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ABSTRACT: This paper presents data from 42 new samples yielding the first comprehensive 

set of cosmogenic 10Be and 36Cl Late Pleistocene exposure ages of moraine boulders across a 

series of glaciated valleys in the Toubkal Massif (4167 m a.s.l.), High Atlas, North Africa. The 

timing of these glacier advances has major implications for understanding the influence of 

Atlantic depressions on moisture supply to North Africa during the Pleistocene. The oldest 

and lowest elevation  moraines which span elevations from ~1900-2400 m a.s.l. indicate that 

the maximum glacier advance occurred from MIS 5 to 3 with  a combined mean 10Be  and 

36Cl age of 50.2 ± 19.5  ka (1 SD; n=12, 7 outliers).  The next moraine units up-valley at 

higher elevations (~2200-2600 m a.s.l.) yielded exposure ages close to the global Last Glacial 

Maximum (LGM) with a combined mean 10Be and 36Cl age of 22.0 ± 4.9 ka (1 SD; n=9, 7 

outliers). The youngest exposure ages are from moraines that were emplaced during the 

Younger Dryas with a combined mean 10Be and 36Cl age of 12.3 ± 0.9 ka (1 SD; n=7, no 

outliers) and are found in cirque-like positions at the highest elevations ranging from ~2900-

3300 m a.s.l.  From moraines predating the Younger Dryas, a large number of young outliers 

are spread evenly between 6 to 13 ka suggesting a continuing process of exhumation or 

repositioning of boulders during the early to mid-Holocene. This attests to active seismic 

processes and possibly torrential erosion during this period.  

 

1. Introduction 

There is a century long history of glacial research in the Atlas Mountains, Morocco. Some of the 

earliest observations of glacial features   are reported in ‘Journal of a tour in Marocco and the 



Great Atlas’ by the English writers Hooker and Ball in 1878 and also by Thompson in 1899. In 

1922, Frödin reported on glacial deposits as low as 500 m altitude near Marrakech; however, these 

deposits were subsequently re-interpreted as fluvial in origin by De Martonne (1924) who did not 

find any evidence of glaciation in lower valley areas.  De Martonne (1924) and Célérier and 

Charton (1922) reported glacial deposits in the headwaters of the Imenane and Rheraia Valleys on 

the northern slopes of the Toubkal massif (Figure 1).. Dresch (1941) studied the geology of the 

entire Toubkal massif from Anrhemer (3942 m a.s.l.) in the northeast to Ouanoukrim (4089 m a.s.l.) 

in the southwest, and commented on the glacial geomorphology of the area. In  these higher 

elevation valleys, De Martonne (1924) observed former glaciers had extended to 2000 m a.s.l. 

and that the snowline was situated at ~2800 m a.s.l Dresch (1941, p. 622) argued that 

Pleistocene snowlines were situated at c. 3600-3700 m a.s.l. Later papers by German researchers 

Heybrock (1953) and Mensching (1953) confirmed the presence of glacial deposits in the Toubkal 

massif. studies by Messerli (1967), Messerli and Winiger (1980), Chardon and Riser (1982) and 

Hughes et al. (2004) provided some more insight into the detail of glaciation in the Toubkal area. 

However, it was not until Hughes et al. (2011 ??? this ref isn’t listed? Were there exp ages b4 we 

published in 2014?? 2011 hughes is for Montengero) that the first exposure ages were presented 

for the glacial Late Pleistocene sequence in Morocco. A more recent survey on the Tazaghart and 

Iouzagner areas 5-10 km to the west of Toubkal have revealed evidence for extensive plateau ice 

fields and a series of later smaller glacier phases, although these features were undated (Hannah et 

al. 2016). The significance of glaciation in the High Atlas highlights the pressing need for more 

comprehensive dating of the glacial record.  

 

In the Toubkal area, glacial features are often closely associated with mass-movement deposits. 

For example, Célérier and Charton (1923) suggested that a landslide dammed the lake of Lac 

d’Infi, on the southern slopes of Toubkal, as a result of glacier retreat up the valley. Neltner (1938) 

also considered Lac d’Infi to be dammed by a huge landslide. Another large rock accumulation at 

Arroumd in the upper reaches of the Rheraia valley in the Toubkal area, has been interpreted as a 

moraine (Hooker and Ball, 1878, p. 199), a rock glacier (Dresch, 1941; Mensching, 1953; Chardon 

and Riser, 1981), and a rock avalanche deposit (Hughes et al. 2011???). In the most recent research, 

cosmogenic 10Be exposure dating showed that the rock debris in this valley is mid Holocene in age 

and was formed by a massive rock avalanche, with seismic activity the likely trigger (Hughes et al., 

2014). Nevertheless, there is also clear evidence of glaciation in this valley and Hughes et al. (2014) 

suggested that glaciers had over-steepened the backwall cliff making them more prone to collapse. 

 



Elsewhere in Morocco, glacial features have been described in the limestone High Atlas around 

Irhil M’Goun (Dresch 1949; Wiche 1953), the Middle Atlas (Dresch and Raynal 1953; Raynal et 

al. 1956; Awad 1963) and the Rif (Mensching 1960). In a review of the glacial record in Morocco, 

Awad (1963) identified evidence for glacial traces (including rock glaciers) during three main 

phases. In Moroccan continental chronostratigraphy the last glaciation is equated with the 

Soltanien (Awad 1963, after Choubert et al. 1956) and is equivalent to the Würmian Stage in 

Alpine stratigraphy (Lefèvre and Raynal 2002). Awad (1963) correlates earlier glacial deposits 

with Middle Pleistocene cold stages such as the Tensiftien (Rissian; MIS 6) and earlier cold stages 

in the Moroccan stratigraphy. (R1 pdf : do not need table )  

 

The aim of this paper is to re-assess the timing and extent of Pleistocene glaciation from 9 valleys 

across the Toubkal mountains of the High Atlas, Morocco. Given that the last major 

geomorphological investigations were published by Dresch (1941) and Mensching (1953), there is 

a need to revise these seminal works in the light of more than 50 years of development in the fields 

of geomorphology and Quaternary science, especially in the application and availability of new 

geochronological techniques. This paper presents 1) new mapping for the geomorphological 

evidence of glaciation across the northern escarpment of the Marrakesh High Atlas, namely the 

slopes of Adrar el Hajj (3129 m a.s.l.; also known as Adra Adj on some maps), Aksoual (3912 m 

a.s.l.) Bou Iguenouane (3877m a.s.l.), and Toubkal (4167 m a.s.l.), and 2) the first radiometric 

based geochronological determination of glacial phases using 10Be and 36Cl exposure dating. The 

High Atlas is a key physiographic barrier between the Atlantic Ocean,  Sahara Desert and the  

Mediterranean and hence understanding the timing of glaciations in these mountains is a pre-

requisite toward understanding Pleistocene environmental change in North Africa and also human 

evolution ( Blome et al Journal of Human Evolution 2012) 

 

2. Study Area 

The High Atlas near Marrakesh (c. 31.1°N, 7.9°W) contains the highest peaks of the Atlas chain, 

culminating at Jebel Toubkal. The mountains of this area are formed predominantly in 

Precambrian volcanic rocks (Figure 2). The upper slopes of the valleys and all the summits of the 

Toubkal massif are made of stacked basaltic flows whilst the lower parts of the massif, below 3500 

m, are formed in rhyolite, dacites, ignimbrites and andesites (Pouclet et al. 2007). The cliffs of the 

mountains in this area are over 2000 m and expose a complex suite of extrusive volcanics. 

Consequently, the moraine boulders in these valleys have a very diverse range of extrusive 

volcanic lithologies. Some of the volcanic rocks contain quartz phenocrysts and quartz veins, 

whilst others have very limited quartz. Plutonic rocks are also present, though not common in the 



glaciated headwaters, and consist of various grades of granites and diorites. Triassic sandstones 

and Cambrian limestones are present locally (Figure 2), although again these lithologies have not 

been subject to glaciation.  

 

The area is tectonically active with numerous faults. The most significant in the study area is the 

Tizi n’Test Fault which runs through several of the studied valleys, including Azib Mzik, Tamatert 

and the Imenane Valley (Delcaillau et al., 2010; 2011). The High Atlas are unusual in that they do 

not display evidence of significant crustal thickening. The crust is ~15 km thinner than would 

normally be expected for mountains reaching 4000 m in elevation (Miller and Becker 2014). A 

Plio-Quaternary uplift event has been determined using river profiles, which has been linked with 

the convective removal of the lithospheric root of the Atlas Mountains resulting in the 

anomalously high topography observed today (Boulton et al., 2017).   

 

No glaciers exist today in the High Atlas.  However semi-permanent snow fields do exist, the most 

famous being the Névé Permanent below the northern cliffs of the Tazaghart plateau. This site is 

likely to have been a true glacier in the Little Ice Age and moraines enclose the lower parts of the 

site (Hughes, 2014; Hannah et al. 2016). It is also possible that small patches of permafrost exist in 

sheltered shaded localities. For example, Chardon and Riser (1981) identified a potential active 

rock glacier in the western cirque of Toubkal at an altitude of 3700-4000 m a.s.l.  

 

The present-day annual temperature range at nearby Marrakech (484 m a.s.l.) is 16.1°C (mean 

annual 19.6°C; July 28.3°C and  January 12.2°C) (World Meteorological Organisation, 1998). 

When temperatures are extrapolated using a lapse rate of 0.6°C per 100 m, the mean annual 

temperature at 4000 m a.s.l. is about  -1.6°C (July 7.1°C,  January  -9.0°C).  In the Aït Mizane 

valley draining the north side of Toubkal mean annual precipitation for the period 1949-50 to 

1963-64 was 837.3 mm at the Neltner Refuge (3200 m a.s.l.) and 514.6 mm at Arroumd (1900 m) 

(Messerli 1967, p. 183).  

 

3. Methods 

 

3.1. Glacial geomorphology 

The glacial geomorphology of the Toubkal Massif was mapped in the field between 2007 and 2013 

using 1:50,000 topographic base maps (Orientazion, 2006). Satellite imagery (GoogleEarth) was 

used to help target field exploration and improve the accuracy of the field mapping. Glacial 

landforms were mapped and subdivided using morpho-lithostratigraphy. This approach employs 



morphological and lithological criteria to define, subdivide and correlate landforms (Hughes, 

2010). A strict separation was maintained between field descriptions and landform interpretations. 

This was especially important since the same landforms in this area have been assigned contrasting 

geomorphologies  by different authors, such as either rock avalanche, fluvial, periglacial or glacial 

deposits, or even as a combination of these. Lithological properties of landforms were assessed at 

both the surface and at section exposures using routine clast characteristics (e.g., size, shape, 

roundness, fabric, presence/absence of striae). The geomorphological observations were divided 

into three  separate mountain-valley regions  that during the last glacial cycle were glacially 

modified areas: Region 1: Aksoual-Bou Iguenouane; Region 2: Adrar el Hajj, and; Region 3: 

Toubkal.   Valley morphometry for the nine glaciated valleys sampled for 10Be  is given in 

table 1. 

 

3.2. Geochronology 

Samples for cosmogenic 10Be (n = 24) and 36Cl (n = 18) analyses were taken from the upper 

exposed surface of 38 moraine boulders and from 4 glacially-modified bedrock outcrops.  The 

largest boulders, embedded within moraine crests were targeted to minimise potential toppling and 

exhumation. Subrounded/subangular erratic boulders (sometimes with striations) were also 

preferred where possible as these have undergone abrasion and are likely to have been transported 

sub-glacially over significant distances, reducing the contribution of  of inheritance to the post- 

depositional inventory  of 10Be during sub aerial exposure . The variety in lithology and limited 

distribution of quartz required sampling andesites and basalts for 36Cl but where quartz veins were 

available and sufficient, preference was given to sampling for 10Be.  No samples or same surfaces 

were analysed using both 10Be and 36Cl.  Rock densities were measured in the laboratory with most 

conforming to expected values for quartz (~2.6 to 2.8 g/cm3). The area contains some unusually 

dense rocks including barytes (densities up to 4.4 g/cm3) and some quartz veins were dense (up to 

3.41 g/cm3). Topographic shielding was measured in the field using a compass and an abney level 

with shielding values calculated as described in Dunne et al. (1999). Details of sample locations, 

rock type and field setting are provided in Table 2.  

 

 

3.2.1. 10Be Analysis  

Twelve 10Be samples were prepared for AMS measurement at the Cosmogenic Geochemistry 

Laboratories at the Australian Nuclear Science and Technology Organisation (ANSTO) and 12 

10Be samples were prepared at the Cosmogenic Isotope Analysis Facility at the Scottish 



Universities Environmental Research Centre (SUERC). All results pertaining to the 10Be AMS 

analyses are provided in Table 3. 

 

ANSTO samples were processed and measured following methods reported in Child et al., (2000). 

Fink et al., (2000) and Mifsud et al., (2013). Further details pertaining to chemistry processing 

samples of similar andesitic and basaltic lithologies are given in Hughes et al. (2014) for dating a 

rock avalanche site in the same area of Morocco. AMS targets were measured for 10Be at the 

ANTARES AMS Facility at ANSTO (Fink and Smith, 2007). 10Be/9Be ratios were normalised 

against the NIST - 4325 standard reference material using the revised nominal 10Be/9Be ratio of 

2.79 x 10-11 (Nishiizumi et al., 2007).  All isotopic ratios were corrected using full chemistry 

procedural blanks prepared from purified beryl crystal with a 9Be concentration of 1120±10 ug/g 

and giving a measured 10Be/9Be ratio of (4.75 ± 0.11) x 10-15 (n=7, 3 targets). Background 

corrections ranged between 2-10% of the measured AMS 10Be/9Be ratios (Table 3). Multiple 

measurements of individual samples were combined as weighted means with the larger of the 

mean standard error or total statistical error. Final analytical errors were derived from the 

quadrature addition of the 1-sigma spread in repeat measure of AMS standards (1.0 – 2.0%), error 

in the AMS ratio, and a 1% error in Be-spike assay resulting in a combined analytical error ranging 

from 2.9 to 7.1% for 10Be/g-quartz excluding 3 samples at ~8.8 to 10.1%.  The SUERC samples 

were processed following procedures outlined for 10Be in Glasser et al., (2012) and Rolfe et al., 

(2012). 10Be/9Be ratios were also normalised against the NIST-4325 standard reference material 

adopting a 10Be/9Be ratio of of 2.79 x  10-11 (Nishiizumi et al.,  2007) (see Table 3) . Between 220 

and 250 µg of Be spike was added to samples and procedural blanks. 10Be blank corrections 

ranged between 1 and 11% of the measured AMS 10Be/9Be ratio. 10Be targets were measured  by  

accelerator mass spectrometry at SUERC (Xu et al., 2010).  

 

10Be ages were calculated using the  Lal/Stone time-dependent scaling scheme (Lm) and the NE 

North America (NENA)  calibration dataset  (Balco et al., 2009) with a spallation reference sea 

level-high latitude production rate of 3.87 ± 0.19 (4.8%) 10Be atoms/g/a.  This  value incorporates 

the re-standardisation of the Nishiizumi standards and half-life revision reported by Nishiizumi et 

al. (2007).  Currently there is no local calibration site for 10Be production in the High Atlas (31°N); 

although the NENA calibration dataset is just a little further north (41°N) to Morocco/Iberia on the 

opposite side of the North Atlantic. In any case, the NENA calibration closely fits the global 

calibration dataset compilation of Heyman (2014) and ages are within 2% of those calculated using 

the most recent CRONUS calculator of Marrero et al. (2016). 

 



3.2.2. 36Cl Analysis  

Eighteen 36Cl samples were prepared for AMS measurement at the SUERC AMS facility. The 

elemental composition and results of the 36Cl AMS analyses are given in Table 4.  Elemental 

analysis of the bulk rock fraction was determined using XRF. Uranium and Thorium 

concentrations in the bulk rock were determined using ICP-MS. Selected elemental analysis in the 

processed target fraction (CaO, K2O, TiO2, Fe2O3) was determined using ICP-OES. Stable Cl 

concentrations were calculated by AMS isotope dilution (Di Nicola et al. 2009). Standard Z93-

0005 with a nominal 36Cl/Cl ratio of 1.20 x 10-12 (Vogt et al 1994)  was used as a primary standard 

for 36Cl measurements. Blank corrections for 36Cl concentrations ranged between 0.5 and 25%. All 

36Cl analyses were performed on the 125-250 µm fraction. For two samples, the processing was 

repeated commencing from untreated rock powder and using the 125-250 µm mass fraction to 

asses reproducibility  and improve the precision of both Cl and 36Cl concentrations (IRHZWE-6 

and TAM5) and for a third sample (AT3a) the larger 250-500 µm fraction was also analysed. The 

paired ages from two of the replicates (TAM5 and AT3a, Table 4) agreed within 1-sigma 

uncertainty whilst the third (IRHZWE-6), although deemed to be an outlier, gave very different 

ages and was rejected. The sample geochemical analyses (from bulk rock and the processed 

fraction) and AMS results were used to calculate 36Cl exposure ages from the CRONUS Earth 

Web Calculator v.2.0 (Marrero et al., 2016) employing the Lal/Stone time-dependent scaling 

scheme (Lm).  About half of the samples had relatively high levels of stable chloride ranging from 

~200 to 522 ppm which can negatively impact 36Cl exposure age accuracy because quantifying 

thermal neutron production of 36Cl is a complex problem due to the strong dependency on sample 

geometry, time dependent uncertainties in neutron moderation and heterogeneity in U-Th 

distribution (Phillips et al 2012, Schimmelpfennig et al. 2009). Table 5 provides the fractional 

distribution of total 36Cl production from spallation (on Ca and K) and from thermal neutron 

capture on native 35Cl (U-Th radiogenic production of neutrons and neutrons from cosmic ray 

internations in the rock). All but two of the samples have more than 50% of the 36Cl produced from 

neutron-capture on 35Cl. According to Phillips et al. (2012), the error in a calculated 36Cl age from 

samples where production is predominantly due to thermal and epithermal neutron capture can be 

up to 30%, hence in our case, we estimate that for most samples, half the age error stems from high 

stable Cl content.   

 

 

Supplementary Table 1 provides the input file for 10Be exposure ages via the CRONUS calculator 

(Balco et al. 2008; 2009). 

(http://hess.ess.washington.edu/math/al_be_v22/alt_cal/Balco_NENA_age_input.html). 



Supplementary Table 2 provides the input file for the 36Cl exposure ages via CRONUScalc  

website calculator (web1.ittc.ku.edu:8888).  

 

4. Results: Geomorphology and Geochronology 

Our new mapping, exposure ages and the ensuing discussion are presented with respect to the nine 

glaciated valleys distributed across three regions or catchments in the High Atlas (Figure 1; Table 

1).  All 10Be and 36Cl exposure ages (quoted with 1-sigma analytical age errors) are summarized in 

Table 6 and ordered according to our observation of three, spatially distinct and largely temporally 

separated, glacial units that suggest that at least 3 glacial advances  occurred throughout  the High 

Atlas during the last glacial cycle.   

 

Region 1 covers seven major valleys draining the northern and northwestern slopes of Aksoual 

(3912 m) and Bou Iguenouane (3877 m) peaks (Figure 1 and  Figure 3).  Five of these valleys 

drain into the modern river channel of Imenane valley. These valleys, from west to east, are Tamda, 

Goudmane, Likemt, Iguenouane, and Amguedoul. The remaining two valleys, Tamatert and 

Imserdane, also drain the same northern slopes, but westward through the villages of Tamatert  and 

Arroumd respectively (Figure 3). The landforms and boulder deposits in Imserdane valley were the 

focus of a study by Hughes et al (2014), describing the general geomorphology, rock-wall debris, 

slope failure deposits and glacial geochronology. Samples listed alphabetically in Table 2 from A 

to U, plus AG and AH, originate from this region.  About 2 km due west of Arroumd the second 

region, Region 2 (Figure 1 and Figure 4) covers Azib Mzik valley draining  the northern slopes of 

Adrar el Hajj  (3129 m).  Samples listed in Table 2 from V to Z to originate from Region 2. The 

third region, Region 3, (Figure 1 and Figure 5) covers the greater catchment of Toubkal Massif 

(4167 m) and the lower northern section of Aït Mizane Valley draining through Arroumd village. 

This area was mapped for future investigations and six samples (listed as AA to AF) were 

collected from a valley near the shrine of Sidi Chamarouch. However, moraine successions were 

not subdivided and ascribed to distinct morphostratigraphical units, unlike those in Regions 1 and 

2, because of uncertainties in the relative relations of the various moraines. Further research is 

needed.  

  

All eight valleys in Regions 1 and 2 contain localised and spatially distinct units of glacially 

deposited boulder fields or boulder laden ridges, some of which have clearly preserved their 

moraine shape and orientation with respect to down-valley ice flow. Five of the eight valleys 

contain 3 such units. The morpho-stratigraphical succession with respect to elevation and volume 

of boulders varies between valleys. Five of the valleys contain all three sets of distinct moraine 



deposits from cirque to maximum extent, usually covering 3-6 km over elevation differences of a 

few hundred metres. Due to the commonality of this pattern, we have labelled these deposits as 

Units 1, 2 and 3 with Unit-1 being the most distal (i.e. oldest) (see Table 5). The three remaining 

valleys, Tamatert, Tamda, Amguedoul, possess only the two oldest units.  

 

The synthesis and glaciological discussion of the overall collection of 10Be and 36Cl exposure ages 

is provided in Section 5.   

 

4.1 Region 1 - East: Aksoual,  Bou Iguenouane  and Imenane Valley 

4.1.1  Description  

The lowest boulder deposits in each of the 5 valleys draining the northern flanks of Aksoual and 

Bou Iguenouane are found at the banks (predominantly on the southern side) of the Assif 

n’Imenane River (Figure 3). The river cuts through these boulder deposits near the village of 

Tachddirt. These lowest boulder deposits, labelled as Unit-1, are correlated with the lowest 

elevation deposits in other valleys. The altitude of Unit-1 rises from ~2080 m a.s.l. in the 

westernmost valley of Irhzer Tamda to 2380 m a.s.l. in the easternmost Amguedoul valley. The 

boulders have a wide range of volcanic lithologies and include a range of basalt, rhyolite and 

andesite rock types. Some rest on bedrock with little fine-grain supporting matrix. This is 

especially true in the lower parts of the Irhzer Likemt Valley where large isolated erratic boulders 

are perched on bedrock. Matrix-supported boulder-rich diamictons are found exposed in road cut 

sections in the Irhzer n’Ou Goudmane and Amguedoul Valleys (Figure 6). The sediments in these 

sections contain a wide variety of volcanic lithologies and clast sizes (from pebble to boulder). In 

the Irhzer n’Ou Goudmane section the clasts are largely subrounded and subangular (SR: 45%; SA: 

35%; A: 20%) and 20% of the clasts are striated. Fine-grained basalts tend to be striated whereas 

porphyritic volcanic clasts tend not to display striae).  

 

Up-valley of the lowest Unit-1 deposits, a second deposit of boulders, labelled as Unit-2, is present. 

These are correlated on the basis of morphostratigraphy to Unit-2 in other valleys. Unit-2 has very 

similar characteristics to Unit-1 being largely subrounded, subangular and containing striated 

clasts, but differs from Unit-1 in that its moraine morphology is clearer with boulder-rich ridges 

occurring on either sides of the valleys. In Irhzer Tamda, the Unit-2 ridge of boulders extends to 

~2125 m, a short 50 m  above  Unit-1. In the other valleys Unit-1 and Unit-2 are more widely 

separated in altitude and distance with the lower limit of Unit-2 increasing to  ~2300 m in Irhzer 

n’Ou Goudmane, 2500 m in the Irhzer Likemt, 2250 m in the Iguenouane Valley and 2350 m in 

the Amguedoul Valley.  



 

At elevations closest to headwalls, a third ridge of boulder deposits are found usually in cirque-like 

positions. These youngest deposits, designated as Unit-3, are valley-correlated and present in only 

three of the five valleys (Goudmane, Likemt and Iguenouane) at similar lower limit elevations of 

~2900 m. As with the lower boulder units, Unit-3 contains clasts of a wide range of volcanic 

lithologies.  

 

4.1.2     Interpretation & exposure ages 

The boulder accumulations in all 5 north trending valleys closely resemble the moraine 

successions found across the wider Atlas Mountains in regions II and III. They have morphological 

and sedimentological properties that are characteristic of moraines consistent with the 

interpretations of De Martonne (1924) and Celerier and Charton (1923). De Martonne (1924, p. 

302) cautioned that some rugged longitudinal ridges in valley floors may be fluvial in origin but 

noted that ridges on valley sides are likely to be moraines. Differentiating between moraines and 

high-energy alluvial deposits is most challenging for the lowest, oldest and more degraded 

moraines. Alluvial fans are sometimes eroded forming enclosing sediment ridges. Thus the criteria 

for distinguishing these features from moraines include: 1) location relative to fluvial channels and 

valleys, with perched boulder ridges in wide valleys suggesting a glacial rather than fluvial origin, 

2) proximity to higher and younger moraines that are very well-preserved suggesting a recessional 

sequence (e.g, Figure 3), 3) presence of striated clasts and 4) basic sedimentological properties 

(e.g., shape, roundness and sorting of clasts). When using these criteria, the glacial deposits in the 

upper catchments can be clearly differentiated from alluvial fans and fluvial terraces observed in 

the nearby valleys, such as in the Ourika Valley (Delcaillau et al. 2016) and elsewhere in the High 

Atlas Mountains (e.g. Mather and Stokes 2017). 

 

Adding to the complexity of interpretation, Dresch (1941, Figure 196, p. 598) identified these 

deposits as rock glaciers. However, there is no evidence to suggest that these particular features are 

rock glaciers in the sense of Barsch (1996), i.e. as debris accumulations that move down-valley as 

a result of permafrost creep. Based on our detailed mapping, we infer that the boulder ridges and 

deposits in the valleys described above are indeed clearly formed by normal (ice) glaciers. It is 

possible that at one stage during glacial evolution, that they were debris-covered, but there is no 

residual morphological evidence to support this. Small rock glaciers are evident in the very highest 

cirques (Hughes 2018), although these are likely to be recent Holocene features (Vieira et al., 

2017).  Dresch (1941) also questioned the presence of moraines in the high cirques, including the 

highest boulder pile in the Irhzer Tamda (Dresch 1941, p. 599, Figure 197) and instead suggested 



that these are deposits formed by water torrents. Nevertheless, Dresch (1941, Figure 206) did 

recognise that small glaciers occupied all the upper headwall areas of many of the valleys. 

However, the presence of more extensive former valley glaciers recognised by De Martonne (1924, 

Figure 4, p. 301-302), to have descended as low as 2000 m reaching the thalweg of the Imenane 

valley, is supported with the evidence presented in this paper.  

 

In Irhzer Tamda valley, a boulder perched on a knoll on the eastern side of the valley associated 

with Unit-1 yielded a 36Cl ages of 63.3 ± 2.9 ka (mean of two replicates at 67.0 ± 4.3 and 59.5 ± 

3.9 ka)  (TAM-5 [F]). A moraine ridge rising on the valley flanks adjacent to but immediately in-

board of the extensive spread of Unit-1 erratics, was assigned as Unit-2. Three boulders at 

elevations from 2140 to 2240 m gave ages of 29.5 ± 1.7 ka (36Cl; IT-10 [C]) (see Figure 7), 22.5 ± 

1.4 and 16.3 ± 0.9 ka (10Be; TAM-7 [D] and TAM-2 [E]). A boulder on the same suite of moraines 

(Unit-2), and slightly higher in the valley at 2380 m, was at 26.1 ± 1.3 ka (36Cl; TAM-6 [G]). A 

sample from a boulder nearby yielded an outlying age of 6.0 ± 0.4 ka (36Cl; TAM-4).  

  

To the east, in the Irhzer Likemt Valley (Figure 3) at its lowest elevation of ~2300 m, two quartz 

vein samples from boulders on Unit-1 yielded ages of 13.6 ± 0.9 ka and 34.6 ± 2.0 (10Be; Irhzwe-

10-11 [J] and Irhzwe-9-11 [H]). Both boulders are positioned on the crest of the eastern boulder 

ridge. A sample from the lowest of Unit-2 lateral moraines at ~2400 m in elevation gave an age of 

17.2 ± 0.9 ka (36Cl; Irhzwe-12-11 [K]). Higher up the valley at ~2575 m, five boulders yielded 

ages of 8.2 ± 0.5 ka (10Be; Irhzwe-5-10 [M]), 8.9 ± 0.6 ka (36Cl; Irhzwe-4 [M]) on the western 

lateral, and on the eastern lateral, ages of 25.8 ± 1.6 (10Be; Irhzwe-2-10, [L]),  6.3 ± 0.6 ( 10Be; 

Irhzwe-7-10 [L]) and  9.0 ± 0.4 ka (mean of two replicates at 12.2 ± 0.8 and 5.8 ± 0.3 ka) (36Cl; 

Irhzwe-6 [L]). One sample on a boulder-filled extension of the western lateral, just below the 

cirque moraine, gave an age of 16.6 ± 0.8 ka (36Cl; Irhzwe-3 [N]). The highest moraines in the 

Irhzer n’Likemt, labelled as Unit-3 in Figure 3, is located just below headwall and form prominent 

arcuate boulder piles at the lip of a deep cirque on the northern cliffs of the Tizi Likemt  at 3555 m 

(Figure 8). Two samples yielded exposure ages of 12.1 ± 0.8 and 13.7 ± 0.8 ka (10Be; Irhzwe-1 [P] 

and Irhzwe-8-10 [Q]).  There are clearly several young outliers in Units-1 and -2 in Irhzer Likemt, 

which are likely to be the result of exhumation caused by erosion of the moraines. Nevertheless, 

the older set of ages for each Unit are all stratigraphically consistent suggesting glacier 

stabilisation and retreat between 35-13 ka.   

 

Five samples from Unit-1 moraines in the Amguedoul Valley, the most easterly of the glaciated 

Imenane Valley tributaries, yielded ages of 12.6 ± 0.8, 87.9 ± 4.7, 9.1 ±0.5 ka and 9.5 ± 0.7 ka 



(10Be; Amguedoul-7,- 2,- 3 and -6, respectively [R, S, T, U in Figure 3] and  80.0 ± 12.1 ka (36Cl; 

Amguedoul-1, [R]) (Figure 9). Amguedoul-7 and 2 [R,S] were on the crest of the western boulder 

ridge whilst Amguedoul-3 and -6 [T,U] were from the moraine crest  bounding the river valley to 

the northeast. All of these sites are prone to torrential erosion by streams and slope processes and 

again, the youngest ages are likely to be the result of exhumation caused by erosion of the 

moraines. This interpretation is compounded by the fact that moraines are the lowest of the valley 

and would be expected to be the oldest too (see Figure 3). The fact that the two oldest boulder ages 

are very similar yet from different boulders suggests that the ages are ‘real’ exposure ages and not 

inherited. Furthermore, the similarity of the 10Be and 36Cl ages provides confidence in the age 

calculations.    

 

4.2    Region 1 West: Aksoual and  Assif Tamatert 

4.2.1      Description 

Unit-1 boulders are found in the valley immediately above the village of Tamatert at 1900-2000 m 

a.s.l. Here, several large subrounded basalt, diorite and rhyolite boulders are perched on the valley 

side as well as close to the modern river channel. The largest of these are >10 m in diameter and a 

12-m diameter basalt boulder on the western side of the valley overlies a diamicton containing 

erratic diorite clasts. Whilst the bedrock is basalt in this area, the diorite originates from higher in 

the catchment. A truncated basalt spur occurs on the western side of the lower Assif n’Tamatert at 

2000 m a.s.l. (Figure 10) with large subrounded boulders perched on the up-valley side of the spur. 

At 2100-2200 m a.s.l. a dense accumulation of igneous erratic boulders, originating from the cliffs 

higher in the valley, forms a boulder ridge on a bedrock spur. This boulder ridge runs from the 

modern river channel up a bedrock spur with the highest boulders situated ~100 m above the 

channel. The boulders (sample n = 20) are dominated by subrounded, subangular and angular 

shapes (A: 30%; SA: 35%; SR: 35%) and several boulders are striated (n = 5). All of the boulders 

of the lower Assif n’Tamatert are correlated with the Unit-1 deposits in other valleys. A second 

concentration of boulders on both sides of the valley is present 300 m up-valley at 2300-2400 m.  

 

4.2.2       Interpretation & exposure ages 

The two boulder units described above are correlated with Units -1 and -2 moraines in other 

valleys. The steep nature of this valley suggests that moraine preservation, particularly in the 

steepest and narrowest sections, would have been limited and explains the sparse distribution of 

boulders and absence of distinguishable or contiguous moraine in Assif n’Tamatert. Nevertheless, 

the truncated spur overlaid with perched boulders provides support for interpretations of an ice 

limit as low as 1950 m a.s.l. in this valley. The moraines of Unit-1 between 2100 and 2200 m a.s.l. 



are the best-preserved moraines in this valley and are preserved in an area where the valley 

broadens out. Samples from two large erratic boulders on the moraine crest yielded exposure ages 

of 60.0 ± 4.7 ka (36Cl; AT-4 [A]) and 40.5 ± 3.5 and 38.5 ± 3.5 ka (mean age = 39.5 ± 2.5 ka) 

from a duplicate sample (36Cl; AT-3a [B]). 

 

4.3. Region 1 (west): Aksoual and   Assif n’ Imserdane  

The Assif n’Imserdane is an eastern tributary of the lower Aït Mizane valley and is situated below 

the 1500-m high cliffs of Azrou n’Tamadôt (3770 m a.s.l.) which represents the western ridge of 

Aksoual (3912 m a.s.l.). The valley is dominated by rock avalanche deposits that yielded an 

average exposure ages of 4.5 ± 0.5 ka (landslide units A and B in Hughes et al., 2014, Table 2  this 

should be table 2  in Hughes et al 2014). Moraines also occur in this valley, an observation made 

by De Martonne (1924), and several striated boulders are present (Figure 6). Similarly as seen in 

the adjacent valleys, three separate moraine units occur, closely spaced in both distance and 

altitude compared with the Toubkal Aït Mizane Valley of Region-III; see below) with moraines at 

1900-2300, 2150-2350 and 2350-2400 m a.s.l. (Figure 3) and again these correlate to Units 1, 2 

and 3.  Two exposure ages from Unit-2 of 4.4 ± 0.9 ka (36Cl; A-12 [AG]) and 1.1 ± 0.2 ka (36Cl; 

A-14 [AH])  now supplement a previously published set of eight 10Be exposure ages (Hughes et al 

2014) from Units 1 and 3 which ranged from 1.5 to 7.5 ka (total mean of 4.2 ± 2.0 ka). With the 

addition of the two new 36Cl ages, all of the 10 ages from moraine Units 1,2 and 3 in the Assif 

n’Imserdane are similar to the adjacent rock avalanches confirming Hughes et al. (2014) 

conclusion that the surfaces of these moraines deposited during the late Pleistocene had been 

significantly altered at the time of  major rock avalanche(s) at ~4.5 ka.  The youngest ages i.e. ([AF] 

and A32-11 in Hughes et al 2014) may be related to erosion caused by grazing as has been shown 

for the last 1.5 ka in this same valley by Fletcher and Hughes (2017). The interpretation presented 

by Hughes et al. (2014) that the Imserdane landforms are the result of slope failure or rock 

avalanche means that their earlier interpretation as rock glaciers (e.g. Dresch 1941; Mensching, 

1953; Chardon and Riser, 1981) were incorrect. This illustrates the degree of landform 

modification with only none out of 10 boulders on moraine surfaces in the Assif n’Imserdane 

valley yielding an original Pleistocene age.  

 

4.4 .Region-II :  Adrar el Hajj and Azib Mzik valley 

4.4.1 Description 

The Azib Mzik valley is situated 1000 m below the north-facing cliffs of Adrar el Hajj (3129 m 

a.s.l.) about 2-3 km immediately to the west of the villages of Imlil and Arroumd (1750 m) (Figure 

4). A series of sediment-boulder ridges closely spaced in both distance and altitude are present 



within this short valley, the lowest of which is at ~1950-2100 m on the north side of the valley. 

The boulders are large (up to 10 m in diameter) and predominantly subrounded (50%) and 

subangular (40%) with a small proportion angular (10%) and have a wide variety of igneous 

lithologies including a variety of grades of basalt, andesite, rhyolite. These igneous boulders are 

erratics and rest on Triassic sandstone basement on the northern side of the valley. On the south 

eastern side of the valley, igneous erratics are perched on a rocky rhyolite bedrock promontory 

which guards the entrance to Azib Mzik  at 2050-2100 m. The lowest boulder accumulations in the 

Azib Mzik valley define Unit-1 (Figure 4).  At about 200 m  up-valley of  Unit-1,  a second set of 

sediment-boulder ridges (Unit-2)  are present forming a distinct linear sediment ridge oriented NE 

to SW and which extends over an elevation of 2050-2400 m. The ridge underlying the boulders is 

exposed by the stream on the north side and appears as a matrix-supported diamicton with a wide 

range of igneous clast lithologies (basalt, andesite, rhyolite). Unit-2, dissected by the modern 

stream, continues on the eastern flank. The surface boulders are dominated by subangular and 

subrounded shapes (VA: 5%; A: 15%; SA: 40%; SR: 40%). The next up-valley boulder rich ridge 

formation, Unit-3, is similar in morphology and lithology to Unit-2 but is distinctly nested within 

Unit-2. Both lateral ridges of Unit-3 extend ~250 m in elevation and its lowest point is ~100 m 

above Unit-2 where the modern stream dissects it. 

 

4.4.2 Interpretation & exposure ages   

The series of sediment-boulder ridges in the Azib Mzik valley have the attributes of moraines. The 

boulders are a mix of igneous erratics that have been transported from the backwall cliffs of Adrar 

el Hajj which arc around the south of the valley forming a shallow cirque (Figure 4). The fact that 

many of the boulders are subrounded and subangular supports subglacial abrasion. Other more 

angular erratics are likely to have had a supraglacial path. The moraine surfaces yield markedly 

different ages and become successively younger towards the backwall at the northern cliffs of 

Adrar el Hajj. A boulder in the lowermost Unit-1 moraines gave an age of 7.2 ± 0.6 ka (36Cl; 

AM11-11 [V]). This boulder was on a moraine ridge situated on a steep slope close to the main 

river channel and the moraine is likely to have been eroded, explaining its young age. In contrast, 

two perched erratics in a stable position on the rock promontory on the east side of the valley 

yielded exposure ages of 44.2 ± 2.6 and 33.4 ± 1.9 ka (10Be ; AM-2, AM-3 [W]).  Quartz veins 

from boulders on Unit-2 moraine crests  in the middle of the valley  yielded 10Be exposure ages of 

18.6 ± 1.0 and 25.3 ± 1.4 ka (AM-10-11, AM-7, [X]) whilst an adjacent andesite  36Cl sample 

gave an age of 2.7 ± 0.9 ka (AM-8-11, [X]).  Samples from two boulders, on the western lateral 

moraine of Unit-3 yielded a 10Be age of 11.5 ± 0.7 (IGL-7) and a 36Cl age of 13.2 ± 0.7 ka (AM-9-

11) (both labelled as Y in Figure 4). Two more samples from the opposite eastern moraine gave 



10Be ages of 12.5 ± 0.8 ka (IGL-10, and 11.5 ± 0.7 ka (AM-4) (both labelled as Z in Figure 4). 

IGL-10 was from a large boulder on the moraine crest whilst AM-4 was sampled from a large 

bedrock outcrop exposed in a meltwater channel below these same moraines (Figure 4).  

 

4.4. Region-III : Toubkal – Assif n’Aït Mizane   

The Aït Mizane Valley stretches 12 km from the summit of Toubkal (4167 m a.s.l.) to the village 

of Imlil (1750 m a.s.l.) (see Figs 1 and 5). Here we focus on the lowest glacial features in the Aït 

Mizane Valley, which represents the upper section of the Rheraia Valley containing Assif n’ Aït 

Mizane and  separates Adrar el Hajj from Aksoual. The Aït Mizane Valley is much longer than the 

Mzik Valley and the glacial landforms in the former are spread out by much larger distances (9 km; 

see Table 1). The style of glaciation in this area was very different with ice-field and outlet glaciers 

compared to the valleys of Adrar el Hajj and Aksoual/Bou Iguenouane that exhibit typical valley 

glaciers. The central Toubkal area is the focus of continuing research and our current 

geomorphological mapping across the valley area is provided in Figure 5.  

 

4.4.1 Description 

At the village of Arroumd, the Aït Mizane Valley is blocked by a distinct pile of rocks that 

emanates from the Assif n’Imserdane below the northwest face of Aksoual (see Section 4.3 above). 

Beyond this constriction is a large area of gently sloping gravels forming a braidplain occupied by 

ephemeral streams that extends for about 1 km. At the up-valley end of this braidplain at an 

elevation of ~1850 m, the valley narrows and on the western flank  of the main river channel is 

filled by a large mound of boulders.  The distal profile of this mound is ~40 m high and steeply 

inclined. Sections through the mound reveal a matrix-supported diamicton. The clasts vary in size 

from cobble to boulder. The clasts (n=50) are largely subrounded and subangular (VA: 10%; A: 

20%; SA: 30%; SR: 30%; R: 10%), and 20% are striated (see Figure 6). They have a strong clast 

fabric dipping up-valley and cover a range of igneous lithologies including basalt, andesite, 

rhyolite, granites and also conglomerates. Many of these are erratic to the underlying basalt 

bedrock in this area. On the surface of the mound the mean height of the 10 largest boulders is 12.6 

m. On the western side of the main river channel a line of similar boulders can be traced 200 to 

300 m up-valley. These boulders start at the river channel near the opposite boulder mound 

described earlier and trend upslope reaching a position 50-100 m above the river channel. Up-

valley interlocking spurs have been truncated and bedrock appears moulded and is striated in 

several places. Boulders are often perched on bedrock obstacles well above the narrow gorge 

occupied by the modern river channel.  

 



4.4.2 Interpretation and correlations  

The matrix supported boulder mounds, boulder accumulations and bedrock ridges described above 

are all considered to be glacial in origin and are interpreted as moraines associated with different 

advances and also standstills at ‘pinch-points’ within the valleys. Whilst at least three 

morphological units can be identified based on position in the landscape, the stratigraphical 

correlations with other valleys remains uncertain. This is because of the much larger and longer 

cirque-valley systems draining into the Mizane Valley and also the lack of dating, especially on the 

higher moraines. Stratigraphical units are therefore not indicated in Figure 5.   

 

The lowermost moraine is close in altitude to the lowest moraine in the Mzik Valley. These 

moraines have been overlooked in previous research which places the lower limit of glaciation in 

the Toubkal region at 2600 m (Heybrock 1956; Messerli 1967; Chardon and Riser 1981; Messerli 

and Winiger 1998), at elevations where moraines are morphologically very clear. Despite the 

lower moraines not having the morphological clarity of higher moraines, they are still prominent 

features in the valley, contain erratic boulders much larger than could have been transported by 

rivers and are located far above and distant from the drainage channel. This, combined with 

sedimentological data exposed in sections, the presence of numerous striated erratic clasts, and 

erosional evidence of the truncated spurs below Sidi Chamarouch (Figure 10), provides clear and 

irrefutable evidence of glaciation down to just below 2000 m. Around Sidi Chamarouch the large 

concentration of moraines represents an important ‘pinch-point’ for glacier dynamics in this valley 

where it enters a steep-sided gorge. Roche moutonées, perched boulders and moraines in the Tizi 

n’Tarharate valley provide information on the glacier succession into some of the highest parts of 

these mountains, in this case directly below the northwestern face of Adrar n’Tichki (3753 m a.s.l.).   

 

Six ages were obtained from the lowest valley section, four from the boulder mounds just upstream 

of the braided fluvial gravel deposits where the valley narrows and two at higher elevations on 

moraine ridge crests  associated with younger advances. A large boulder  from the lowermost 

moraine yielded a 36Cl age of 50.0 ± 4.9 ka (TOUBKAL-4 [AA]) (Figure 11). Just 200 m up-

valley, a basalt boulder precariously perched on a bedrock promontory, ~75 m above the river on 

the eastern side of the valley, gave  a 36Cl age of 28.9 ± 1.4 ka (TOUBKAL-3 [AB]). A further 750 

m  up-valley, a quartz-vein striated bedrock  on the eastern edge of the ravine gave a 10Be exposure 

age of 28.2 ± 1.5 ka (TOUBKAL-2 [AC ]). However, this site was located right on the gorge edge 

and was strongly shielded by a rock promontory just 1 m away immediately to the NE. A second 

bedrock quartz vein sample from glacially polished bedrock , 25 m to the south, yielded a 10Be 

exposure age of 52.0 ± 3.1 ka (TOUBKAL-1 [AD]). Both of these sites are opposite a clear 



truncated spur on the opposite side of the valley. Samples TOUBKAL-4 and -1 (the older ages) are 

from the largest boulder and bedrock and likely to be the more stable and reliable sites. The fact 

that TOUBKAL-4 is from a boulder also negates the probability of inheritance in TOUBKAL-1, 

the bedrock sample.  

 

In the Unit 2 moraines around Sidi Chamarouch a large (c. 1 m high) quartz boulder above the 

settlement on the northern side of the valley gave a 10Be exposure age of 7.1 ± 0.4 ka (SC-1 [AF]). 

This boulder can be traced to a quartz band on the cliffs of Aguelzim visible to the southwest, 

although the boulder must have been dragged to the northeast and not simply rolled. The young 

age suggests exhumation. No other boulders were dated from the moraine concentration around 

Sidi Chamarouch. Across the valley, perched above Sidi Chamarouch, a quartz sample from a 

striated roche mountonee on the rock step guarding Tizi n’Tarharate gave a 10Be exposure age of 

11.7 ± 0.7 ka (TT-1 [AE]). This is a stable and reliable site where exhumation and inheritance are 

unlikely. This surface is therefore more likely to be associated with Unit 3 surfaces dated 

elsewhere and as such is grouped with these in Table 6. However, as noted earlier, further work is 

needed to clarify the glacial stratigraphical sequence in Region 3.   

 

4.5 Comparisons with other parts of Toubkal 

There is evidence for glaciation in the mountains neighbouring the study areas presented in this 

paper, namely around the peaks of Annrhemer (3942 m) Adrar n’Dern (4001 m), Ouanoukrim 

(4089 m) and the more southern sections of Toubkal (4167 m) in Region 3 (see Fig 1). The biggest 

glaciers emanated from the cirques of Toubkal with the largest glacier emerging from the large ice 

field situated between the two highest peaks of the Atlas Mountains, Toubkal and Ouanoukrim.  It 

was 8-10 km long and its terminus is located near Sidi Chamarouch in the Aït Mizane Valley at an 

altitude of < 2000 m. West of Ouanoukrim some of the most extensive ice masses of the Atlas 

occurred, with evidence for plateau ice fields forming over the Tazaghart plateau with numerous 

outlet glaciers descending 5-10 km towards Tisgui and also further north into the Azzaden valley, 

reaching altitudes of < 2000 m a.s.l. (Figure 1) (Hannah et al., 2015). There is also evidence for 

more than 3 glacial units in these highest parts of Toubkal massif with Hughes (2014) and Hannah 

et al. (2015) recognising a 4th moraine unit below the northern cliffs of Tazaghart and suggested 

that these deposits may be Holocene, possibly Little Ice Age, since a permanent snow field exists 

immediately up-valley from this moraine today (Hughes 2014). It is possible that a 4th glacial unit 

representing Holocene glaciers is present also in other areas, especially in the highest cirques. 

Large glaciers also formed in the cirques and valleys directly to the east of Toubkal summit with 

ice possibly descending 6-7 km to as low as 2100 m at Tissaldaï.  



 

Further east large glaciers formed in the valleys around Adrar n’Dern. The fronts of these glaciers 

reached the Assif n’Tinzer near the village of Azib Likemt (Figure 1). However, as with the 

eastern areas of Toubkal, further research is needed in this area to confirm the exact limits of the 

former glaciers in the Adrar n’Dern area. 

 

Finally, there is also clear evidence of glaciation in the cirques and valleys of Annrhemer (3942 m 

a.s.l.) and Angour (3614 m a.s.l.) to the north east of Aksoual.  In the Angour area, glaciers 

reached down to the ski station near Oukaimeden and several generations of moraines have been 

identified. These areas within the greater High Atlas Mountain ranges will be the focus of future 

research studies which will require further mapping and careful sampling for exposure ages to 

consolidate the regional glaciology and confirm the exact limits and timing of former glaciers in 

the High Atlas.   

 

5. Discussion 

 

5.1 Glacial sequence and age correlations 

The glacial sequence in the High Atlas Mountains of Morocco shows that the last glacial cycle is 

represented by successively younger moraines with exposure ages ranging from 88 to 10 ka. When 

obvious outliers, i.e. those samples whose ages are inconsistent with respect to elevation and 

average age of residual samples, are removed, then the exposure ages reveal a pattern of 

successively diminishing glacier extent in each valley through the last glacial cycle. Three discrete 

moraine accumulations can be recognised in the valleys of the Toubkal massif and these 

correspond to three separate phases of glaciation with a combined average 10Be  and 36Cl exposure 

age  for the oldest of 50.2 ± 19.5 ka (1 SD, n= 12, 7 outliers) , then  a phase commensurate with 

the global LGM period of 22.0 ± 4.9  ka (1 SD, n=9, 7 outliers)  and the youngest  and highest in 

elevation 12.3 ± 0.9 (1SD, n=7 no outliers)  that falls in the Younger Dryas chronozone (Figure 

12).  

   

Why are we deleting this nice summary of the 3 age groups? Especially as it’s in the beginning of 

the discussion section where it belongs . I prefer to leave this in as it sets up the 3 time slices for 

our ages in fig 12 

The lowest moraines are associated with the oldest and most extensive glaciation (Unit-1) and 

yield a wide scatter of 12 ages between 88 (Amgeudoul-2) and 28 ka (Toubkal-2 and -3), with 7 

outlier ages all being younger and between 13.6 ka to 6.0 ka. These outliers are unlikely to 



represent glacial ages (especially the numerous Holocene ages) and instead are likely to be 

explained by exhumation as moraines were eroded. These lowest moraine surfaces clearly pre-date 

the global LGM. The mean age (excluding younger outliers) is 50.2 ± 19.5 ka (Table 6) and the 

large 40% spread, together with a far younger outlier population, clearly indicates that surface 

modification and other geological processes are active leading to apparent exposure ages that are 

too young. Under this scenario, if we assume that inheritance is not a relevant process, then the 

two oldest ages are more representative of emplacement and thus indicate a maximum advance at 

80-90 ka (MIS 5b). Whilst this coincides with a humid phase in North Africa, it also coincides 

with a peak in solar radiation at 30°N and warm sea surface temperatures in the North Atlantic 

(Figure 12). Thus, this age for the maximum glacial advance seems improbable. There are no clear 

age clusters below this maximum although 8 of the 12 ages range from 63 ka to 35 ka, with the 

remaining two at 28 ka, which may indicate a series of successively smaller glacier advances or 

standstills through MIS 4 and 3. However, the morphostratigraphical evidence for this is not 

obvious since all 12 ages originate from Unit-1 moraines that are designated as time-equivalent. It 

is also possible that this oldest glaciation occurred during the Middle Pleistocene and that all 12 

exposure ages simply reflect a complex exhumation and erosion history in this active tectonic 

landscape through the Middle and Late Pleistocene. In the Ourika Valley, which is just a few km 

northeast of the study area (see Figure 1), Delcaillau et al. (2016) argued that intense rainfall 

events during the Middle Pleistocene resulted in increased erosion and transport of sediment from 

the hillslopes into the trunk river. However, this sediment delivery could equally be associated 

meltwater discharge from Middle Pleistocene glaciers in the upper catchment of the Ourika Valley, 

including the extensively glaciated upper catchment around Angour (3616 m a.s.l.) and Annrhemer 

(3942 m a.s.l.) as well as up-valley of the Kissaria Gorge on the northern slopes of Adrar n’Dern 

(4001 m a.s.l.) (Figure 1). Middle Pleistocene glaciations were the most extensive of glaciations in 

the Pyrenees (Calvet et al., 2011), the Italian Apennines (Giraudi et al. 2011) and the Balkans (e.g. 

Hughes et al. 2006, 2010, 2011). Nevertheless, if we take the oldest moraine ages at face value 

then the chronology is not implausible since in many Mediterranean mountains, there is evidence 

that the most extensive glacier advance of the last glacial cycle pre-dates the global LGM (Hughes 

and Woodward 2016). An early, pre-LGM, glacier maximum during the last glacial cycle has been 

reported from the Cantabrian Mountains, Spain (Serrano et al. 2016), the Pyrenees, France/Spain 

(Pallas et al. 2010) and Greece (Pope et al. 2016). Indeed, this situation is observed on many mid-

latitude mountains around the world (Gillespie and Molnar 1995; Hughes et al. 2013) 

 

A second set of moraine surfaces (Unit-2) can be identified having a more clustered age range  

between 30 (IT-10) and 17 (TAM-2 and Irhwze-3) ka,  with 7 outliers all being younger  and 



between 9 and 1 ka – a similar outlier age range as seen for Unit-1.  Nine exposure ages have a 

mean age that overlaps with the global LGM (cf. Hughes and Gibbard 2015; 27.4-23.3 ka). Their 

mean age (excluding younger outliers) is 22.0 ka ± 4.9 ka (Table 6). The third and final moraine 

landform, at the highest elevations  is the  youngest and  yielded exposure ages of 13.7 ± 0.8 to 

11.4 ± 0.7 ka (n = 7) with a mean age of 12.3 ± 0.9  and no outlier ages (Table 6). All of these ages 

overlap with the Younger Dryas (12.9-11.7 ka).  

 

Whilst three distinct moraine units are identifiable in the morphostratigraphical record (Units 1 to 

3) the age scatter becomes greater with moraine age, i.e. the greatest scatter on the oldest Unit 1 

moraines and the least scatter on the youngest Unit 3 moraines (Table 6). This is illustrated by the 

standard deviations for the ages from each unit which simply reflects the decreasing probability of 

preservation for the older deposits compared with younger  surfaces, as observed in numerous 

studies where cosmogenic exposure ages are associated with pre-LGM glacial events (Heyman 

2014). In addition, the excessively large scatter in the older moraine units may also be because 

these lower moraines may represent a series of standstill or retreat moraines, i.e. the surfaces of 

moraines such as Unit 1 represent diachronous surfaces. This is explored further below. 

  

At Arroumd, Chardon and Riser (1981) suggested that three generations of glaciation and rock 

glacier activity were evident, during the early Würmian at 45 ka, between 20 and 15 ka and during 

the Late-glacial (13-10 ka). When the hypothetical three-phase chronology suggested by Chardon 

and Riser (1981) is applied to other valley glaciers mapped and dated in the region, it is 

remarkably close to the cosmogenic exposure age chronologies However, ironically, mortaines in 

the Arroumd valley have been shown to be strongly disturbed by catastrophic rock slope failures 

and rock glaciers re-interpreted as rock avalanche deposits. So whilst Chardon and Riser (1981) 

were correct in their hypothetical glacial-age sequence their geomorphological interpretations are 

now known to be partially incorrect.   

 

 

5.2 Moraine erosion and ages 

As already noted, apart from the youngest glacial phase, Unit-3, there is significant scatter in ages 

from the two older Pleistocene Unit1 and Unit-2 moraines (see Table 6). We consider 14 of the 

total 42 samples to be outliers and these are excluded from the summary statistics in Table 6. This 

is because they are clearly inconsistent with the morphostratigraphical sequence, are all more than 

half  the mean age of their associated glacial Unit and  12 of the 14 are  Holocene in age. Taken as 

a complete group, the mean outlier age is 7.6 ± 3.4 ka (n=14). However, if any cluster exists within 



the outlier set, the most discernible is that the ten mid to early Holocene samples have  the same 

mean but half the spread, i.e. 7.6 ± 1.7 ka (n=10). This cluster of 10 of the 14 outliers sits 

comfortably within the early Holocene (~10 to 5 ka), when the neighbouring Sahara Desert was 

covered with vegetation and lakes during the interglacial phase of the African Humid Period (de 

Menocal 2008).  If moraine disturbance and/or exhumation occurred at a steady rate through time 

then more very young (<5 ka) samples across the late Holocene would be expected. However, after 

5 ka climate was much drier in North Africa (de Menocal 2008; Tjallinghii et al. 2008) and the 

majority of the exposure age evidence suggests deep erosion of moraine surfaces was not 

significant. This is despite clear evidence of the Late Holocene soil erosion in this area as a result 

of human occupation and associated grazing (Fletcher and Hughes 2017) and the inherent 

susceptibility of soils to high-magnitude rainfall erosion events in semi-arid environments. Earlier 

humid periods in the last glacial cycle were never as wet as in the Early Holocene (Figure 12) 

although it cannot be discounted that earlier humid periods caused moraine disturbance, especially 

for the oldest moraines. 

 

Seismic activity may also explain localised moraine disturbance in some valleys. Whilst there is 

evidence to suggest that High Atlas has been relatively tectonically quiescent, especially for the 

Middle-Late Pleistocene (Stokes et al. 2017), localised seismicity in the vicinity of major faults 

remains a significant factor in landscape stability even today (El Alami et al. 2004). For example, 

in the Arroumd valley, all the moraine exposure ages are Holocene and correspond closely with 

the exposure ages of rock avalanche deposits in this valley (5-4 ka) (Hughes et al. 2014). These 

ages are not replicated in any other valleys and this indicates that surface disturbance associated 

with seismic activity can be very localised. This has implications for sampling for cosmogenic 

exposure dating and suggests that in tectonically-active areas more than one valley should be 

sampled in order to correctly assess glacial chronologies. In the Imenane valley, moraines display 

evidence of neotectonics with moraines faulted in several locations. It is possible that the young 

outliers (which were all from the Imenane valley) are associated with seismic activity along the 

faults associated with Tizi n’Test fault complex which run through these moraines. However, 

further evidence is needed to date fault movements within Quaternary deposits in this valley. At 

the present time we can only speculate as to the causes of clustering of Holocene outlier ages on 

the Pleistocene moraines, although their significance for understanding landscape evolution should 

not be dismissed.   

 

In summary, it is evident from this dataset that it is extremely difficult to obtain precise moraine 

chronologies for moraines older than 20-30 ka in an active tectonic landscape like the High Atlas. 



Despite these difficulties, this is an area that lacks any previous knowledge of geomorphological 

history and the timing of major landscape events. Thus, the new data presented here is a major 

contribution to beginning to understand the timing of glaciations in this region. 

 

5.3 Climatic significance of the High Atlas glacial record 

Today there are no glaciers in the High Atlas and the theoretical ELAs lie above 4167 m a.s.l., the 

height of the highest peak - Jebel Toubkal. The average ELAs of Uni-1, 2 and 3 Pleistocene glacier 

phases were 2794, 2895 and 3109 m a.s.l., meaning that ELAs were more than 1000-1400 m lower 

than today. This is much lower than suggested by Dresch (1941), although our study excludes 

glaciers in the central and southern Toubkal massif, which would have had higher ELAs. Future 

work will use the geochronology presented in this paper as a basis for glacier-climate 

reconstructions at known points in time. This will enable correlations with climatic events 

recorded in other proxies in North Africa through the last glacial cycle (e.g. de Menocal 2008). 

 

Our new High Atlas glacier sequence correlates clearly with more northerly areas of the NE 

Atlantic where a pre-LGM glacier maximum is frequently recorded (e.g. Pallas et al. 2010; Serrano 

et al. 2016; Rolfe et al. 2012). The global LGM in the NE Atlantic is also recorded by a significant 

glacier advance in both the British Isles (Clark et al. 2012) and Spain (Palacios et al. 2011). 

Furthermore, the Younger Dryas is clearly recorded in mountains all the way up a transect from 

Morocco (this paper), Spain (Palacios et al., 2012), the British Isles (Ballantyne 2007; Hughes 

2009) and Norway (Lohne et al., 2012). This is to be expected given the role of the North Atlantic 

Ocean in forcing this climatic perturbation (Bakke et al., 2009).  

 

Figure 12 shows the timing of the High Atlas glaciations based on our moraine ages in context 

alongside North Atlantic sea surface temperatures (Bard 2002) and an African Humidity index 

(Tjallinghii et al. 2008) for the last glacial cycle. The oldest phase (unit-1) of   50.2 ± 19.5 ka ages 

span MIS 4/3, and covers an interval that was characterised by a relatively wet phase, which would 

have been favourable for glacier expansion, more so during 45-60 ka . However, we remain 

cautious with this association given that  our broad age range for Unit-1 shown in Figure 12 clearly 

reflects the impact of geomorphic processes  that have  modified the true moraine  deposition age. . 

As we noted earlier, given our assessment that boulder exhumation is evident, it is reasonable to 

conclude that  Unit-1 glaciation may overlap with the fluvial increase seen between 80 to 90 ka 

Although  a robust climatic  interpretation for the oldest moraines is not surprising given the 

excessive scatter, the ages from younger moraines provide much stronger certainty as to their age. 

The younger Unit-2 and Unit-1 moraines show  a clear correlation  to the global LGM and the 



Younger Dryas. The latter moraines dating to 22.0 ± 4.9 ka correspond with a period of cold sea 

surface temperatures in the North Atlantic and an insolation minima (Figure 12). Though 

conditions would have been dry prior to the onset of  MIS 2, the increasing  humidity early in 

MIS-2 may have favoured glacier expansion at a time of low insolation (Figure 12). The youngest 

moraines date to12.3 ± 0.9 which sits within the Younger Dryas (12.9-11.7 ka). In contrast to the 

global LGM, this interval was characterised by a peak in insolation. However, a trend towards 

greater humidity started at c. 15 ka marking the onset of the Africa Humidity Period marked by 

dramatic increase in vegetation in the Sahara region (de Menocal 2008; Tjallinghii et al. 2008, 

their Fig. 3). Thus, it is likely that Younger Dryas glaciers were driven by wetter conditions than 

glaciers during the global LGM. As noted above, the next step is to model the glacier-climate 

conditions in the High Atlas at these times. No mention of modelling above…suggest a rewrite . 

With the  new glacial chronology  of the High Atlas now available,  equilibrium line altitudes can 

be estimated  to provide climatic constraints during the last glacial cycle for the paleo-climate 

modelling community.    

 

The timing of glaciation in Morocco has major implications for downstream fluvial processes and 

wider landscape change during Pleistocene cold stages, as has been noted in other glaciated 

Mediterranean mountain areas (Woodward et al. 2008; Adamson et al. 2014). On the piedmonts of 

the High Atlas large alluvial fans are present and in the Marrakech area these were fed by rivers 

draining the glaciated upper catchments of the High Atlas (see Delcaillau et al. 2010). On the south 

side of the High Atlas in the Ouazarzate Basin, large scale alluvial fans are also present and appear 

to be largely tectonically-controlled (Stokes et al. 2008). However, there is evidence of significant 

climate forcing with fan morphologies explained by interplay between the catchment geology, 

morphology, climate, and flood regime (Stokes and Mather 2015). These fan surfaces have been 

dated, using 10Be, to the Middle and Late Pleistocene (Arboleya et al., 2008) and the sediments 

dated using OSL (Stokes et al., 2017). The 10Be chronologies from Arboleya et al. (2008) in the 

Tagragra and Madri River areas included a major fan surface interpreted by the authors as 

indicating major fan aggradation during MIS 5e (84-121 ka); although, these exposure ages will 

now be older since they were calculated using a production rate value of 4.98 atoms g-1.  However, 

significantly, a major phase of aggradation is identified in fan sediment records in the Dades Gorge 

area, east of the area studied by Arboleya et al. (2008), dating to c. 74 ka (from quartz) and 92 ka 

(from feldspar) is identified in Stokes et al. (2017). These ages coincide with the oldest ages from 

the lowest moraines on the northern side of the High Atlas. There are still uncertainties 

surrounding the extent of glaciations in the upper catchments feeding these rivers. In the eastern 

High Atlas glaciation appears to have been strongly focused on the northern slopes with little 



reported evidence on the southern flanks, such as around the M’Goun massif (e.g. Wiche 1953; 

Hughes et al. 2004). Future work is needed to target the river valleys known to drain the largest 

glaciers of the High Atlas; especially those draining towards the Marrakech piedmont where major 

aggradations of river terraces and alluvial fans are clearly evident.   

 

6. Conclusions 

The Marrakech High Atlas, Morocco, was extensively glaciated during the Pleistocene. Ice fields 

and valley glaciers formed during the most extensive glaciation producing moraines as low as 

2000 m a.s.l. This paper presents field evidence from the northern flank of this massif in cirques 

and valleys draining the peaks of Adrar el Hajj (3129 m a.s.l.), Aksoual (3912 m a.s.l.) and Bou 

Iguenouane (3892 m a.s.l.) as well as Toubkal (4167 m a.s.l.), the highest peak in North Africa. 

Three discrete moraine accumulations exist in each valley and these correspond to three separate 

phases of glacier advance or sustained stabilisation with average ages of c. 50 ka, 22 ka and 12 ka. 

This geochronology is most secure for the younger two moraine units and clearly identifies the 

presence of a global LGM and Younger Dryas glacial signal in the High Atlas. The older moraine 

unit is consistent with an early glacier maximum in the Late Pleistocene pre-dating the global 

LGM. However, the landscape instability inherent with a very active uplifting massif like the High 

Atlas means that dating moraine surfaces this old remains problematic.  
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Figures 

 

Figure 1. Extent of ice in the Toubkal massif during the most extensive recorded glaciation. The 

three regions sampled for cosmogenic dating are indicated by white rectangles. Glacier limits have 

been determined by field observations in most areas and supplemented by satellite images for the 

southeastern sector. 

 

Figure 2. Geological map of the study area. Adapted from Dresch (1941). 

 

Figure 3. Glacial geomorphological map of the seven glaciated valleys defined by Region 1 which 

covers  the northern slopes of Azrou n’Tamadot (3770 m a.s.l.). Aksoual (3912 m a.s.l.) and Bou 

Iguenouane (3877 m a.s.l.). The five easternmost glacial valleys drain into Assif n’Imenane , and 

the two westernmost drain  into Assif Ait Mizane. Locations of cosmogenic sampling for exposure 

dating are given by alphabetic characters. Mapped moraines, labelled as Unit 1, 2 and 3, are 

grouped intime-stratigraphical order from oldest to youngest based on their respective exposure 

ages distributions (see text for details). 

 

Figure 4. Glacial geomorphological map of the Azib Mzik valley defined by Region 2 on the 

northern slopes of Adrar el Hajj (3129 m a.s.l.). Sample sites and moraine stratigraphy as described 

for Fig 3. 

 

Figure 5. Glacial geomorphological map of the central Toubkal massif (4167 m a.s.l.) defined by 

Region 3.  Cosmogenic sampling was restricted to the lower reaches of the Aït Mizane valley 

below Sidi Chamarouch.  Identification of moraine Units-1, -2 and -3 as prescribed for Regions 1 

and 2 (see Figures 3 and 4) are not available due to a paucity of samples for cosmogenic dating 

which requires further reconnaissance and mapping. 

 

Figure 6. Striated clasts in the moraines of the High Atlas. A: Assif n’Imserdane; B: Aït Mizane 

valley (near Sidi Shamarouch); C: Aït Mizane valley (lowest moraine); D: exposed section through 

till containing numerous striated clasts in the lower Iguenouane valley near the village of Tachddirt.     

 

Figure 7. Moraines on the western flank of the lower Irhzer Tamda draining into the Imenane 

Valley. The boulder ridge in this picture are Unit-2 moraines and a sample from a large boulder 

(4x8x6 m) (IT-10; C) has yielded a 36Cl exposure age of 29.5 ± 1.7 ka.  The mountain in the 

background is Aksoual (3912 m a.s.l.). Photo looking due south. 



 

Figure 8. Photo looking up valley (due south) towards Tizi Likemt (3555 m a.s.l.) in in  Irhzer 

n’Likemt showing the  crests (red dashed lines) of Unit-3 moraine (higher elevation)  and Unit-2 

moraine. Unit-3 moraine is in cirque-like position below the backwall cliffs yielding two exposure 

ages of 13.7 ± 0.8 (Irhzwe-8; Q) and 12.1 ± 0.8 (Irhzwe-1; P) ka.  Unit-2  moraines appear as 

flanking laterals with exposure ages of 16.6 ± 0.8 (Irhwze-3; N) ka and an outlier age of 8.9 ± 0.6 

ka (Irhwze-4; M).   

 

Figure 9. The subangular/subrounded striated boulder Amguedoul-1 (R), perched on the crest of a 

Unit-1 (oldest) moraine in Amguedoul Valley, gave a 36Cl age of 80.0 ± 12.1  ka. The boulder is 

located on the lowest elevation and most distal down-valley moraine. A second boulder at the 

same location (R), Amguedoul-7, gave an outlier 10Be age of 12.6 ± 0.8 ka. Along the same 

moraine crest, approximately 100 m distance,  a third boulder, Amguedoul-2 (S)  gave a 10Be age 

of  87.9 ± 4.7 ka.  

 

Figure 10. Truncated spur in the upper Aït Mizane valley near Sidi Chamarouch of Region-3 ( see 

fig 5. Note the perched erratic boulder on the foreground rock surface. A quartz-rich bedrock 

sample from the foreground area (Toubkal-1;AC) yielded a 10Be age of 52.0 ± 3.1 ka. 

 

Figure 11. Large subangular/subrounded boulder at c. 2010 m altitude near the lowest moraines of 

the Aït Mizane valley (Figure 5). A sample from the top of this boulder (Toubkal-4) yielded a 36Cl 

age of 50.0 ± 4.9 ka.  

 

Figure 12. The mean exposure ages (and uncertainty at 1 SD) of the exposure ages from moraines 

in the High Atlas with reference to wider environmental changes in the North Atlantic region and 

NW Africa. The mean ages for the youngest two sets of moraines have small uncertainities and can 

viewed with confidence. However, the oldest moraines have considerable scatter and 

interpretations of the true age of the moraines is problematic (see text for details). The Greenland 

ice core data is based on the GICC05 age model (Andersen et al., 2006; Svensson et al. 2008). Sea 

surface temperature data from the North Atlantic Ocean based on alkenones (37-carbon) from core 

MD95 2042 off the southwestern Iberian margin (Bard 2002). The continental humidity index is 

from core GeoB7920-2 off the coast of NW Africa (from Tjallinghii et al. 2008); Insolation at 

30°N in the northern hemisphere is from Berger and Loutre (1991).        

 

 



 

  



Tables 

 

Table 1. Valley morphometry data for the nine glaciated valleys in this study. 

 

Table 2. Sample site data (all samples). 

 

Table 3. 10Be isotope data.  

 

Table 4. 36Cl isotope and major element geochemistry data (see Supplementary Tables for full 

geochemistry data). 

 

Table 5. Relative 36Cl production (see Supplementary Tables for full datasets). 

 

Table 6. Glacial phases showing 10Be and 36Cl ages grouped by stratigraphical unit (3 = youngest 

and highest moraines, 1 = oldest and lowest moraines). 

 

 
 
 

 

 


