate [CuII(capca-O2)]+.   
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The interaction of the peroxy group with the N(3)-C(13) moiety of the ligand capca- 

introduces remarkable structural changes into the complex 2′. The CuII-N(3) distance 

is elongated by 0.059 Å with respect to the corresponding distance in complex 2′, 

while the CuII-N(4), CuII-N(1) and CuII-N(2) coordination bonds are shortened by 

0.040, 0.019 and 0.021 Å respectively (Fig. 11 and Table 1). Noteworthy are the 

significant weakening of the N(3)-C(13) and N(3)-C(12) bonds which are elongated 

by 0.198 and 0.037 Å respectively.  Charge transfer of natural atomic charge towards 

dioxygen took place in [CuII(capca-O2)]
+ intermediate amounted to -0.322 |e|, which 

was distributed on the O(2) (-0.099 |e|) and O(2’) (-0.223 |e|) oxygen atoms. Perusal of 

the 3D plots of the Mulliken spin density distribution in 2’ (Fig. S2) and [CuII(capca-

O2)]
+ (Fig. 11) shows that a fraction of spin density amounted to 0.128 and 0.106 au is 

transferred to N(3) respectively.  In [CuII(capca-O2)]
+ intermediate the O(2) of the 

peroxy moiety acquires also a small amount (0.013 au) (Fig. 11) of spin density 

giving to the coordinated peroxy moiety a radical character. The copper metal center 

in [CuII(capca-O2)]
+ intermediate keeps its oxidation state to II. The natural atomic 

charges on copper(II) central atoms in 2′ (QCu = 1.026 |e|) and [CuII(capca-O2)]
+ (QCu 

= 1.015 |e|) remain practically unchanged. 

In the next step [CuII(capca-O2)]
+ intermediate reacts with either CH3OH or H2O 

(Fig. 12) to afford 5 or 5′ and nitroso(pyridin-2-yl)methanol, PyCH(OH)(NO), via an 

exothermic process with predicted exothermicities of 26.1 and 23.4 kcal/mol 

respectively (Fig. 12). Subsequently, the nitroso(pyridin-2-yl)methanol is transformed 

to the more stable (by 2.0 kcal/mol) 2-(nitromethyl)pyridine, PyCH2(NO2) isomer. 

The alternative PyCH(NOOH) tautomer was found to be less stable than PyCH2(NO2) 

by 8.2 kcal/mol. 
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The PyCH2(NO2) isomer contains an active methylene group and in the presence of 

a base (B) is easily deprotonated yielding the [PyCH(NO2)]
- nucleophile (Fig. 12). 

The estimated proton affinity of the [PyCH(NO2)]
-nucleophile is 188.6 kcal/mol at the 

PBE0/def2-TZVP level in methyl alcohol solution.  

 

Fig. 12. Geometric and energetic profile of oxidation by air of 2′, calculated at the 

PBE0/def2-TZVP level in methyl alcohol solution. 

Next the [PyCH(NO2)]
- nucleophile attacks the C(13) electrophillic center (QC(2) = 

0.143 |e|) of the complex 2′ yielding intermediate Im1 (Fig. 13) with an energy 

demand of 11.2 kcal/mol. Im1 surmounting an energy of 5.3 kcal/mol releases the 

pyridine yielding intermediate A, which is transformed to the final product B (see 

Scheme 6).  Species B is more stable than A by 2.7 kcal/mol.  It is obvious that two 

B’s are combined in CH3OH solution to give the dinuclear compound 4 (see Scheme 

6). 
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Fig.  13 Geometric and energetic profile of the aza-Henry reaction of complex 2′, with the 

[PyCH(NO2)]- nucleophile calculated at the PBE0/def2-TZVP level in methyl alcohol 

solution. 

 

Scheme 6 Combination of two species B in CH3OH to obtain the dinuclear compound 4. 

The reason for the synthesis of ligand Hmcapa 

To unambiguously prove that the site of interaction of dioxygen with [CuII(capca)]+ is 

indeed the >C=N- group and not the copper(II) atom the ligand Hmcapca (Scheme 1) 

was synthesized in which the methyl group was substituted for the hydrogen atom of 

the imino group. The design of the ligand Hmcapca was based on: i) the bigger 

methyl group would induce steric hindrance and ii) the electrophilic carbon atom 

ofthe imine group is getting less electrophilic due to electron-releasing effect of the 

methyl group (+I effect).  
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Gratifyingly, the complex [CuII(mcapca)]+ was stable under dioxygen as it was proved 

by UV-vis, c.w. EPR and ESI-MS spectroscopiesin marked contrast to [CuII(capca)]+. 

This makes crystal-clear that the site of activation of dioxygen is the ligand and not 

the copper(II) atom.In line with the experimental data, theory also predicts that the 

interaction of [CuII(mcapca)]+ withdioxygen to form the [CuII(mcapca-O2)]
+  species 

demands a higher energy barrier by 2.1 kcal/mol in comparison with species 

[CuII(capca)]+.  

 

Conclusions 

In conclusion, a series of mononuclear and a dinuclear azinate copper(II) compounds 

with three biologically relevant amidate ligands was synthesized, structurally and 

physicochemically characterized.  The ligated to the copper(II) secondary amine 

group of the complex [CuII(Hcapcah)]+ in methyl alcohol is oxidized by air in a 

stepwise fashion to imine, giving the complex [CuII(capca)]+, and the ligated imine 

group of it is oxidized to copper(II)-azinate species B (Fig. 13 and Scheme 6).  

Theoretical calculations for the system [CuII(capca)]+/O2, supported by c. w. EPR 

measurements, proved that the imine copper(II) complex 2.CH3OH is able to activate 

dioxygen by direct attack of it to the ligated to copper(II) organic substrate. 

Apparently this study supports that the coordination of O2 to the copper ion is not 

mandatory in order the copper complexes (enzymes or model species) to exhibit 

oxidases’ or oxygenases’ activity. 
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Synopsis 

 

 

Novel CuII complexes with the biologically relevant tetradentate amidate ligands, have 

been synthesized and physicochemically characterized. These complexes constitute 

the first precedent of a direct activation of dioxygen by a ligated to CuII –HC=N- 

group, with implications for copper oxidases’ and oxygenases’ mechanisms. 

 

 

 

 


