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Abstract: Enhancement of brain-derived neurotrophic factor (BDNF) signalling has great potential
in therapy for neurological and psychiatric disorders. This neurotrophin not only attenuates cell
death but also promotes neuronal plasticity and function. However, an important challenge to this
approach is the persistence of aberrant neurotrophic signalling due to a defective function of the BDNF
high-affinity receptor, tropomyosin-related kinase B (TrkB), or downstream effectors. Such changes
have been already described in several disorders, but their importance as pathological mechanisms has
been frequently underestimated. This review highlights the relevance of an integrative characterization
of aberrant BDNF/TrkB pathways for the rational design of therapies that by combining BDNF and
TrkB targets could efficiently promote neurotrophic signalling.
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1. Introduction

Neurological disorders ranging from epilepsy to Alzheimer’s disease (AD), from stroke to
Parkinson’s disease (PD), are currently estimated to affect as many as a hundreds of millions
of people worldwide, and the number is expected to increase considerably in years to come.
Stroke alone causes more than six million deaths per year, accounting for close to 11% of total
world deaths. More than 47.5 million people are globally affected with dementia, with AD being
the most common cause, while more than 50 million people suffer from epilepsy (WHO, 2016;
[http://www.who.int/features/qa/55/en/]). Neuroprotective strategies have been developed to
ameliorate brain damage by preservation or restoration of neurological functions. An extensively
studied therapeutic strategy for the treatment of several brain diseases has been the administration
of brain-derived neurotrophic factor (BDNF). This growth factor is central to the differentiation,
maturation and survival of neurons. Despite its relative success in the laboratory, administration of
neurotrophins did not produce the expected results in clinical trials. Thus, intrathecally administered
BDNF in patients of amyotrophic lateral sclerosis (ALS) did not show significant effects on motor
function and survival [1] or autonomic nervous system function [2]. These failures have been attributed
to the multimodal nature of disease progression, poor neurotrophin delivery to appropriate targets
due to limited blood–brain barrier (BBB) permeability and tissue diffusion, short serum half-lives and
side effects [3]. In order to overcome these limitations, new molecules that mimic BDNF functions are
currently under development. However, most neurological disorders not only show a dysregulation of
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BDNF but also an impairment of its downstream effectors whose relevance as pathological mechanisms
needs to be valued. This review tries to integrally consider and understand the underlying mechanisms
that affect each level of the BDNF signalling pathway. This knowledge represents an opportunity for
a guided design of viable and efficient therapeutic tools to treat brain diseases.

2. Physiological Function of BDNF/TrkB Signalling in the Nervous System

Along development and adult life BDNF can bind its high-affinity receptor TrkB, a transmembrane
protein that mediates most of its biological functions, or the low-affinity receptor p75NTR, implicated
in neurite growth and apoptosis. Four TrkB isoforms are expressed in human brain: the full-length
receptor (TrkB-FL), two truncated isoforms TrkB-T1 and TrkB-Shc, which lack the tyrosine kinase
domain, and TrkB-T-TK, having a non-functional catalytic domain [4]. Binding of BDNF to TrkB-FL
induces the receptor dimerization and activation, and results in the recruitment of proteins that
trigger three main signal transduction cascades which are widely interconnected (Figure 1) [5].
Phosphorylation of the Tyr515 residue (according to the TrkB-FL rat sequence) allows docking of
Shc (Src-homology 2-domain containing adaptor protein) to the receptor. This is the initial step for
activation of the PI3K/Akt cascade that controls the activity of several proteins essential for neuronal
survival, such as BAD (Bcl-2 antagonist of cell death) or GSK-3β (Glycogen Synthase Kinase 3 β) [6].
Shc also triggers the action of the MAPK/ERK pathway, which promotes neuronal differentiation
and survival through suppression of the proapoptotic protein BAD and activation of the transcription
factor CREB (cAMP response-element binding protein) [7]. However, the prolonged activation of
MAPKs requires binding of the adaptor protein FRS2 at the Tyr515 residue or action of TrkB-interacting
protein Kidins220 (Kinase D interacting substrate of 220 kDa) to bring the downstream effectors
in the vicinity of TrkB receptors [8]. The recruitment and activation of PLCγ (Phospholipase C γ)
through phosphorylation of TrkB residue Tyr816 also promotes neuronal survival and is implicated
in neurite outgrowth and synaptic plasticity [9]. The other major isoform expressed in the brain is
TrkB-T1, which can be detected in neurons but is also present in glial cells. TrkB-T1 opposes TrkB-FL
competing for BDNF [10] or forming inactive heterodimers in neurons [11]. However, the completely
conserved short intracellular region and a brain expression pattern different from that of TrkB-FL
suggest independent functions for TrkB-T1. Thus, the isoform present in glial cells can regulate the
local concentration of BDNF [12] and is involved in cell morphology through interaction with Rho
GDI (Rho GDP dissociation inhibitor 1) [13]. Interestingly, TrkB expression [14] and responsiveness
to BDNF are developmentally regulated [15,16]. However, the postnatal decline of BDNF-induced
TrkB-FL phosphorylation is not a consequence of the coincidental increase of TrkB-T1 expression
or due to structural receptor modifications preventing BDNF binding [16]. Therefore, we still need
to completely understand how TrkB mediates BDNF actions in the adult CNS. Finally, functional
interactions established by TrkB isoforms and p75NTR importantly contribute to the complexity of the
neurotrophic response. These receptor systems are frequently co-expressed in the same cells and can
form heteromeric complexes that change their affinity for mature neurotrophins [17].

The great diversity of biological functions regulated by the TrkB receptor in cells is also partially
due to the compartmentalisation of receptor complexes. BDNF-bound TrkB receptors not only signal
from the cell surface but also from endosomes that internalise BDNF/TrkB complexes together with
activated components of their downstream effector pathways (Figure 1). Interestingly, depending on
complex localisation, different signalling pathways can be activated. Additionally, early endosomes
(also known as signalling endosomes) are dynamic structures that can modify their protein components
in accordance to their cellular destinies: retrograde transport to neuronal soma to propagate the BDNF
signal, recycling back to plasma membrane or lysosomal degradation [18]. The main responsible of
conferring identity to endosomes is the family of Rab GTPases and, for example, late endosomes
contain Rab7 and Rab9 while recycling endosomes are defined by the presence of Rab4 and Rab11 [19].
While TrkB-T1 is efficiently recycled back to the membrane through Rab4 endosomes, recycling of
TrkB-FL is modulated by synaptic activity via a Rab11-dependent pathway [20,21].
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Figure 1. Function of BDNF/TrkB signalling in the CNS. BDNF binding to TrkB-FL in neurons (left 
diagram) induces receptor homodimerization and activation, triggering three main signalling 
pathways: MAPK/ERK (blue), PI3K (pink) and PLCγ (yellow), which regulate several processes 
central to neuronal function. The ligand-receptor complex can internalize and continue functioning 
in signalling endosomes. Alternatively, TrkB-T1 can form heterodimers with TrkB-FL and block its 
transduction cascades. TrkB-T1 is also involved in the regulation of local BDNF concentration (upper 
diagram) and cell morphology, both in neurons and astrocytes (respectively, left and right diagrams). 
P, phosphorylation sites important for receptor activation. 

3. Defective Expression and Stability of BDNF and TrkB in Neurological and  
Psychiatric Disorders 

Given the central role played by BDNF/TrkB signalling in cell function, it is not surprising that 
changes in expression, traffic and/or stability of this neurotrophin and its high-affinity receptor are 
common mechanisms to many human pathologies. In general, aberrant neurotrophic signalling has 
been related to neurological and psychiatric disorders but also proliferative conditions, aging, obesity 
or hyperphagia related disorders, which have been revised elsewhere [22–24]. There is also an 
extensive literature about defective BDNF/TrkB signalling in cell and animal models of neurological 
and psychiatric disorders; therefore, we will prioritize here data obtained in preclinical models and 
human beings. 

3.1. Molecular Mechanisms of BDNF/TrkB Dysfunction in Stroke 

Stroke is one of the leading diseases that affect the CNS. It is caused by decreased brain perfusion 
due to occlusion or haemorrhage of a blood vessel followed by deprivation of oxygen and nutrients 
in the deficiently irrigated tissue. This condition results in the formation of two differentiated brain 
areas: the infarct core, which is the region that suffers the most severe reduction in blood flow, 
surrounded by the penumbra, which is functionally impaired but remains metabolically active. 
However, after acute stroke, the penumbra frequently suffers processes of secondary neuronal death 

Figure 1. Function of BDNF/TrkB signalling in the CNS. BDNF binding to TrkB-FL in neurons
(left diagram) induces receptor homodimerization and activation, triggering three main signalling
pathways: MAPK/ERK (blue), PI3K (pink) and PLCγ (yellow), which regulate several processes
central to neuronal function. The ligand-receptor complex can internalize and continue functioning
in signalling endosomes. Alternatively, TrkB-T1 can form heterodimers with TrkB-FL and block its
transduction cascades. TrkB-T1 is also involved in the regulation of local BDNF concentration (upper
diagram) and cell morphology, both in neurons and astrocytes (respectively, left and right diagrams).
P, phosphorylation sites important for receptor activation.

3. Defective Expression and Stability of BDNF and TrkB in Neurological and
Psychiatric Disorders

Given the central role played by BDNF/TrkB signalling in cell function, it is not surprising
that changes in expression, traffic and/or stability of this neurotrophin and its high-affinity receptor
are common mechanisms to many human pathologies. In general, aberrant neurotrophic signalling
has been related to neurological and psychiatric disorders but also proliferative conditions, aging,
obesity or hyperphagia related disorders, which have been revised elsewhere [22–24]. There is also an
extensive literature about defective BDNF/TrkB signalling in cell and animal models of neurological
and psychiatric disorders; therefore, we will prioritize here data obtained in preclinical models and
human beings.

3.1. Molecular Mechanisms of BDNF/TrkB Dysfunction in Stroke

Stroke is one of the leading diseases that affect the CNS. It is caused by decreased brain perfusion
due to occlusion or haemorrhage of a blood vessel followed by deprivation of oxygen and nutrients in
the deficiently irrigated tissue. This condition results in the formation of two differentiated brain areas:
the infarct core, which is the region that suffers the most severe reduction in blood flow, surrounded
by the penumbra, which is functionally impaired but remains metabolically active. However, after
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acute stroke, the penumbra frequently suffers processes of secondary neuronal death that cause the
expansion of the infarct core over time. A central mechanism of neuronal death in the penumbra is
excitotoxicity, produced by overstimulation of the N-methyl-D-aspartate type of glutamate receptors
(NMDARs) (Figure 2a). Normal function of these receptors is very important to nervous system
physiology because they are central to neurotransmission, neuronal survival and plasticity, and the
processes of learning and memory.

In animal models of ischemic stroke, a permanent BDNF reduction has been observed in the
infarct core, while rapid upregulation of neurotrophin expression lasting for several days was found in
the penumbra [25,26]. However, BDNF has never been measured in the postmortem brains of stroke
patients, although a slight increase in circulating neurotrophin levels observed after stroke could mirror
brain levels [27]. Enhancement of BDNF production after stroke, mainly attributable to perilesional
neurons but also to microglia [28], has been suggested as a brain compensatory mechanism to prevent
excessive neuronal death [29]. However, several studies have concluded that BDNF is not involved in
post-stroke functional recovery [30,31]. The most likely explanation for this outcome is the incapacity
of BDNF to trigger appropriate neurotrophic signalling after stroke due to a pathological imbalance
of TrkB receptor isoforms. In fact, levels of TrkB-FL diminish drastically in the infarcted core and
penumbra area whereas those of TrkB-T1 are upregulated in human ischemic stroke [32] and animal
models of ischemia [26,32]. These alterations are the consequence of three independent mechanisms
induced by excitotoxicity. First, an inversion of the physiological ratio of the TrkB encoding mRNAs
which favours the expression of the isoform TrkB-T1 over TrkB-FL (Figure 2b) [32,33]. The second
mechanism is the calcium-dependent cleavage by calpain of TrkB-FL generating a truncated receptor
similar to TrkB-T1 (Figure 2c), which might act as an additional dominant-negative receptor [32,33],
and a cytosolic fragment of 32 kDa with the complete tyrosine kinase domain [32,34].
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Figure 2. Dysfunction of BDNF/TrkB signalling during stroke. Excitotoxicity produced by
overstimulation of the NMDARs (a) induces several mechanisms that dysregulate BDNF/TrkB
signalling. The inversion of the physiological ratio of TrkB mRNA isoforms (b) and TrkB-FL cleavage
by calpain (c) reduce the availability of the catalytic receptor and increase the dominant-negative forms.
Furthermore, TrkB-FL and TrkB-T1 undergo a sequential cleavage first by metalloproteinases (d) and
then by γ-secretases (e) that shed the receptor ectodomains, which then act as BDNF scavengers (f);
BDNF can be further sequestered by increased expression of p75NTR (g); Consequently, neurotrophic
signalling is impaired, a situation aggravated even further by Shp-2 dephosphorylation of TrkB-FL
at Tyr515 (h); Neurons in the peri-infarct area promote a survival response as a compensatory
mechanism to brain damage and increase the expression of BDNF (i); CTF, C-terminal fragment;
ECD, extracellular domain; f32, TrkB-FL calpain-fragment of 32 kDa; ICD, intracellular domain; tTrkB,
calpain-truncated TrkB-FL.
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Finally, both isoforms undergo regulated intramembrane proteolysis (RIP) in neurons, shedding
their ectodomains after the action of metalloproteinases (Figure 2d) followed by γ-secretases
intramembrane processing of the remaining membrane-bound C-terminal fragments (Figure 2e).
In a model of permanent ischemia in mice, RIP highly contributes to TrkB-T1 downregulation while
it is a secondary mechanism for TrkB-FL, which is mainly processed by calpain [34]. Nevertheless,
the secreted TrkB ectodomain, common to both isoforms contains the receptor domain important for
ligand interaction and specificity and acts as a BDNF scavenger (Figure 2f) reducing even further the
neurotrophic signalling [34]. In addition to TrkB-T1, calpain-truncated TrkB-FL and secreted TrkB
ectodomains, BDNF can be also sequestered by p75NTR. The expression of this BDNF low-affinity
receptor which mediates neuronal death is induced after cerebral ischemia (Figure 2g) [35]. All together,
these mechanisms will severely inhibit binding of BDNF to its high-affinity receptor TrkB-FL.

Additionally, under excitotoxic conditions, TrkB-FL activity is also impaired by phosphatase
Shp-2 (Src homology-2 domain-containing phosphatase-2) dephosphorylation of residue Tyr515
(Figure 2h) [36]. Consequently, downstream effectors of the neurotrophic signalling also suffer
malfunction after stroke. Excitotoxicity induces an initial ERK1/2 activation in neurons which is
followed by a gradual shut-off, traditionally attributed to the action of synaptic and extrasynaptic
NMDARs respectively [37]. Impairment of TrkB-FL activity by Shp-2 action might also contribute to
ERK1/2 inactivation in neurons. However, sustained ERK1/2 phosphorylation has been detected in
the penumbra area after acute ischemic stroke in humans [38] and animal models [39], where it seems
to contribute to brain injury [40]. Similarly, exposure to excitotoxic concentrations of glutamate inhibits
PI3K/Akt and is followed by subsequent GSK-3β activation [41]. In the brain, levels of phosphorylated
Akt increase within a few hours in the penumbra following ischemic damage but begin to decrease
after 24 h [39], while GSK-3β activity varies depending on injury severity. Transient focal ischemia
tends to activate GSK-3β and subsequently induce apoptotic cell death [42], whereas permanent
cerebral ischemia rapidly suppresses it for 24 h after damage [43]. Finally, the transcription factor
CREB is highly phosphorylated in the peri-infarct area in contrast to the core region. Since BDNF
expression is CREB-regulated, this result supports the neurotrophin expression pattern observed after
stroke (Figure 2i) [44]. Altogether, these results reflect an endogenous capacity of the brain to promote
neurotrophic signalling after cerebral damage which is subverted by a truncation of the downstream
signalling pathways, mainly at the receptor level, that blocks a proper neuronal survival response.

3.2. Molecular Mechanisms of BDNF/TrkB Dysfunction in Neurodegenerative Diseases

Excitotoxicity contributes to neuronal death in acute disorders other than stroke, as well as many
chronic diseases of the CNS [45]. Therefore, it is not surprising that changes in BDNF/TrkB signalling
pathways are similarly found in neurodegenerative diseases.

3.2.1. Deficiency of BDNF/TrkB Signalling in Alzheimer’s Disease (AD)

Neurotrophic signalling is severely impaired in AD. This progressive neurodegenerative disorder
causes the most prevalent age-related dementia. It is characterized by the formation of senile plaques,
which are extracellular deposits of misfolded amyloid β-peptide (Aβ), and intracellular neurofibrillary
tangles composed of hyperphosphorylated tau protein (Figure 3). Patients with AD show a progressive
decrease of synapses and, subsequently, of neurons mainly in the entorhinal cortex and hippocampus,
circuitry essential for short-term memory [46–48]. Interestingly, levels of BDNF are reduced in those
same brain areas in AD patients [49–51]. Regarding the presence of BDNF in serum, while we should
be cautious due to some inconsistent results, a recent meta-analysis shows a significant decrease of
neurotrophin levels in AD patients compared to healthy subjects [52]. The decrease of BDNF mRNA is
an important mechanism of neurotrophin loss in AD brain (Figure 3a), observed in hippocampus [53],
basal forebrain [54], and temporal [55] and parietal cortices [56]. Given its crucial role in neuronal
survival, the lack of BDNF support will exacerbate the cognitive decline observed in AD. In fact, loss
of proBDNF and BDNF occurs early in the disease course (before plaque deposition) and correlates
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with memory deficits [57,58], strongly suggesting the relevance of those changes for the synaptic
loss and cell dysfunction underlying AD cognitive impairment. Moreover, BDNF induces rapid
tau dephosphorylation in neuronal cells through TrkB activation and PI3K/Akt signalling, [59] and,
therefore, this decrease in BDNF might also contribute to tau hyperphosphorylation (Figure 3b),
a pathological hallmark of AD.

In addition to BDNF, a decrease in the TrkB-FL receptor has been found in postmortem
AD brains, specifically in the nucleus basalis [60], and frontal [61,62] and temporal cortices [62].
Nevertheless, changes in TrkB-FL mRNA levels seem more controversial [63,64] suggesting that
additional mechanisms participate in TrkB-FL downregulation. The decrease of TrkB-FL could be
aggravated by the upregulation of truncated receptor isoforms TrkB-T1 and TrkB-Shc in AD brains
(Figure 3c), taking place in frontal [61] and temporal lobes or the hippocampus [64,65]. However,
again, some reports did not find any changes in TrkB-T1 levels in the cortex of patients [62].
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Figure 3. Dysfunction of BDNF/TrkB signalling in AD. Patients of AD show a decrease in
BDNF levels in several brain areas due to a diminished gene expression (a). The consequent
reduction in neurotrophic signalling results in the activation of GSK3β which contributes to tau
hyperphosphorylation (b); Moreover, expression of truncated TrkB isoforms is favoured in AD brains
by the action of transcription factor SRSF3 (c); Aβ peptide additionally promotes the activities of GSK3β
and calpain, which cleaves TrkB-FL receptor near the receptor Shc docking site (d); Additionally, Aβ

decreases CREB activity by several mechanisms including a reduction of NMDAR levels (e) and
increased PP1 action. f32, TrkB-FL calpain fragment of 32 kDa; P, phosphorylation of tau residues;
tTrkB, calpain-truncated TrkB-FL.

Several mechanisms activated by the Aβ peptide, acting at different levels of the BDNF/TrkB
signalling pathway, result in neurotrophic deficiency in AD. One prominent effector of this deathly
Aβ activity is calpain which is overstimulated in postmortem AD brains [66]. Activation of this
protease by Aβ in neuronal cultures induces a decrease of TrkB-FL [67] by cleavage near the receptor
Shc docking site (Figure 3d) [68]. Similarly to stroke, this processing yields truncated TrkB-FL,
which may act as a neurotrophin sink or dominant negative receptor, and the intracellular fragment
with the complete tyrosine kinase domain. It has been previously suggested that the proteolytic
fragments generated from receptor tyrosine kinases might regulate cell functions such as transcription
or survival/apoptosis balance [69]. In addition, Aβ might be also inducing the upregulation of
truncated TrkB isoforms in AD by transcriptional mechanisms [68,70]. Selective TrkB pre-mRNA
splicing to produce TrkB-Shc transcripts is promoted by the splicing factor SRSF3 whose mRNAs
levels are increased in AD and SHSY5Y cells treated with Aβ fibrils (Figure 3c) [70]. On the other
hand, the decrease in BDNF levels is basically a consequence of aberrant transcription (Figure 3a),
mainly due to CREB impairment in the hippocampus and frontal cortex of AD patients [71–73]
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by overlapping mechanisms. First, this transcription factor is proteolysed by calpain generating a
truncated protein with reduced activity [72]. Additionally, protein kinase A (PKA), a major CREB
regulator, is inactivated in the temporal cortex of AD patients [74,75] by Aβ action [76]. The inhibition
of PKA signalling and, therefore, CREB function is attributed to calpain-dependent proteolysis of
PKA RII subunits [75] and downregulation of PKA O-GlcNAcylation [77]. Aβ also decreases CREB
activity by GSK3β overstimulation [78], which is produced by two mechanisms: decreased GSK3β
inhibitory phosphorylation of Ser9 by PKA [79,80] and calpain proteolysis to yield a truncated GSK3β
with augmented kinase activity [81,82]. Finally, Aβ also reduces CREB activity by decreasing NMDAR
levels (Figure 3e) [83] and calpain-mediated cleavage of DARPP-32, a key inhibitor of PP1, phosphatase
that regulates CREB dephosphorylation and inactivation [84].

Other important mechanisms contributing to the deficiency of BDNF/TrkB signalling in AD
are the suppression of MAPK/ERK and PI3K/Akt pathways by sub-lethal concentrations of Aβ,
without interference of TrkB-FL and PLCγ activation [85], and the disruption of BDNF-induced TrkB
endocytosis. The exposure to Aβ oligomer can impair receptor endocytosis and downstream Akt
activation through GSK3β-mediated dynamin 1 phosphorylation [86]. The oligomers also induce
a deficit in BDNF-mediated TrkB retrograde trafficking [87] by disrupting ubiquitin [88] and calcium
homeostasis [89]. Finally, mitochondrial dysfunction induced by Aβ is an early event in AD also
conducting to deficits in BDNF axonal transport [90].

3.2.2. Deficiency of BDNF/TrkB Signalling in Huntington’s Disease (HD)

This autosomal dominant neurodegenerative disorder is caused by a CAG expansion in the
huntingtin (Htt) gene that results in elongation of the polyglutamine (polyQ) tract at the Htt N-terminus.
Dysfunction and death of the medium-sized spiny neurons (MSNs) of the striatum is a primary
pathological feature of this disease and main responsible for the motor, cognitive and psychiatric
decline. It has been proposed that a deficiency of BDNF/TrkB signalling contributes to the selective
vulnerability of MSNs in HD [91]. Reduced levels of striatal BDNF protein have been detected
in HD patients at symptomatic disease stages [92] which are the result of decreased neurotrophin
expression [93] and disrupted corticostriatal transportation [94]. It is important to consider that most
BDNF in the striatum is synthesized and anterogradely delivered from cell bodies located in the cerebral
cortex [95]. Remarkably, wild-type Htt is part of the motor complex responsible for anterograde and
retrograde transport of BDNF-containing vesicles along microtubules [94]. In those complexes, Htt is
associated with dynactin subunit p150Glued via Htt-associated protein 1 (HAP1) [96,97] or directly
with dynein [98]. The expanded polyQ tract of mutant Htt increases the association among complex
components and leads to functional impairment and reduction of vesicle movement [94]. Thus, the
tighter bond of mutant Htt to HAP1 in HD brain decreases this protein interaction with pro-BDNF [99].
An additional defect in HD brains affects tubulin acetylation and the recruitment of motor proteins to
microtubules [100], which altogether leads to reduced neurotrophin release and transport.

The phosphorylation of wild-type Htt in Ser421 by Akt promotes the anterograde movement
of vesicles [101], mediates IGF-1 neuroprotective effects in HD [102] and mitigates the toxicity of
mutant Htt by increasing its proteasome-dependent turnover [103]. However, Akt is cleaved by
caspase-3 into an inactive form in the postmortem brain of HD patients [102,104] supporting a
prominent role for dysfunction of this survival pathway along disease progression. In addition
to controlling neurotrophin transport, wild-type Htt also enhances Bdnf expression from promoter
II [93] by sequestering repressor element-1 transcription factor/neuron-restrictive silencer factor
(REST/NRSF) in the cytoplasm, suppressing its inhibitory transcriptional activity [105]. In contrast,
mutant Htt is unable to retain REST/NRSF [105], leading to a reduction of BDNF mRNA levels in
the cortex of HD patients [106]. Additionally, the expanded polyQ Htt generates a more repressive
transcriptional environment for Bdnf by recruiting the methyl-CpG binding protein 2 (MeCP2) to
promoter IV [107], also sequestering the transcriptional coactivator CREB binding protein (CBP) [108].
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In addition to altering BDNF levels and transport, mutant Htt also leads to reduced neurotrophic
support by affecting the availability of neurotrophin receptors. Thus, in HD patients there is an
imbalance in the striatal expression of TrkB-FL mRNA with respect to p75NTR and TrkB-Shc [106].
Consequently, high p75NTR but decreased TrkB-FL protein levels are observed in the striatum from HD
patients at late disease stages [109,110]. The upregulation of Sp1 observed in cellular and transgenic
models of HD [111] could underlie the increased expression of p75NTR since this gene is regulated by
this transcription factor [112]. In addition to the transcriptional imbalance, mutant Htt can also alter
binding of TrkB-FL-containing vesicles to microtubules and impair retrograde endosomal trafficking in
striatal dendrites [113]. Furthermore, induction by mutant Htt of deficient Rab11 activity [114] could
reduce TrkB cell surface availability since this GTPase is typically involved in TrkB-FL endosomal
recycling [21,115]. Additionally, calpain is overactivated in the striatum of human HD tissue [116] and,
therefore, it might too cleave the TrkB-FL receptor in this disease.

The deficiency in BDNF/TrkB downstream signalling observed in HD has been recently revealed
to precede the defects in transport and expression of neurotrophin and receptors [117,118]. Thus, the
synaptic dysfunction of MSNs early in HD is attributable to enhanced p75NTR signalling through
PTEN (phosphatase and tensin homolog) resulting in suppression of Akt signalling [117,119]. Likewise,
striatal activation of TrkB-FL and ERK1/2 is attenuated at early disease stages when total receptor and
ligand levels are still normal [118]. However, the characterization of kinase signalling in HD models is
still controversial [120], highlighting the need to redefine the timeline of the deficits in neurotrophic
effectors in order to develop therapies to treat involuntary movement in symptomatic HD patients.

3.2.3. Deficiency of BDNF/TrkB Signalling in Parkinson’s Disease (PD)

The most common neurodegenerative movement disorder, PD is characterized by the progressive
loss of dopaminergic neurons in the substantia nigra pars compacta (SNpc) along with defective
intracellular accumulation of α-synuclein inclusions, the so-called Lewy bodies and Lewy neurites.
Postmortem studies of PD patients reveal a reduction of BDNF mRNA and protein in the vulnerable
region SNpc [121,122] and also the striatum [123], which receives neurotrophic support from the
SN [95]. In contrast, levels of TrkB-FL mRNA are normal in surviving SNpc neurons of PD brains [124]
while only minimal regional changes are observed in protein levels [125]. However, there is an
important shift in the subcellular distribution of TrkB-FL and TrkB-T1 in PD SNpc and striatum [125],
being prominent a decrease of the catalytic receptor isoform in dendrites indicative of impaired synaptic
function. Nonetheless, the deficiency in BDNF/TrkB survival signalling increases the susceptibility
of SN dopaminergic neurons to cytotoxic injury [126,127] and might contribute to PD development.
Actually, inhibition of BDNF expression or TrkB insufficiency cause selective loss of SNpc dopaminergic
neurons [128–130] and exacerbate motor dysfunction in aged animals [131]. A possible feedback
mechanism contributing to this selective effect might be the increase in α-synuclein levels produced in
response to a deficit of TrkB-FL [128].

Nevertheless, it is generally assumed that the impairment of neurotrophic signalling in PD is the
consequence of the toxicity and prion-like propagation of misfolded α-synuclein [132]. Interestingly,
aggregates of α-synuclein do not cause a generalized defect in axonal transport but specifically
impair that of TrkB-FL-containing late endosomes [133]. Since late endosomes control TrkB receptor
retrograde delivery [134], this observation could explain the shift in receptor subcellular location found
in PD [125] and mentioned before. Furthermore, α-synuclein overexpression also alters pathways
required for neurotrophic signalling. Thus, elevated levels of α-synuclein increase the activity of the
Akt inhibitors phosphatase PP2A [135] and RTP801 [136] while Akt phosphorylation is significantly
diminished in dopaminergic SN neurons of PD patients [137]. Attenuation of Akt phosphorylation
leads to GSK3β activation in the presence of α-synuclein aggregates [138]. Additionally, human
postmortem tissues corresponding to different Lewy body diseases exhibit granular cytoplasmic
aggregates of activated ERK in the SN, probably formed early along the disease course, that may
affect the accessibility to downstream targets and regulatory phosphatases [139]. α-synuclein also
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contributes to downregulation of neurotrophin transcription by suppression of Elk-1 activity [140] and
competition in nuclei with CREB for binding to CREs in promoter regions [141].

Finally, mitochondrial dysfunction alters calcium homeostasis in PD leading to the overactivation
of calpain [142] which then, as before, may act on different substrates important to neurotrophic
signalling. In addition, calpain also processes α-synuclein [143], a truncation that leads to formation of
high-molecular weight aggregates [144]. Thus, calpain activation has been suggested to participate in
disease-linked α-synuclein aggregation in PD as well as other α-synucleopathies [144,145].

3.3. Molecular Mechanisms of BDNF/TrkB Dysfunction in Other Pathologies

Malfunction of BDNF/TrkB also plays a role in the pathophysiology of psychiatric disorders
although the available evidence is still limited. Among them, one of the better characterised diseases is
depression. Several lines of evidence indicate that it may be associated with the inability of neuronal
systems to exhibit adaptive plasticity, and highlight the reduction in neurotrophic signalling as
one central disease mechanism (reviewed in reference [146]). Stress, considered a major risk factor
for depression, decreases BDNF and its downstream signalling in the hippocampus and cerebral
cortex [147]. Studies with antidepressants also support the neurotrophic hypothesis of depression,
since chronic treatment with them increases blood BDNF levels in patients [148,149]. Moreover,
antidepressants also upregulate the expression of TrkB mRNA [150] and induce a rapid activation
of this receptor and the PLCγ mediated signalling [151]. Simultaneously, it has been shown that
the therapeutic effects of antidepressants require the action of the BDNF/TrkB pathway [152] and,
furthermore, that centrally administered BDNF provides a similar effect to antidepressants in animal
models of depression [153]. Interestingly, the reduction of BDNF and the two major TrkB isoforms is
also evident in the postmortem brain of suicide victims [154,155], generally having a high incidence of
previous major depression. This decrease in TrkB isoforms has been associated with a failure of the
E3 ligase c-Cbl, a protein involved in TrkB-FL stabilization by ubiquitination [156], and an increase of
Hsa-miR-185*, a microRNA responsible for the regulation of TrkB-T1 expression [157].

Schizophrenia patients suffer impairments in perception, cognition and motivation that reflect,
at least in part, deficits in dendritic spines [158]. An essential event in the pathogenesis of schizophrenic
psychoses is aberrant expression of neurotrophic factors, proposed to be responsible for disturbed
neural development and plasticity. Thus, several studies have shown decreased circulating BDNF
levels in individuals with schizophrenia [159]. Simultaneously, alterations in BDNF protein [160,161]
and total mRNA have been observed in postmortem prefrontal cortex from patients [161,162]. Aberrant
DNA methylation might be involved in this altered BDNF regulation, as reduced binding of GADD45b
(a growth arrest and DNA-damage-inducible β protein) to one of Bdnf promoters has been observed in
psychotic subjects [163]. Additionally, decreased levels of TrkB mRNA [162,164] and protein, together
with reduced activity of TrkB downstream effectors Akt and ERK1/2 [165,166], have been reported
in the prefrontal cortex of schizophrenia patients. By contrast, expression of the truncated isoforms
TrkB-Shc and TrkB-T1 undergoes an increase in the brain of schizophrenic subjects [167].

Other pathologies related to decreased BDNF/TrkB signalling are neurodegenerative diseases
of the retina such as glaucoma, age-related macular degeneration, diabetic retinopathy or retinitis
pigmentosa. For glaucoma, death of retinal ganglion cells (RGCs) resulting in optic nerve damage and
irreversible blindness can be explained by a lack of neurotrophic support [168]. The most important
risk factor for glaucoma is intraocular pressure [169]. Interestingly, an acute elevation of intraocular
pressure in experimental glaucoma leads to an obstruction of BDNF retrograde axonal transport from
central target cells to the RGC soma [170] and accumulation of TrkB in the optic nerve head [171].
The subsequent defect in neurotrophic signalling leads to RGCs apoptotic death. Several studies have
shown that BDNF transiently delays RGC death in glaucoma [172,173]. Therefore, besides treatments
directed to decrease intraocular pressure, neurotrophic factors are currently considered as having great
potential in glaucoma therapy (recently reviewed by [174]).
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Finally, excessive activation of TrkB-FL has been unveiled as a molecular mechanism underlying
the induction of epilepsy [175], which is broadly characterized by aberrant neuronal excitability.
To promote epilepsy, this abnormal TrkB signalling requires the action of the PLCγ pathway [176].
However, chronic seizures can alter neuronal and glial expression of glutamate receptors and uptake
transporters, which then trigger excitotoxicity and cause permanent neurological damage [177].
Accordingly, in vitro models of recurrent epileptic seizures lead to the characteristic imbalance of the
BDNF receptors, with a decrease of TrkB-FL produced by calpain cleavage and upregulation ofTrkB-T1
and p75NTR levels [178,179]. It will be interesting to investigate if the intracellular TrkB-FL calpain
fragment maintains PLCγ interaction, as described for similar TrkA fragments [180], and further
exacerbates epileptogenesis.

4. Restoration of the BDNF/TrkB Pathway Requires Combined Targeting of BDNF and TrkB

The disorders and pathological conditions induced or promoted by aberrant BDNF/TrkB
signalling could be potentially treated by fine-tuned activation (e.g., stroke, neurodegenerative diseases)
or suppression (e.g., epilepsy, cancer) of this pathway. Particularly, in the case of neurological disorders,
the recovery of neurotrophic signalling could be not only neuroprotective but also promote adult
neurogenesis (reviewed in [181]) or synaptic plasticity and growth [182], which are altered in many of
these diseases.

Different strategies directed to increase the availability of BDNF have been evaluated. Several
research groups have shown neuroprotective effects in disease models induced by treatment with
recombinant BDNF. However, administration of this neurotrophin did not exhibit the expected results
in clinical trials [1,2] mostly due to poor BDNF transfer across the BBB and tissue diffusion, short
serum half-life and important side effects (diarrhoea, paraesthesias, sleep disturbance or injection
site reactions) [3]. To improve BDNF delivery, other approaches currently under consideration are
nanoparticle-mediated transport, gene therapy with BDNF-encoding viral vectors or transplantation
of BDNF-releasing cells (reviewed in reference [183]). It is worth mentioning that, compared to
native BDNF, a nanoparticle formulation of BDNF significantly decreases the loss of brain tissue in
mice when administered up to 6 h after stroke onset. More delayed treatment (12 h) still improves
memory/cognition and reduces post-stroke depression but has no effect on infarct size [184]. So, even
in situations of compromised BBB integrity such as stroke, BDNF nanoparticles are still more efficient
than native BDNF improving neuropathological and neurobehavioral outcomes. Nevertheless, caution
should be taken before systemic BDNF administration since the neurotrophin might interfere with
activity-dependent neuronal plasticity, learning and memory, or even initiate epileptic activity [185].
Different laboratories are working in strategies to specifically reach the damaged areas or nearby tissue.
Thus, a theranostic nanocarrier that specifically targets the peri-infarct tissue in cerebral ischemia has
been developed [186]. This nano-platform contains imaging probes for visualization by conventional
imaging techniques, a therapeutic agent for treatment and an antibody that directs to the desired region.

An interesting alternative to BDNF administration is the enhancement of endogenous
neurotrophin production. For example, physical exercise evokes a significant increase of BDNF
levels in rat hippocampus and cerebral cortex [187] which is mediated by brain uptake of circulating
insulin-like growth factor I (IGF-I) [188]. Several clinical trials focused in the elderly and patients
of stroke and neurodegenerative diseases, have reported the induction by exercise of a cognitive
improvement together with an increase in BDNF levels (reviewed in reference [189]). A slow
increase in the synthesis of BDNF has been similarly reported in response to chronic treatment with
monoamine-based antidepressants, not only in rat brain [150] but also in patients of major depressive
disorder (MDD) [190]. More recently, it has been discovered that the NMDAR antagonist, ketamine,
produces faster (within hours) antidepressant responses in MDD patients resistant to conventional
treatments, concurrent with an increase in the number and function of synaptic connections and
enhancement of BDNF expression [191]. A novel study has discovered that one specific enantiomer
of a ketamine metabolite can exert rapid and sustained antidepressant actions in mice, which are
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independent of NMDAR inhibition but require AMPAR activation, while lacks ketamine unwanted
side effects [192]. Thus, both gradually and rapid acting antidepressants reverse the significant
decrease of BDNF levels characteristic of MDD patients [193] and promote TrkB signalling, synaptic
plasticity and neuronal excitability. Finally, another promising approach has been the development
of a small-size orally active molecule (PYM50028) able to increase levels of GDNF and BDNF in the
striatum of MPTP-lesioned mice, considered as a good candidate for neuroprotection and neurorepair
in PD [194]. An anticipated limitation of strategies aimed to enhance endogenous BDNF expression
might derive from recent discoveries showing that aging triggers a repressive chromatin state in
mice hippocampus at Bdnf promoters, which do not respond to synaptic activity and may contribute
to cognitive decline [195]. Since most of the acute and chronic pathologies presenting decreased
neurotrophin availability affect to the elderly, these results may imply that the efficiency of therapies
aimed to increase endogenous BDNF will be compromised. However, an additional observation of
these experiments is that the pharmacological prevention of age-associated cholesterol loss rescues
BDNF expression and cognitive deficits in old mice [195]. These results are highly relevant and
could facilitate the design of future therapies aimed to enhance BDNF expression in humans, where a
decrease in cholesterol content has been also reported in normal aging brain and AD patients [196,197].

Another strategy has consisted in the development of small-size TrkB agonists alternative to
BDNF, or BDNF mimetics, such as 7,8-dihydroxyflavone (7,8-DHF), an stable molecule able to
efficiently cross the BBB after oral administration [198]. 7,8-DHF acts as a selective and efficient
TrkB agonist and presents neuroprotective effects in excitotoxic processes induced in vitro [199] or
using in vivo models of brain ischemia [198], AD [200], ALS [201] or PD [198], among others. Thus,
flavonoid-based TrkB agonists are currently considered as very promising compounds to treat stroke
and neurodegenerative diseases. An alternative to TrkB agonists for neuroprotection is transactivation
of Trk receptors by ligands of G protein-coupled receptors (GPCRs), dopamine or glucocorticoids
(reviewed in reference [202]). Brain TrkB transactivation is also achieved by antidepressant drugs in
adult mice via unknown mechanisms [16] that result in specific phosphorylation of Tyr816, PLCγ

activation and CREB phosphorylation [151], processes that are independent of monoamine transporter
inhibition or BDNF action [203].

In any case, the efficiency of treatments enhancing or mimicking BDNF actions, or those directed
to TrkB transactivation, could be dramatically limited if the receptor stability and function were
aberrant, as is frequently the case in neurological and psychiatric disorders. Therefore, we necessarily
need to devise therapeutic compounds that recover TrkB receptor and downstream signalling to
be used in combination with drugs acting upstream. This is particularly important in the case of
diseases with an excitotoxic component due to calpain and metalloproteinase/γ-secretase activation.
As mentioned, isoforms TrkB-FL and TrkB-T1 are RIP substrates and release a receptor ectodomain
that acts as a BDNF scavenger and significantly alters BDNF/TrkB signalling [34]. Additionally,
TrkB-FL is also a substrate of calpain that produces a truncated receptor form suggested to act as
a dominant negative protein in several pathologies [32,68,178]. Several studies have already shown
a neuroprotective effect for the recovery of TrkB isoforms relative levels. Thus, combined interference
of TrkB-T1 overexpression and increased TrkB-FL synthesis in a cellular model of excitotoxicity allows
for recovering a TrkB-FL/TrkB-T1 balance and protects neurons from excitotoxic death [32]. Likewise,
overexpression of TrkB-FL in a mouse model of AD alleviates spatial memory impairment while
TrkB-T1 overexpression further exacerbates these alterations [67]. Finally, in an animal model of
Down syndrome, where mice have normal TrkB-FL levels but upregulated TrkB-T1, restoration of
physiological TrkB-T1 expression rescues cortical and hippocampal neurons from death, corrects
resting Ca2+ levels and restores BDNF-induced intracellular signalling [204].

One of the more innovative ideas for the modulation of BDNF/TrkB downstream signalling
pathways is shuttle-mediated drug delivery by conjugation of the therapeutic molecules to
cell-penetrating peptides (CPPs) capable to cross the BBB and the cell membrane (reviewed by [205]).
Thus, a CPP has been recently developed that contains a short HIV-1 Tat sequence, a favourite carrier
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peptide, and the dynamin 1 sequence phosphorylated by GSK3β. Specific inhibition by this CPP of
GSK3β-induced dynamin 1 phosphorylation in neuronal and mouse models of AD rescues impaired
BDNF-dependent TrkB endocytosis and Akt activation [86]. Likewise, Tat peptides linked to specific
sequences cleaved by calpain have proven to be effective to prevent action of this protease on the
corresponding substrates in models of excitotoxicity in vitro or in vivo. For example, this has been
demonstrated for STEP (striatal-enriched protein tyrosin phosphatase) [206], an important regulator of
synaptic signalling proteins or the NMDAR, or the metabotropic glutamate receptor 1 [207]. Similarly,
a CPP containing a short Kidins220 sequence enclosing the major calpain site identified in this protein
improves neuronal viability by preserving the activity of ERK1/2 and CREB after an excitotoxic
insult [208]. All this evidence shows that maintenance of the survival pathways truncated by the
pathological action of calpain is an effective neuroprotective strategy. Moreover, these results paves
the way for the design and development of CPPs targeting other key neurotrophic effectors impaired
in neurological diseases like PKA, CREB or even the TrkB receptors. In fact, TrkB-FL has already been
considered a therapeutic target for epilepsy prevention. Contrary to most neurological disorders, here
it is necessary to counteract the epileptogenesis overactivation of TrkB-FL [175]. Since PLCγ signalling
has a prominent role in this pathological TrkB action, a Tat peptide has been designed able to uncouple
these two proteins [176]. Treatment with such peptide prevents epilepsy and anxiety-like disorder
without altering the neuroprotective effects of endogenous TrkB signalling.

5. Conclusions

In this article, we have reviewed evidence demonstrating that dysregulation of neurotrophic
signalling is common to most neurological disorders, including stroke and neurodegenerative diseases,
and that alterations are produced at different levels of this route. Altogether, the presented data
highlight the importance of this key pathway for the treatment of neurological disorders and show
the necessity of approaching the development of therapies in a more integral way. The enhancement
of the BDNF/TrkB signalling pathways will certainly require the combination of BDNF targets with
those addressing the aberrant expression and function of TrkB receptors and downstream effectors.
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7,8-DHF 7,8-Dihydroxyflavone
Aβ Amyloid β-Peptide
AD Alzheimer’s Disease
ALS Amyotrophic Lateral Sclerosis
BAD Bcl-2 Antagonist of Cell Death
BBB Blood–Brain Barrier
Bcl-2 B-Cell Lymphoma 2
BDNF Brain-Derived Neurotrophic Factor
CBP CREB Binding Protein
CREB cAMP Response-Element Binding Protein
GPCRs G Protein-Coupled Receptors
HAP1 Huntingtin-Associated Protein 1
HD Huntington’s Disease
IGF-1 Insulin-like Growth Factor I
MDD Major Depressive Disorder
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MeCP2 Methyl-CpG Binding Protein 2
MSNs Medium-sized Spiny Neurons
NMDARs N-methyl-D-aspartate Type of Glutamate Receptors
p75NTR p75 Neurotrophin Receptor
PD Parkinson’s Disease
PKA Protein Kinase A
polyQ Polyglutamine
PTEN Phosphatase and Tensin Homolog
REST/NRSF Repressor Element-1 Transcription Factor/Neuron-Restrictive Silencer Factor
RGC Retinal Ganglion Cell
RhoGDI Rho GDP Dissociation Inhibitor 1
RIP Regulated Intramembrane Proteolysis
Shc Src-Homology 2-Domain Containing Adaptor Protein
Shp-2 Src Homology-2 Domain-Containing Phosphatase-2
SN Substantia Nigra
SNpc Substantia Nigra pars compacta
STEP Striatal-Enriched Protein Tyrosin Phosphatase
Trk Tropomyosin-Related Kinase
TrkB-FL Full-Length TrkB
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