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SUMMARY

The SNF1 protein kinase complex plays an essential
role in regulating gene expression in response to the
level of extracellular glucose in budding yeast. SNF1
shares structural and functional similarities with
mammalian AMP-activated protein kinase. Both
kinases are activated by phosphorylation on a threo-
nine residuewithin the activation loop segment of the
catalytic subunit. Here we show that ADP is the long-
sought metabolite that activates SNF1 in response to
glucose limitation by protecting the enzyme against
dephosphorylation by Glc7, its physiologically rele-
vant protein phosphatase. We also show that the re-
gulatory subunit of SNF1 has two ADP binding sites.
The tighter site binds AMP, ADP, and ATP com-
petitively with NADH, whereas the weaker site does
not bind NADH, but is responsible for mediating
the protective effect of ADP on dephosphorylation.
Mutagenesis experiments suggest that the general
mechanism by which ADP protects against dephos-
phorylation is strongly conserved between SNF1 and
AMPK.

INTRODUCTION

Glucose repression is the process whereby high levels of

this sugar repress the expression of specific genes (Gancedo,

1992). In the budding yeast Saccharomyces cerevisiae, glucose

depletion leads to activation of the SNF1 complex, which plays

an essential role in derepression of glucose-repressed genes

(Celenza and Carlson, 1986). SNF1 is the yeast homolog of

mammalian AMP-activated protein kinase (AMPK). In mammals,

activation of AMPK during conditions of energy stress, when

intracellular ATP levels fall, leads to increased ATP generation

and decreased ATP consumption (Carling, 2004; Kahn et al.,

2005), and recent work has implicated it as a potential target

for therapeutic intervention in metabolic diseases (Lage et al.,

2008; Zhang et al., 2009). In budding yeast, SNF1 is essential
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for the adaptation of yeast for growth on low-glucose or on non-

glucose carbon sources, such as sucrose (Celenza and Carlson,

1986). SNF1 is required for increased transcription of genes

involved in metabolism of nonglucose carbon sources (Celenza

and Carlson, 1986) and for a number of other processes, in-

cluding sporulation, glycogen storage, and peroxisome biogen-

esis (Hardie et al., 1998). SNF1, like AMPK, is a heterotrimeric

complex, consisting of a catalytic subunit (Snf1 in yeast; a in

mammals) and two regulatory subunits (Sip1, Sip2, or Gal83 in

yeast; b in mammals and Snf4 in yeast; g in mammals) (Hardie,

2007; Hardie et al., 1998). SNF1 activity requires phosphoryla-

tion of a threonine residue in the activation loop (T-loop) of the

kinase subunit (Thr210) (McCartney and Schmidt, 2001), and

three protein kinases have been identified that phosphorylate

and activate SNF1: Sak1, Elm1, and Tos3 (Hong et al., 2003;

Sutherland et al., 2003). Lowering the concentration of extracel-

lular glucose leads to the rapid activation of SNF1 (Wilson et al.,

1996; Woods et al., 1994), correlating with increased phosphor-

ylation levels of Thr210 resulting from a greatly reduced rate of

Thr210 dephosphorylation (Rubenstein et al., 2008). In contrast,

the activities of the upstream kinases in the cascade remain

unaffected by a fall in glucose levels (Rubenstein et al., 2008).

These findings suggest that activation of SNF1 is controlled

at the level of the dephosphorylation step. This is similar to

amechanism previously described for the regulation of mamma-

lian AMPK, where AMP protects against dephosphorylation of

Thr172 by protein phosphatases (Davies et al., 1995; Sanders

et al., 2007; Suter et al., 2006). Despite numerous studies, the

identity of the metabolic signal that regulates SNF1 activity in

response to glucose availability has remained elusive. Previous

studies have shown that SNF1 is not regulated by AMP, either

via an allosteric effect (Mitchelhill et al., 1994; Wilson et al.,

1996; Woods et al., 1994) or by protecting it from dephosphory-

lation (Sanders et al., 2007).
RESULTS

ADP Protects against Dephosphorylation of Thr210
in SNF1
We reported recently that ADP protects AMPK from dephos-

phorylation (Xiao et al., 2011). In order to investigate the effect
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Figure 1. ADP Protects against Dephos-

phorylation of Thr210 in SNF1

(A) Recombinant SNF1 (Snf1(1-633)Gal83(1-417)
Snf4(1-322)) was phosphorylated with CaMKKb and

incubated in the presence or absence of recom-

binant PP2Ca (26 ng) with increasing concentra-

tions (0–1500 mM) of either AMP, ADP, or ATP.

After incubation for 10 min at 37�C, the reactions

were stopped by the addition of SDS sample

buffer. Thr210 phosphorylation and total Snf1

levels were determined by western blot analysis

and quantified using the LI-COR Odyssey infrared

imaging system. Results shown are the mean ±

SEM (n = 4 independent experiments) and are

plotted as the ratio of P-Thr210:total Snf1 as a

percentage of the control (in the absence of

PP2C). Representative blots from an experiment

using ADP are shown.

(B) Active SNF1 was incubated at 37�C with PP2C

in the presence or absence of ADP (800 mM).

Aliquots were removed at the indicated times, and

the reaction was stopped by addition of SDS

sample buffer. Thr210 phosphorylation was deter-

mined as above, and the results shown are the

mean ± SEM (n = 5 independent experiments).

Representative blots from a single experiment are

shown.

(C) Recombinant SNF1 complexes comprised

of either Snf1Gal83Snf4 or Snf1Sip2(154-415)Snf4

were phosphorylated with CaMKKb and incu-

bated with PP2C in the presence or absence of

ADP (800 mM) for 10 min at 37�C. Thr210 phos-

phorylation was determined for each complex and

plotted as the ratio of P-Thr210:total Snf1 as

a percentage of the control value (measured in the

absence of PP2C). Results shown are the mean ±

SEM (n = 4 independent experiments), and a

representative blot is shown for each complex.

(D) SNF1 complexes purified from yeast grown in

the presence of sucrose as the carbon source

were incubated with PP2C in the presence of

increasing concentrations (0–800 mM) of either

AMP or ADP. After incubation for 10 min at 37�C,
the reactions were stopped by the addition of SDS

sample buffer, and the level of Thr210 phosphor-

ylation and total Snf1 were determined by western

blotting. Data from a single experiment together

with the corresponding blots are shown. The level

of Thr210 phosphorylation in a control incubation

lacking PP2C is shown in each case, and the

dashed line indicates the removal of intervening

lanes from the samples run on the same gel.

(E) TAP-tagged Glc7 was purified from yeast cells and used to dephosphorylate native SNF1 complexes in the presence or absence of varying concentrations of

ADP for 10min at 37�C. Thr210 phosphorylation was determined and plotted as the ratio of P-Thr210:total Snf1 as a percentage of the control value (measured in

the absence of Glc7). Representative blots showing Thr210 phosphorylation and total Snf1 are shown below the graph.
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of ADP on SNF1, we purified the heterotrimeric SNF1 complex

(Snf1, Gal83, Snf4, which represents the predominant form of

SNF1 in vivo) following expression in E. coli and activated it

in vitro by phosphorylation with calcium/calmodulin-dependent

protein kinase kinase b (CaMKKb). Neither AMP nor ADP alloste-

rically regulated SNF1 activity (data not shown), but ADP, and

not AMP or ATP, protected SNF1 from dephosphorylation on

Thr210 by recombinant protein phosphatase 2C (Figures 1A

and 1B). The half-maximal effect of ADP in this assay was

�500 mM (Figure 1A), which fits well with previous studies
708 Cell Metabolism 14, 707–714, November 2, 2011 ª2011 Elsevier
showing that total (extractable) ADP concentrations in yeast

range from 0.4 to 1.5 mM (Canelas et al., 2008; Ditzelmüller

et al., 1983; Larsson et al., 1997). ADP also produced a similar

degree of protection when a heterotrimeric SNF1 complex con-

taining the Sip2 b subunit isoform, rather thanGal83, was used in

the dephosphorylation assay (Figure 1C). We have also shown

the same effect of ADP using SNF1 complexes purified from

yeast. We expressed a TAP-tagged form of Snf1 to purify the

complex from cells grown on sucrose medium, a growth condi-

tion in which Snf1 is phosphorylated on Thr210. The purified
Inc.



Figure 2. Measurement of Equilibrium Dissociation Constants for

the Binding of AXPs to Phosphorylated SNF1
(A) Displacement of coumarin-ADP (C-ADP) from the SNF1:(C-ADP)2 complex

by AXPs monitored using the change in fluorescence at 470 nm (excitation at

430 nm). The solid lines are the computed best fits with Kd,I and Kd,II for C-ADP

binding fixed at 9 and 27 mM, respectively. Inset: titration of C-ADP with SNF1.

(B) Displacement of NADH from the SNF1:NADH complex by AXPs monitored

using the change in fluorescence at 435 nm (excitation at 340 nm). The solid

lines are the computed best fits with the Kd for NADH fixed at 12.3 mM Inset:

titration of NADH with SNF1. All measurements were carried out at 20�C in

50 mM Tris (pH 8), 100 mM NaCl, 1 mM tris(2-carboxyethyl)phosphine.
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enzyme could be efficiently dephosphorylated by treatment with

recombinant PP2C (Figure 1D). Consistent with our results ob-

tained using recombinant SNF1 expressed in E. coli, addition

of ADP, but not AMP, resulted in significant protection of the

enzyme from dephosphorylation. The protective effect of ADP

occurred over a similar concentration range to that using re-

combinant SNF1 isolated from E. coli. Genetic studies have indi-

cated that dephosphorylation of SNF1 in vivo is catalyzed by the

yeast PP1 homolog Glc7. Importantly, wewere also able to dem-

onstrate that ADP protects against dephosphorylation of SNF1

by Glc7 (Figure 1E). ADP also inhibits dephosphorylation of

SNF1 by rabbit PP1 (data not shown), strongly suggesting that

the effect of ADP is on the SNF1 complex and not on the protein

phosphatase per se.

Adenine Nucleotides and NADH Bind to Snf4
To understand better the regulation of SNF1 by ADP, we did a

series of binding studies using the phosphorylated, active form

of the enzyme (Figure 2 and Table 1). First, we examined nucle-

otide binding using analogs of ADP and ATP carrying a coumarin

fluorescent reporter group in competition assays. These experi-

ments revealed two distinct nucleotide binding sites; AMP, ADP,

and ATP bind with similar affinities at a tight site (Kd,I for ADP

�80 mM) and at a weaker one (Kd,II for ADP �800 mM). Under

physiological conditions, most of the ATP and some of the

ADP is complexed with magnesium. Therefore, we examined

the effect of magnesium on binding of coumarin-AXPs to SNF1.

The results show that magnesium weakens the binding of

coumarin-AXP at both the strong and theweak sites (data shown

in Table S4). Since ATP (and ADP) binding to SNF1 is significantly

weaker than for the coumarin adducts, it is not possible to estab-

lish a robust estimate of the binding constant for Mg.ATP binding

at theweaker site. But on the basis of the effect of magnesium on

the binding of coumarin-ATP, binding of ATP to the weaker site is

likely to be at least 5-fold weaker with magnesium than in its

absence. As such, there is likely to be relatively little Mg.ATP

(or non-Mg-bound ATP, of which there is little present within

the cell) bound to the weak site of Snf4.

During the course of our studies, and in common with our

recent studies on mammalian AMPK, we found that NADH

undergoes a significant change in its fluorescence signal upon

binding to the enzyme. We exploited this property to establish

that NADH binds to the phosphorylated SNF1 complex with

a stoichiometry of 1:1 and a dissociation constant of approxi-

mately 12 mM (obtained at 20�C, see Experimental Procedures).

Intriguingly, NADH binding is specific in the sense that NAD+

binding is much weaker (Kd > 250 mM), presumably due to the

presence of two positively charged arginine residues (Arg143

and Arg219) near the nicotinamide ring of NADH (see Figure S1).

In further competition binding assays, we found that NADH

competes with AXPs for their binding to just the tighter of the

two sites (Table 1).

Crystallization Studies Show that NADH Binds to Site 4
in Snf4
In order to discover the location of the tight nucleotide binding

site on SNF1, we carried out AXP and NADH crystal soaking ex-

periments. Using a tricistronic expression system, we expressed

and purified a regulatory fragment of SNF1 from S. cerevisiae
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(Figure 3A) comprising the C-terminal domains of Snf1 (457–

633) and Sip2 (304–415) together with full-length Snf4 (1–332).

We collected native diffraction data extending to 2.1 Å Bragg

spacing, from which the structure was solved by molecular

replacement. Relevant crystallographic statistics are given in

Table S1. A previous study (Amodeo et al., 2007) reported the

structure of the regulatory core of SNF1 (comprising residues

398–633 of Snf1, 154–415 of Sip2, and 1–322 of Snf4). The
etabolism 14, 707–714, November 2, 2011 ª2011 Elsevier Inc. 709



Table 1. Equilibrium Dissociation Constants for the Binding of

AXPs to Phosphorylated SNF1

Ligand

Kd (mM) Kd,I (mM) Kd,II (mM)

Versus NADH Versus C-AXPs

AMP 55 (12) 62 (15) 1450 (350)

ADP 72 (14) 91 (25) 760 (200)

ATP 120 (25) 85 (22) 1200 (300)

Dissociation constants were determined by competition against NADH

or 30-(7-diethylaminocoumarin-3-carbonylamino)-30-deoxy-AXP (C-AXP).

The Kd values shown are the mean (±SD) determined from at least three

independent measurements. All measurements were carried out at 20�C
in 50 mM Tris (pH 8), 100 mM NaCl, 1 mM tris(2-carboxyethyl)phosphine.

Themethods employed in analyzing thefluorescencebindingdata are fully

described elsewhere (Xiao et al., 2011).
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overall architecture of the structure reported here corresponds

closely with the previously reported structure (Figure S1),

although the structure reported in our current study lacks the

glycogen binding domain of Sip2. Data sets from soaked crystals

show strong, well-resolved electron density for AMP, ADP, and

NADH (Figures 3B and S1) at one of the four canonical nucleotide

binding sites on Snf4 (labeled site 4 according to the convention

suggested by Kemp [Kemp et al., 2007]). Given that NADH binds

substantially more tightly to SNF1 than AXPs, and given the rela-

tive concentrations of AXPs and NADH in yeast (Canelas et al.,

2008), we conclude that under most conditions this site will

be occupied by NADH. The situation is therefore analogous to

mammalian AMPK, where the equivalent site contains a nonex-

changeable AMP (Xiao et al., 2007). We think it likely that nucle-

otide occupancy at this site, in both SNF1 and AMPK, is im-

portant for the stability of the enzyme, since protein stability

experiments (Figure S2A) indicate that SNF1 is substantially

more stable in the presence of NADH.

ADP Binding at the Weaker Site Protects against
Dephosphorylation of SNF1
Two lines of evidence lead us to conclude that binding of ADP at

the weaker of the two binding sites is responsible for protection

of the enzyme against dephosphorylation. First, as described

above, NADH competes for the tighter nucleotide binding site,

but has no effect on SNF1 activity or on the ability of ADP to

protect against dephosphorylation (Figure S2B). In contrast,

and as would be predicted, AMP, which binds at both nucleotide

binding sites, competes with ADP in the dephosphorylation

protection assay (Figure S2C). Second, the half-maximal effect

of ADP on dephosphorylation of SNF1 occurred at a much higher

concentration (>500mMfor recombinant SNF1) than theKd for the

tighterbindingsite (�80mM),but close to theKdof theweaker site.

Presumably reflecting the weak binding constant and the

lattice packing, we have been unable to obtain crystals of

SNF1 with nucleotide present in the weaker site. As an alterna-

tive approach, we carried out extensive mutagenesis studies

aimed at disrupting the individual nucleotide binding sites within

Snf4, but, in common with our experience with mammalian

AMPK, we have not been able to identify mutations that specif-

ically ablate AXP or NADH binding (see Tables S2 and S3 and

Figure S3). These data clearly show that mutation of the aspartic

acid residues that are seen to interact with the ribose moiety of
710 Cell Metabolism 14, 707–714, November 2, 2011 ª2011 Elsevier
AXPs and NADH do not lead to the ablation of ligand binding.

The notion that these aspartic acid residues were required for

binding was first suggested by us to explain why one of the

four ‘‘canonical’’ binding sites in AMPK did not bind AXPs

(Xiao et al., 2007). However, our suggestion was untested at

that time, and presumably the lack of effect of these mutations

reflects the fact that the energetic costs of desolvating the

carboxyl of the aspartic acid and the hydroxyls of the ribose

offsets the contribution to binding of the hydrogen bonds that

the aspartic acids make with AXPs. Importantly, however, in

the absence of mutants that ablate AXP binding, our structural

studies provide valuable insights into the likely mechanism of

ADP-mediated protection against dephosphorylation.

ADP Promotes Interaction of the T-Loop
with the Regulatory Core of SNF1
We recently determined the structure of an active form of

mammalian AMPK in which the T-loop, containing phosphory-

lated Thr172, is well ordered and interacts with the C-terminal

domains of the a and b subunits (Xiao et al., 2011). In this confor-

mation, Thr172 is protected from dephosphorylation because

access to protein phosphatases is restricted. We showed that

part of the linker between the N-terminal kinase and the

C-terminal domain of the a subunit formed an a-hook structure

that enhanced the association of the kinase domain with the

regulatory fragment when ADP, but not ATP, is bound (Xiao

et al., 2011). The sequences of the T-loop and the residues

with which it interacts are highly conserved between the yeast

and mammalian enzymes, but the sequences of the linker region

are not (Xiao et al., 2007, 2011) (Figure 3A). His233 in AMPKb1

(His235 in b2) lies at the interface of the regulatory domain with

the kinase domain, and mutation of this residue in AMPK signif-

icantly increases the rate of dephosphorylation (Xiao et al.,

2011). Mutation of His379 in Gal83 (corresponding to His233 in

AMPKb1 and His375 in Sip2; see Figure 3A) also significantly

increased the rate of dephosphorylation of SNF1, while leaving

protection by ADP intact (Figures 3C and 3D), as was also found

for the equivalent mutation in AMPK (Xiao et al., 2011).

DISCUSSION

An essential role for SNF1 in glucose repression has been known

for nearly 30 years (Carlson et al., 1981, 1984), and activation of

SNF1 during glucose limitation has been appreciated for nearly

20 years (Woods et al., 1994), but the metabolic signal that trig-

gers it has remained elusive. Here we show that ADP binds to

Snf4 and protects SNF1 against dephosphorylation of Thr210,

suggesting that ADP is the metabolic signal that leads to activa-

tion of SNF1 in response to glucose starvation in budding yeast.

We recently showed that ADP protects mammalian AMPK

against dephosphorylation (Xiao et al., 2011), and while our

manuscript was under review, Oakhill et al. reported that ADP,

as well as AMP, stimulates phosphorylation of AMPK on Thr172

(Oakhill et al., 2011). AMP and ADP stimulation of phosphoryla-

tion requires myristoylation of the b subunit of AMPK (Oakhill

et al., 2010). However, Gal83, the predominant b isoform of

S. cerevisiae SNF1, does not contain a consensus sequence for

N-terminal myristoylation, suggesting that Gal83-containing

SNF1 complexes are not subject to this form of regulation.
Inc.
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In mammalian AMPK, we showed that ADP protects against

dephosphorylation by promoting the interaction of the T-loop

region with the regulatory regions of the a and b subunits (Xiao

et al., 2011). Our current study suggests that a similar mecha-

nism operates for ADP-mediated protection against dephos-

phorylation of SNF1. However, the lack of sequence conserva-

tion between SNF1 and AMPK in the a-hook region (Xiao et al.,

2011) means that we are less clear about the molecular mecha-

nism for coupling nucleotide binding to the recruitment, and

protection against dephosphorylation, of the kinase domain.

Nonetheless, the fact that the interaction of the kinase domain

with the regulatory fragment is highly asymmetric means that it

must be one of the ADP binding sites on the surface of Snf4

that faces the kinase domain (labeled site 2 and site 3 in Fig-

ure S3) that mediates protection against dephosphorylation.

Given that the linker region is not conserved between mammals

and yeast, and that ADP has been shown to bind to site 2 in the

S. pombe homolog of AMPK (Jin et al., 2007), we think it is likely

that ADP binding at site 2 in Snf4 mediates the protective effect

against dephosphorylation of SNF1. In this model we envisage

that a region of Snf1 between the kinase domain and the ordered

C-terminal domain, which is not conserved in AMPKa, plays

a role analogous to the a-hook in AMPK. How this mechanism

discriminates for ADP over AMP and ATP for protection against

dephosphorylation is not clear. In order to address this, addi-

tional structures of full-length SNF1 containing the phosphory-

lated kinase domain, together with the Snf4 subunit in complex

with AMP, ADP, and ATP, will be required. Importantly, the con-

centration of ADP required for protection of SNF1 against de-

phosphorylation in vitro is much higher than that required for

mammalian AMPK, in keeping with the higher concentrations

of ADP present in yeast cells relative to mammalian cells. Our

results show that magnesium weakens the binding of ATP to

Snf4, and therefore we would expect very little ATP to be bound

at the regulatory site. Thus, in contrast to mammalian AMPK,

where ADP competes for binding with Mg.ATP, SNF1 may only

bind significant amounts of ADP. These data lead us to a conclu-

sion similar to that reached by Shapiro and colleagues in their

study of the AMPK homolog fromSchizosaccharomyces pombe,

where they could not identify magnesium in their ATP-bound

crystal structure (Townley and Shapiro, 2007), leading them to

suggest that the discrimination against magnesium-bound ATP

would enable that enzyme to respond to the much lower levels

of AMP in the presence of high competitive levels of total ATP.

Given our demonstration that for S. cerevisiae the relevant ligand

is ADP, and given its binding constant relative to Mg.ATP, we

suggest that in S. cerevisiae SNF1 may respond to absolute

changes in ADP concentration. Finally, the finding that ADP pro-

tects both yeast SNF1 and mammalian AMPK against dephos-

phorylation raises the exciting possibility that ADP might repre-

sent a ‘‘unifying trigger’’ for activation of AMPK orthologs in all

species.
EXPERIMENTAL PROCEDURES

Production of Recombinant SNF1

DNAencodingSnf1 andSnf4were cloned intopRSFDuet (Novagen), andcDNA

encoding Gal83 was cloned into pETDuet1; both were generous gifts from

Marian Carlson (Columbia University). For expression of SNF1, E. coli BL21
Cell M
(DE3) cells were cotransformed with these vectors, and the SNF1 com-

plex was purified as described below. Tricistronic vectors expressing His-

Snf1Sip2(154-415)Snf4 or His-Snf1(457-633)Sip2(304-415)Snf4 were constructed

and used to transform E. coli BL21 (DE3) cells for expression of SNF1

complexes. Initially, SNF1 complexes were purified by affinity chromatography

using nickel-Sepharose (Sanders et al., 2007) and used for further studies.

Tandem Affinity Purification of Glc7 and Snf1

The Snf1 andGlc7 proteins were purified from yeast cell extracts using tandem

affinity purification (TAP) method (Rigaut et al., 1999). For both genes, the TAP

tag was added at the C terminus of the open reading frame. Low-copy number

plasmids expressing the TAP constructs were introduced to cells lacking the

endogenous chromosomal SNF1 or GLC7 gene. Cells were grown on media

with sucrose or glucose as the carbon source, respectively. TAP-tagged

proteins were purified as previously described for the Snf1-TAP protein (Elbing

et al., 2006). Dephosphorylation reactions using Glc7 were performed immedi-

ately following purification, as the enzyme rapidly loses activity over time.

SNF1 Functional Assays

Recombinant SNF1 complexes expressed in E. coli were phosphorylated by

incubation with CaMKKb as described previously (Sanders et al., 2007). An

aliquot of the phosphorylated protein (�1 mg) was incubated in 50 mM HEPES

(pH 7.4), 2.5mMMgCl2, and in the presence or absence of PP2Ca (26 ng) in the

presence or absence of nucleotides (as stated in the figure legends) for 10 min

at 37�C. The level of Thr210 phosphorylation was determined by western blot

analysis using an anti-AMPK Thr172 phosphospecific antibody (Cell Sig-

naling). Total Snf1 was detected using an anti-6xHis antibody (Abcam). In

some cases, SNF1 activity was measured directly using the SAMS peptide

assay (Woods et al., 1994). Dephosphorylation of TAP-SNF1 by recombinant

PP2Ca was monitored using phosphopeptide-specific antiserum (McCartney

and Schmidt, 2001), while the level of total Snf1 protein was determined with

His-probe antibodies (Santa Cruz Biotechnology). Primary antibodies were

detected using LI-COR IRDye Infrared Dye secondary antibodies and visual-

ized using an Odyssey Infrared Imager (LI-COR Biotechnology). Quantification

of results was performed using Odyssey software and expressed as a ratio of

the signal obtained with the phosphospecific antibody relative to the appro-

priate total antibody.

Binding Studies

Unless stated otherwise, all binding measurements were performed at 20�C in

50 mM Tris (pH 8), 100 mM NaCl, 1 mM tris(2-carboxyethyl)phosphine. Free

NADH has an emission maximum at 465 nm (excitation at 340 nm). In the pres-

ence of saturating SNF1, the emission maximum is blue shifted to 435 nm, and

the fluorescence emission intensity is increased. These fluorescence changes

were used to determine equilibrium dissociation constants by titrating 4–10 mM

NADH with SNF1. Experiments performed at higher NADH concentration and

low temperature confirmed that NADH binds to SNF1 with 1:1 stoichiometry.

The coumarin analogs of ADP and ATP (C-ADP, C-ATP: 30-(7-diethylamino-

coumarin-3-carbonylamino)-30-deoxyadenosine 50 di- and triphosphate) have

emission maxima at 479 nm (excitation at 430 nm). In the presence of satu-

rating SNF1 the emission maxima are blue shifted to�470 nm and the fluores-

cence intensity is increased. These fluorescence changes were used to deter-

mine equilibrium dissociation constants by titrating 4–6 mMC-AXP with SNF1.

Experiments performed at higher C-AXP concentration and low temperature

confirmed that these analogs bind to SNF1 with 2:1 stoichiometry. Dissocia-

tion constants for NADH and C-AXPs to phosphorylated and nonphosphory-

lated SNF1 are shown in Table S4. Dissociation constants for AMP, ADP,

and ATPwere determined using NADH and the coumarin analogs as reporters.

Competition assays were performed in which a mixture of SNF1 and the fluo-

rescent nucleotide was titrated with the nonfluorescent nucleotide. These data

were then analyzed with the previously determined Kd values for the fluores-

cent nucleotides held constant in the analysis. The dissociation constant for

NAD+ was estimated using NADH as the reporter.

Crystallographic Studies

Truncated SNF1 (Snf4(1-322)Sip2(304-415)His-Snf1(457-633)) was cloned into a tri-

cistronic vector and subsequently expressed in E. coli BL21 (OneShot BL21

Star [DE3] cells, Invitrogen). Proteins were purified by nickel affinity
etabolism 14, 707–714, November 2, 2011 ª2011 Elsevier Inc. 711



Figure 3. Mutation of His379 in Gal83 Increases the Rate of SNF1 Dephosphorylation

(A) Schematic representation of the three components of the SNF1 heterotrimer from S. cerevisiae. The regions used for crystallization are shown in color, and the

designation of the nucleotide binding sites within Snf4 corresponding to the 4 cystathionine-b-synthase domains, as proposed by Kemp et al. (Kemp et al., 2007),

is indicated. An amino acid alignment of the C-terminal regions of Gal83, Sip2, human AMPKb1, human AMPKb2, and S. pombe AMPKb subunits is also shown.

Conserved residues are shown boxed in gray, and the two conserved histidine residues (that mediate the interaction between the kinase and the regulatory

fragment in mammalian AMPK [Xiao et al., 2011]) are shown in black boxes.
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chromatography (His-Trap, GE Healthcare), anion exchange (Mono Q, GE

Healthcare), and gel filtration (Superdex 200, GE Healthcare). The His-tag

was removed by digestion with PreScission protease, and the SNF1 complex

protein was purified by gel filtration (Superdex 200, GE Healthcare). Protein

complex stock solution was prepared at 15 mg/ml in 50 mM Tris (pH 7.0),

300 mM NaCl, and 1 mM TCEP. Crystals were grown by vapor diffusion tech-

nique at 18�C in hanging drops. Drops were prepared bymixing equal volumes

of protein complex with reservoir solution containing 1.0M succinic acid, 0.1M

HEPES (pH 7.0), 1% (w/v) polyethylene glycol monomethyl ether 2000 (Index

Reagent 34, Hampton Research). Crystals were first transferred into mother

liquor with an additional 12.5% ethylene glycol, then 25%ethylene glycol, prior

to plunging into liquid nitrogen. For crystal soaking experiments, ADP, AMP,

and NADH were made up in reservoir buffer, and crystals were soaked over-

night prior to flash cooling. Diffraction data were collected on an in-house

MicroMax-007 HF rotating anode coupled to a RaxisIV2+ detector. Data

were integrated using Denzo and scaled with Scalepack (Otwinowski and

Minor, 1993). The structure was solved bymolecular replacement using Amore

(Navaza, 1994) using 2QLV.pdb as the search model. Standard refinement

was carried out with Refmac5 (CCP4, 1994) with manual model building with

Coot. Figures were created with PyMOL.
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