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1 Derivation of the full conditional posterior distri-

butions for the nonparametric statistical downscal-

ing model
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The probability density functions for the prior distributions and hyperprior dis-
tributions are:
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The full conditional posterior distributions are:
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In the above equations, Gj and Fi represent diagonal matrices, with dj and βi as their
diagonals, respectively. The indexes are i = 1, . . . , n and j = 1, . . . ,m, where n is the
number of in situ sampling locations in the dataset and m is the number of basis functions
fitted for each location (i.e. the chosen basis dimension). The number of remotely-sensed
data available for location i is pi and the corresponding number of in situ data available
for location i is qi. All other parameters are described in the main paper.

Predictions are made at new times j (for j = 1, . . . , q̃i, where q̃i is the number of
times to predict at for location i) and at new locations i (for i = 1, . . . , ñ, where ñ is
the number of locations at which to predict), by drawing from the posterior predictive
distribution:
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where Φ̃ is the matrix of basis functions evaluated at the q̃i times of prediction for the
in situ data at location i, Ψ̃ is the matrix of basis functions evaluated at the p̃i times of
data collection for the remotely-sensed data for the grid cell containing location i and x̃i
is the vector of remotely-sensed data for the grid cell containing the location i at which
prediction is to be carried out.

Since all full conditional posterior distributions have been derived, the model is fitted
using a Gibbs sampler. This is implemented in C++, via the R package Rcpp. Obtaining
draws from α̃j|αj and β̃j|βj is potentially computationally expensive, when predictions
are to be made at a large number of locations, since drawing from the multivariate Nor-
mal distributions would involve calculating the Cholesky decomposition of large matrices
at each iteration of the Gibbs sampler. The covariance matrices of the distributions of
both α̃j|αj and β̃j|βj are each made up of a scalar that must be updated each time
(i.e. σ2

α and σ2
β, respectively) multiplied by a matrix that needs only to be calculated

once. Therefore, the computations can be reduced in complexity and the efficiency in-
creased. The algorithm makes use of the fact that the Cholesky decomposition of bΣ
is (
√
bA)(

√
bA)T = bΣ, where AAT = Σ is the Cholesky decomposition of Σ, so that

the computation at each iteration of the sampler multiplies a matrix by a scalar, rather
than the more complex Cholesky decomposition. If φα and φβ were estimated within the
model instead of being chosen beforehand, then this reduction in computational com-
plexity would not be possible and the Cholesky decomposition would be required at each
iteration of the Gibbs sampler.

2 Additional plots

2.1 Choice of φα and φβ

Figure 1 illustrates the method for choosing the values of parameters φα and φβ for the
nonparametric statistical downscaling model using the Fourier basis of dimension 9. The
plots show the values of model summary statistics for a range of values for each of φα
and φβ. Figures 1(a) and 1(b) show that root mean squared error (RMSE) and mean
absolute error (MAE) are both at their lowest for φα ≤ 0.5 and φβ ≤ 0.5, while Figure
1(c) shows that the variance of the predictions is lowest for 0.01 ≤ φβ ≤ 0.5. Figure 1(d)
shows that the mean 95% credible interval coverage lies above the nominal 95% for all
combinations of the values of φα and φβ that are investigated, while Figure 1(e) shows
that the mean 95% credible interval width is at its lowest for φβ ≤ 0.5. The value of 0.1
selected for both φα and φβ is therefore an appropriate choice for this dataset.

2.2 Choice of prediction locations

As stated in the main article, the prediction locations are chosen through a Delaunay
triangulation of the lake, constrained by points selected along the lake boundaries. The
triangulation is carried out using the R package RTriangle (Shewchuk 1996). Figure 2
shows the constraining boundary points and the inserted points, which together have a
good spatial coverage of the lake.
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Figure 1: Plots of model summary statistics for each combination of values of φα and φβ
in the nonparametric statistical downscaling model, for the Fourier basis of dimension
9: (a) Root mean squared error (RMSE); (b) Mean absolute error (MAE); (c) Variance
of predictions; (d) Mean 95% credible interval coverage; (e) Mean 95% credible interval
width.
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Figure 2: Plot showing the constraining boundary points and the inserted prediction
locations that result from a Delaunay triangulation, overlaid upon the remote sensing
grid cells.
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2.3 Example trace, density and diagnostic plots for the non-
parametric statistical downscaling model

Example trace and density plots are shown in Figures 3 and 4 for a selection of parameters
of the nonparametric statistical downscaling model, which was fitted using a Fourier basis
of dimension 9, with prediction ỹ made at in situ location 1 for 15th March 2011.

Each of the trace plots shows the “hairy caterpillar” shape, which is characteristic of
MCMC chains that have converged to their posterior distributions (Gelman et al. 2014).
Most of the density plots show the bell shape, which is also characteristic of chains that
have converged to their posterior distributions (Gelman et al. 2014). The plots for the
parameters (σ2

α)−1, (σ2
β)−1 and (σ2

c )
−1 show skewed distributions, which is expected of

variance parameters. These plots provide no evidence against the assumption that the
MCMC chains for these parameters have converged to their posterior distributions.

A plot of residuals versus fitted values is shown in Figure 5(a), for the nonparametric
statistical downscaling model fitted using a Fourier basis of dimension 9, with predictions
made at each of the locations and timepoints for which the in situ data are available.
Figure 5(b) shows the corresponding plot of sample quantiles of the distribution of the
residuals, versus the theoretical distribution of the quantiles, assuming that the residuals
are Normally distributed.

Figure 6 shows plots of the autocorrelation function (ACF) and partial autocorrelation
function (PACF) for the residuals at in situ location 1. The coefficients for low lags on
both plots lie within, or at least nearly within, the 95% confidence intervals. These plots
do not provide evidence of statistically significant positive temporal autocorrelation in
the residuals for in situ location 1. Similar plots were produced for the residuals at each
of the other in situ locations and all except those for one location showed similar results.
As stated in the main text, the location with a large lag 1 coefficient in the ACF and
PACF had only 19 in situ data points, which may lead to unusual patterns having a large
effect on the calculated ACF and PACF.

Figure 7 shows a plot of the empirical variogram of the residuals for March 2011. The
presence of spatial correlation in the residuals is assessed by comparing the empirical
variogram to the boundaries of the Monte Carlo envelope. This envelope is calculated
by randomly permuting the coordinates of the residuals 100 times and then calculating
the variogram for each of these new datasets. The fact that the empirical variogram lies
entirely within the Monte Carlo envelope provides no evidence of spatial correlation in
the residuals for March 2011. Similar plots were produced for each of the 17 months for
which data were available at all 9 in situ locations, with none indicating the presence of
spatial correlation in the residuals.
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Figure 3: Trace and density plots for the parameters (σ2
α)−1, (σ2

β)−1, (σ2
y)

−1, (σ2
c )

−1, α1,1,
β1,1, c1,1 and (σ2

x)
−1 of the nonparametric statistical downscaling model, with a Fourier

basis of dimension 9.
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Figure 4: Trace and density plots for the parameters d1,1, α̃1,1, β̃1,1, d̃1,1, c̃1,1 and ỹ of the
nonparametric statistical downscaling model, with a Fourier basis of dimension 9.
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Figure 5: (a): Plot of residuals versus fitted values for the nonparametric statistical
downscaling model fitted using the Fourier basis of dimension 9; (b): Plot of the sample
quantiles of the distribution of the residuals versus the theoretical quantiles of the dis-
tribution of the residuals, assuming that they are Normally distributed (i.e. the Normal
Q-Q plot).
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Figure 6: Plots of the (a) autocorrelation function (ACF) and (b) partial autocorrelation
function (PACF) for the residuals at in situ location 1.
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Figure 7: Plot of the empirical variogram fitted to the residuals for March 2011 (points),
with the boundaries of the Monte Carlo envelope shown as dotted lines.
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