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Quantitative histopathologic assessment of perfusion MRI as a marker of 

glioblastoma cell infiltration in and beyond the peritumoral edema region 

ABSTRACT 

Background: Conventional MRI fails to detect regions of glioblastoma cell infiltration 

beyond the contrast-enhanced T1 solid tumor region, with infiltrating tumor cells often 

migrating along host blood vessels. 

Purpose: To quantitatively and qualitatively analyze the correlation between perfusion MRI 

signal and tumor cell density in order to assess whether local perfusion perturbation could 

provide a useful biomarker of glioblastoma cell infiltration. 

Study Type: Animal model 

Subjects: Mice bearing orthotopic glioblastoma xenografts generated from a patient-derived 

glioblastoma cell line. 

Field Strength/sequences:  7T perfusion images acquired using a high SNR multiple boli 

arterial spin labeling sequence were compared with conventional MRI (T1/T2 weighted, 

contrast-enhanced T1, diffusion-weighted and apparent diffusion coefficient). 

Assessment:  Immunohistochemistry sections were stained for human leukocyte antigen 

(probing human-derived tumor cells). To achieve quantitative MRI-tissue comparison, 

multiple histological slices cut in the MRI plane were stacked to produce tumor cell density 

maps acting as ‘ground truth’. 

Statistical Tests:  Sensitivity, specificity, accuracy and Dice similarity indices were 

calculated and a two tailed, paired t-test used for statistical analysis. 

Results: High comparison test results (Dice 0.62-0.72, Accuracy 0.86-0.88, Sensitivity 0.51-

0.7, and Specificity 0.92-0.97) indicate a good segmentation for all imaging modalities and 

highlight the quality of the MRI-tissue assessment protocol. Perfusion imaging exhibits 
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higher sensitivity (0.7) than conventional MRI (0.51-0.61). MRI/histology voxel-to-voxel 

comparison reveals a negative correlation between tumor cell infiltration and perfusion at the 

tumor margins (p=0.0004).  

Data Conclusions: These results demonstrate the ability of perfusion imaging to probe 

regions of low tumor cell infiltration while confirming the sensitivity limitations of 

conventional imaging modalities. The quantitative relationship between tumor cell density 

and perfusion identified in and beyond the edematous T2 hyper-intensity region surrounding 

macroscopic tumor could be used to detect marginal tumor cell infiltration with greater 

accuracy. 

Level of Evidence 1 

Technical stage: 2 

Keywords 

mbASL, perfusion, multiparametric MRI, glioblastoma, tumor infiltration, mouse   
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INTRODUCTION 

Glioblastoma (GBM) is the most common and aggressive primary brain tumor. Survival in 

patients receiving the current standard of care is less than a year after diagnosis(1). A major 

factor contributing to treatment failure is the ability of tumor cells to infiltrate normal brain 

regions(2), extending several centimeters from the tumor bulk edge. Infiltration compromises 

the ability to achieve complete surgical resection of the tumor, thereby contributing to high 

recurrence rates, and limitations in the ability to accurately image infiltration reduce the 

accuracy of target volume delineation for radiotherapy planning(3). It is crucial to develop 

imaging modalities that enable better tumor delineation; particularly when considering 

marginal regions with low tumor cell density. 

Despite providing rich insights into tumor characteristics, conventional clinical MRI methods 

such as contrast-agent enhanced T1 (cT1), T2 weighted (T2), diffusion weighted (DW) or 

apparent diffusion coefficient maps (ADC), fail to characterize regions of low density tumor 

cell infiltration. cT1 images allow delineation of strongly enhancing regions corresponding to 

solid tumor with pathologic neovascularization(4), often surrounding a non-enhancing 

necrotic core. T2 imaging commonly reveals extensive regions of abnormality surrounding 

the cT1 enhancing lesion. While these regions are associated with edema, several biopsy 

studies have demonstrated the presence of infiltrating tumor cells within them(5), with the 

extent of the hyper-intensity region being inversely correlated with survival(6). Evaluating 

progression of T2 to cT1 abnormalities (7) suggests that high T2 signal regions could 

represent an earlier stage of tumor development. However, beyond the cT1 enhancement 

region, there is currently no reliable method for probing the extent and density of tumor cell 

infiltration. Accurate delineation is often compromised by MRI sensitivity limitations related 

to the fact that marginal tumor cell density is much lower than healthy tissue cellular density.  
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Several approaches for probing regions of low tumor cell density are currently under 

investigation. Infiltration of white matter tracts has been extensively characterized by DTI, 

with fractional anisotropy properties being related to infiltration patterns (8). MR 

spectroscopy focusing on increased choline peaks (9) has probed the hyper-metabolic 

behavior of tumor cells in the vicinity of the cT1 enhancement region. Perfusion 

measurements in the same region tend to show increased values due to early angiogenesis 

(10). Despite some promising results, most of these approaches suffer from sensitivity 

limitations restricting their use to regions of higher tumor cell density, typically adjacent to 

the cT1 abnormal region. However, theoretical invasion models accounting for MRI 

sensitivity suggest that infiltration may often extend beyond abnormal T2 regions (11). 

Distant from the cT1 enhancement region, invading tumor cells often progress along blood 

vessels and in the absence of angiogenesis, co-option(12) tends to be the predominant 

mechanism by which they access blood supply. Published data indicate that even individual 

cells can disrupt blood-brain barrier (BBB) integrity (13), thus providing an opportunity to 

detect tumor infiltration at its earliest stages. Perfusion MRI measurements performed either 

with the use of contrast agents or by arterial spin labeling (ASL) (14) could allow probing of 

such effects. Perfusion MRI is already used to improve GBM delineation and facilitate 

clinical decision making(15). Contrast-enhanced techniques such as dynamic susceptibility 

contrast (DSC) and dynamic contrast enhancement (DCE) are widely used in brain tumor 

imaging (16), but their relatively low signal to noise ratio (SNR) in infiltrated healthy tissue 

regions makes subtle perfusion perturbation studies challenging. ASL is non-invasive and has 

been shown to provide similar results to DSC in brain tumor studies, with fewer susceptibility 

artefacts (14). If sufficient SNR could be achieved, this technique, which uses blood water as 

a marker of perfusion, could be more sensitive to subtle perfusion perturbations in the 
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infiltration zone than other methods, making it a suitable candidate for probing infiltration 

away from the cT1 enhancement region.  

Robustly assessing the ability of MRI protocols to probe tumor infiltration is another 

important challenge. Clinical studies using stereotactic biopsy techniques are limited to 

measurements within regions of T2 abnormality, relying on MRI for accurate sampling and 

typically suffering from low precision(17). Preclinical studies provide an opportunity for 

more quantitative histopathologic MRI assessment; however, most studies to date have used 

qualitative approaches, probably due to difficulties with MRI/histology registration(18). 

Often, histological slices are not cut in the MRI plane and the enormous difference in slice 

thickness compared with MRI is ignored (histology~20 m, MRI~1000 m). The 

development of new methods for quantitative histopathologic assessment of MRI modalities 

is crucial in order to analyse infiltrative glioblastoma models where heterogeneous tumor 

distributions can vary considerably within the MRI slice thickness.  

This study aims to quantitatively and qualitatively analyze the correlation between perfusion 

MRI signal and tumor cell density at the tumour margins, to assess whether local perfusion 

perturbation could provide a useful biomarker of glioblastoma cell infiltration in and beyond 

the peritumoral edema region. 

Materials and Methods 

Tumor model and experimental design 

Experiments were performed on CD1 nude mice (Charles River Laboratories), in accordance 

with the local ethical review panel (19). Mice (20-25 g) were acclimatized at least one week 

prior to any experimental procedure. G7 human glioblastoma cells were cultured in stem-like 

conditions (Advanced DMEM:F12, containing 20M EGF/FGF, 1% B27, 0.5% N2, heparin, 

1% L-Glut) on Matrigel coated plates. The animals were intracranially injected with G7 cells 
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(105 cells per mouse) into the sub-ventricular zone using stereotactic equipment(20). Study 

outcomes are reported following the ARRIVE guidelines(21). 

Ten animals were scanned 9 and 12 weeks after GBM cell injection. Following MRI, animals 

were sacrificed and brains were freeze-fixed to minimize macroscopic tissue 

deformation(22). MRI assessment was performed using 3D datasets of registered MRI with 

Human Leukocyte Antigen density maps achieved by averaging multiple histological slices 

evenly distributed in the MRI plane.  

Four additional animals were scanned at weeks 12 and 15 to allow the formation of a necrotic 

core. Following MRI, the animals were sacrificed and brains were paraffin embedded to 

minimize microscopic deformation of cells to allow high-resolution histology analysis. 

MRI set up and acquisition 

MRI experiments were performed on a Bruker Biospec Avance 7T imaging system with a 30 

cm horizontal bore (Bruker, Ettlingen, Germany). Homogeneous radiofrequency excitation 

was achieved using a birdcage volume resonator (diameter=72 mm, length=110 mm) and an 

actively decoupled 4-channel phased array receive-only head surface coil was used for signal 

detection (Rapid Biomedical, Wurzburg, Germany). The system was equipped with shielded 

magnetic field gradients producing up to 400 mT m-1.  

The animals were anaesthetized using 5% isoflurane and a 30:70 O2/N2O ratio before being 

positioned prone on a MRI animal cradle. A hot water circulation jacket was used to regulate 

physiological temperature (37±1 oC). The head was secured laterally by conical ear rods and 

longitudinally by the nose cone used for anesthetic gas delivery. The animals breathed 

spontaneously through a facemask, with isoflurane delivered at a constant flow mixed with a 

40:60 ratio of O2/N2O (1 L min-1). Isoflurane concentration varied (1.5-3 %) in order to 

maintain stable respiration rates within normal physiological ranges (40-70 bpm). Respiration 
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was monitored using a pressure sensor connected to an air-filled balloon placed under the 

animal abdomen (Biotrig software, Bruker, Ettlingen, Germany). 

Following a geometry-correction sequence, a series of MRI experiments were performed 

(field of view 2×2 cm, five 1.5 mm coronal imaging slices centered at 4 mm posterior from 

rhinal fissure). T2-weighted imaging (T2) was performed using a rapid acquisition with 

relaxation enhancement (RARE) sequence (TE=47 ms, TR=4,300 ms, matrix=176×176, 9 

min). Higher resolution T2 images (slice thickness=0.5 mm) were acquired during the final 

scanning session. Diffusion-weighted imaging (DW) was performed using a 4-shot spin-echo 

planar imaging DW scan (TE=20 ms, TR=4,300 ms, matrix=128×128, 6 directions, b-

values= 0, 1000 s mm-2, 10 min). Perfusion weighted imaging (PW) was performed using an 

optimized multiple boli Arterial Spin Labeling sequence (mbASL)(23), labeling with a train 

of twenty hyperbolic-secant inversion pulses (duration=3.3 ms, dimensionless amplitude 

parameter 𝜇=8, angular modulation 𝛽=760 s-1) evenly distributed over 5 s  (post-labeling 

delay=50 ms). The inversion slice width was 8.5 mm and the offset from the imaging slice 

was 15 mm. Image acquisition was achieved with an 4-shot EPI module (TE=12 ms, TR=7 s, 

matrix=96×96, partial FT=1.4, 12 averages, 9 min). Finally, contrast-enhanced T1 imaging 

(cT1) was performed using RARE acquisition (TE=12.3 ms, TR=800 ms, matrix=176×176, 8 

min). Images were acquired before and 5 min after Gadolinium-DTPA injection. Following 

animal scanning, MRI experiments were repeated on a doped water phantom used for 

correcting receiver coil bias. Data were exported in DICOM format. 

Histology protocols 

Freeze-fixation 

Following MRI, anaesthetized mice received an intravenous injection of 0.1 ml 7.5 mg ml-1 

70kDa Texas red labeled dextran (Thermo Fisher Scientific, UK) in PBS, for subsequent 
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brain perfusion analysis. Two minutes following injection mice were sacrificed and brains 

were removed and fresh-frozen. Brain slicing was performed manually on an OTF 5000 

Bright cryostat, guided by high-resolution T2 images. The identification of common features 

by an experienced neuroscience research technician (L.G. 20 years experience) allowed 

positioning the sectioning plane parallel to the MRI plane. Interleaved 20 m and 60 m 

sections were cut. The 20 μm cryosections were fixed in ice-cold acetone and washed in PBS 

before blocking in 3% BSA/TBS/0.05% tween for 30 mins at room temperature. A 1:500 

dilution HLA antibody (abcam ab70328) in blocking buffer was added and incubated for 2 

hours at room temperature. Sections were washed three times with TBS-Tween before 

addition of 1:1000 anti-mouse Alexa 647-conjugated secondary antibody (A-21236, Thermo 

Fisher Scientific, UK) for 1 hour incubation in the dark. Sections were washed 3 times with 

TBS-Tween and mounted in ProLong Diamond Antifade mount with DAPI (P36966, Thermo 

Fisher Scientific, UK). Whole brain section tile scans were conducted using a Zeiss 710 

upright confocal microscope. For dextran imaging, unfixed 60 μm cryosections were imaged 

by z-stack tile scanning on a Zeiss 710 upright confocal microscope. Images were exported as 

.tiff.  

Paraffin embedding 

Mice were sacrificed and brains dissected, cut in half through tumor injection site, formalin-

fixed, paraffin-embedded and sectioned (4 µm). Sections were stained for  hematoxylin and 

eosin (H&E), Ki67, or incubated with 1:500 dilution HLA antibody (abcam ab70328) and 

visualised using DAB staining (Dako EnVision + System HRP (DAB) K4007) followed by 

counterstaining and mounting. Sections were imaged using a Hamamatsu Nanozoomer Slide 

scanner with Leica SlidePath imaging Software (J.B. 8 years experience) or tiling at x10 on a 

Zeiss Axio microscope. 
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Image and data analysis 

Figure 1 summarizes the protocol for the production of 3D datasets used for MRI assessment. 

The most critical steps are highlighted in SuppFig1. Data were processed using Matlab 

R2015a (MathWorks Ltd., U.K.) code developed in-house. 

***Fig. 1 appears near here*** 

 

Figure 1. Simplified diagram of the pipeline leading to the production of 3D matrices combining MRI 

and histology data. Quantitative evaluation of MRI segmentation was achieved by comparing MRI 

and tumor cell density maps from the resulting dataset. 

MRI 

Surface-coil sensitivity correction was performed on T2 and DW data by dividing by the 

phantom data(24). Normalized relative perfusion maps (PW) were achieved by subtracting 

the control and label images acquired with different states of arterial blood magnetization, 

and dividing by the control(25), (Mcontrol - Mlabel ) / Mcontrol. Contrast enhanced images (cT1) 

were achieved by subtracting T1 acquisitions before and after Gd injection, and normalizing 
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by T1 data acquired before injection, (MpostGd – MpreGd ) / MpreGd. ADC maps were calculated 

by fitting the data to the mono-exponential Stejkal-Tanner equation. All data were resized to 

T2 resolution (176×176) and a mask was applied to null extra-brain regions. 

Histology 

Histology slice images exported from fluorescence microscopy were registered, resized to 

MRI data and normalized using the RGB histogram method. Three to five slices (inter-slice 

distance~0.3 mm) distributed across the MRI slice were averaged to produce tumor cell 

density maps (TCD), where signal intensity is proportional to the intra-voxel concentration of 

tumor cell cytoplasm. MRI-TCD registration was performed using an affine intensity-based 

scheme (mutual information method).  

Image segmentation  

Tumor-related abnormal regions of interest (ROI) probed by each imaging modality were 

manually drawn by H.F.I.A. and A.V. (3 and 5 years experience respectively) in the region 

where the TCD map was produced. PW segmentation was facilitated by comparison with 

healthy mice PW images (SuppFig.2). MRI ROI delineation was performed without prior 

knowledge of the histology data, to avoid selection bias. Care was taken not to include non-

invasion related enhancement (e.g. ventricle compression). Animals that did not exhibit 

tumor growth (n=1) were removed from the study while animals with necrotic lesions were 

not considered for voxel-to-voxel comparison with TCD maps (n=2). Histology ROIs were 

selected on the basis of HLA stain intensity on TCD maps. To minimise HLA staining 

artefacts, manual selection was favored to a user-independent intensity-based selection. 

Clustering separating high and low tumor density regions within TCD ROIs (A.V. ROI 

selection) was performed  using a gaussian mixture model(26). 
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Statistical analysis 

TCD ROIs were considered as the “ground truth” for evaluating MRI ROIs. Interobserver 

reproducibility was quantified using the coefficient of variation (CV), calculated for each 

lesion by 100×standard deviation/mean, and averaged for each imaging modality. Sensitivity, 

specificity, accuracy and Dice similarity indices (27,28) were calculated for each animal and 

imaging modality. Two tailed student t-test was used for comparisons between MRI tumor 

regions and histology tumor region. All values are reported as mean ± standard deviation. 

Box plots show the mean (black line), median (blue line), 25th/75th percentiles (box) and 

extreme points (whiskers) not considered outliers (within 1.5 times the interquartile range). 

Raw data (red dots) are jittered along x. Statistical significance flags: * p<0.05, ** p<0.01, 

*** p<0.001, **** p<0.0001 and NS not statistically significant. 

RESULTS 

A marginal infiltration model 

Figure 2A shows T2 and cT1 images obtained from the same animal at 12 and 15 weeks post-

injection. At week 15 all cT1 images presented a non-enhancing necrotic core surrounded by 

a contrast-enhancing region identified as solid tumor. Regions of abnormal T2 signal were 

systematically larger than cT1, with the mismatch often identified as low density tumor cell 

infiltration in the healthy tissue (Figure 2B(ii)). Figure 2C shows T2 and cT1 images obtained 

from three animals at 12 weeks post-injection. While significant abnormal volumes are 

visible on T2, most cT1 showed no significant signal change. Only three cases of minor cT1 

contrast enhancement in the brain region were identified at week 12 (e.g. Figure 2C(iii)) and 

necrotic cores were either very small or invisible. Note that at these earlier time points, T2 

abnormalities appeared more homogeneous and were of similar volume amongst animals 
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(SuppFig.3A-C), while after week 12, tumor growth varied significantly between animals and 

weight loss was observed in some (SuppFig.3C-D).    

***Fig. 2 appears near here*** 

 

Figure 2. (A) T2 weighted and contrast enhanced T1 images at 12 (i) and 15 (ii) weeks post-injection 

for the same animal. (B) Ki67 immunohistochemistry on slices obtained from the animal shown in 

(B), within the MRI image plane and 0.8 mm apart (magnification ×10). Regions of necrosis (i) and 

infiltration (ii) are highlighted. (C) T2 weighted and contrast enhanced T1 images obtained 12 weeks 

post-injection. 

PW detects more extensive regions of tumor infiltration than conventional MRI 

Representative images obtained at weeks 9 and 12 during the longitudinal MRI study are 

shown in Figure 3A-B.  Most techniques detected a tumor related region of abnormality by 

week 9. Tumor-related lesions remained homogeneous until week 12 and appeared as hyper-
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intense on T1, T2 and DW and hypo-intense on ADC and PW. Only two cases exhibited 

small necrotic cores at this stage of tumor progression (high ADC in the tumor core). FA 

values were low in tumor core regions, characteristic of both edema and isotropic tumor 

proliferation, and high in tumor margin regions. At week 12, strong similarity was observed 

between the abnormal regions identified by the different MRI modalities and the regions of 

high tumor cell concentration identified on tumor cell concentration maps (TCD). SuppFig.4 

shows the corresponding MRI ROIs. Interobserver CV at week 9 was of 29% for T2, 12% for 

DWI and 19% for ADC and PW. At week 12, CV was of 20% for T1 and T2, 21% for DWI, 

19% for ADC, 12% for PW and 10% for TCD maps.  

 

***Fig. 3 appears near here*** 
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Figure 3. Images from different MRI modalities at weeks 9 (A) and 12 (B) post-injection. cT1 values 

were not included since only 3 mice exhibited cT1 enhancement at this stage. Week 12 also includes 

the tumor cell density map (TCD) obtained for the same brain region. The displayed PW contrast was 

adjusted to allow clearer differentiation within the invasion area. Tumor related abnormal volumes 

measured 9 weeks (C) and 12 weeks (D) post injection (n = 9). 

 

Figure 3 C-D show the average volumes of tumor related abnormal regions for each imaging 

modality (including tumor cell density maps) at 9 and 12 weeks post-injection of G7 cells. At 

both time points, PW imaging exhibited significantly larger abnormal regions than relaxation 

(T1, T2) or diffusion (DW, ADC) based MRI techniques. For week 9, the results have to be 
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considered cautiously, as the lesions are relatively small and the resizing of lower resolution 

imaging modalities (e.g. PW) can introduce increases of the abnormality-related ROI. 

Considering a Gaussian infiltration front (SuppFig.5), the resulting ROI error was estimated 

at about 10% for the smaller lesions of this work (week 9) and below 1% for medium and 

large lesions (week 12). Note that this error is small compared to the T2/PW abnormal 

volume ratio (~60% on week 9 and ~75% on week 12). 

The 3D matrices allow a quantitative evaluation of MRI techniques in comparison with the 

‘ground truth’ provided by the TCD maps. While no significant difference between PW 

abnormal volumes and TCD volumes was observed (p=0.2), abnormal volumes detected by 

all other imaging techniques were significantly smaller. Figure 4 shows the results of various 

segmentation evaluation tests applied to the volume calculation ROIs.  

***Fig. 4 appears near here*** 
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Figure 4. Dice score (A), accuracy index (B), sensitivity index (C) and specificity index (D) achieved 

for the segmentation of each imaging modality at week 12, in comparison with TCD segmentation 

(“ground truth”). ROIs were the same as for the volume analysis shown in  Figure 3. 

All segmentations achieved relatively high Dice scores and accuracy indices (27) (Figure 4A-

B), highlighting the quality of the quantitative histological evaluation protocol. While PW 

segmentation achieved the highest Dice score, with T2 and ADC providing with the best 

results amongst standard MRI protocols, Dice score differences did not reach statistical 

significance (p=0.2 for t-test comparison between PW and T2 Dice score distributions). 

However, PW was associated with significantly higher sensitivity than other techniques 

(Figure 4C). Conversely, relaxation and diffusion based imaging showed higher specificity 

than perfusion (Figure 4D). This reflects firstly the fact that standard MRI protocols under-
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evaluate tumor volume and secondly that, while average PW ROI volume (15±3 mm3) was 

similar to the average TCD ROI volume (16±2 mm3), in three cases PW ROI volumes were 

found to be greater than TCD ones (by 13%, 8% and 3%).   

A relationship between perfusion and invasion in tumor margin regions 

Histological analysis was performed to better characterize the relationship between perfusion 

and tumor cell infiltration. Figure 5A shows a comparison between histological slices probing 

the perfusion/delivery of FITC-dextran 70kDa and slices from the same animal stained for 

HLA, in the same region as the MRI images shown in Figure 3A-B.  As expected, there is a 

strong relationship between PW imaging and FITC-dextran staining, with regions of hypo-

perfusion clearly demarcated by both techniques. Regions of increased tumor cell density 

exhibited reduced perfusion in both PW and dextran assays; this was also highlighted by the 

similarity test results comparing TCD ROI with PW ROI (Figure 4A-B).  

This relationship between perfusion and infiltration was stronger in marginal regions of lower 

tumor cell density. This is highlighted by the dataset from one mouse that developed two 

distinct tumor lesions (Figure 5B): a high density lesion (near the tumor cell injection point) 

surrounding a small necrotic core (white spots on T2 and ADC; black spots on HLA) and a 

more homogeneous, low tumor density lesion that appeared later in tumor development. The 

physical connection between the two lesions, occurring at the back of the brain, is indicated 

by the red arrows on the T2 images shown in Figure 5B(ii). While both PW and dextran 

images show a reduction in perfusion in the newly infiltrated lower region, the relation 

between dextran delivery and invasion is less clear around the necrotic core of the main 

lesion.  

Histological analysis of formalin-fixed tissue allows better understanding of the cellular 

mechanisms underlying the relationship between marginal tumor infiltration and perfusion. 
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Figure 5C-D shows histological images derived from a G7 tumor edges. The combination of 

H&E and tumor cell specific HLA staining revealed that several blood vessels at the tumor 

margins were surrounded by tumor cells. In some cases, vascular cuffing by invading tumor 

cells was observed at locations remote from the tumor front (Figure 5D). 

 

***Fig. 5 appears near here*** 
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Figure 5. (A) Fluorescence microscopy images probing HLA and dextran 70kDa at two different 

locations within the MRI slices shown in Figure 3B (magnification ×10). (B) (i) MRI (T2, ADC, PW) 

and fluorescence microscopy images (HLA, dextran) from a mouse at 12 weeks post injection (ii) T2 

images of thickness 0.5 mm acquired at the same time point. The red doted box highlights the three 

0.5 mm thick T2 slices acquired at the same location as the T2 image shown in Figure B(i). The red 

arrows show connection points between the upper and the lower tumor lesion. (C-D). Tumor margin 
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samples of brains stained for H&E and HLA. Regions of vascular cuffing by invading tumor cells are 

enlarged.  

Perfusion variation as a marker of tumor cell infiltration 

The high values of the segmentation evaluation indices (Figure 4) indicate good agreement 

between MRI and histology datasets, enabling voxel-to-voxel comparison between MRI 

modalities and TCD maps to be undertaken. PW and TCD images for each animal (Figure 

6A) were used to produce scatter plots of perfusion against tumor cell density (Figure 6B). 

Tumor positive voxels on TCD maps that corresponded to manually defined ROI on PW 

images are highlighted (red points). At the interface between healthy brain and tumor 

infiltration regions, voxels of extremely low tumor cell density exhibit similar PW values to 

voxels that are outside the tumor infiltration regions. As suggested by the histology data 

analysis (Figure 5), perfusion was generally high in low TCD value voxels, and decreased 

with increasing TCD.  This indicated that the voxel-to-voxel approach could be applied to 

further characterize the relationship between perfusion and invasion at the tumor margins. 

This was achieved by comparing high TCD ‘tumor core’ regions, typically situated around 

the G7 cell injection point, with low TCD ‘tumor margin’ regions. To separate these regions, 

clustering analysis was performed on the tumor positive regions of the TCD maps (Figure 

6A).  By focusing on the tumor region and plotting TCD against PW intensity for each voxel 

(Figure 6C), we generated a semi-quantitative representation of the relationship between 

tumor burden, as quantified by TDC, and local perfusion. On this graph, marginal voxels 

(green) exhibit significantly lower average TCD values than core voxels (pink). Importantly, 

these marginal voxels exhibit significantly higher perfusion values than core voxels (Figure 

6D). The relation between perfusion and invasion at the margins was quantified by applying 

separate linear regression fits to the ‘core’ and the ‘margin’ voxel data sets (Figure 6C). A 

significant negative correlation between tumor infiltration and perfusion was observed at the 

tumor margins (where tumor cell infiltration of the normal brain occurs) while no clear 
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relationship was identified in tumor core regions (Figure 6E). Consistent with this, linear 

regression R2 values were significantly higher for margin datasets (Figure 6F). 

***Fig. 6 appears near here*** 

 

Figure 6.(A) T2, PW and TCD images from a single animal. TCD ROI selection in red indicates the 

manually segmented tumor positive region of the brain. Clustering of high and low TCD values was 

used to separate core and marginal tumor regions. (B) Scatter plots of PW signal against TCD for 

each voxel in the images shown in (A);  red points correspond to voxels situated within the TCD ROI 

tumor positive region. (D) Scatter plots of PW signal against TCD for the tumor positive voxels only. 

Linear regression fits were applied separately on data from the core and marginal tumor regions 

obtained by the tumor region clustering shown in (A). “Core” and “margin” region box plots show the 

average PW signal (F), linear regression fit slope (E) and R2 of the fit (G) (n=7).  
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DISCUSSION 

This study has demonstrated the existence of an MRI-detectable relationship between tumor 

cell infiltration and local perfusion in tumor margin regions of an orthotopic glioblastoma 

model that recapitulates imaging and histopathological features of the human disease. To 

achieve this, we interrogated our in vivo model, which exhibits infiltrative tumor margins, 

using a high SNR ASL sequence and a novel MRI validation approach based on the use of 

multiple histology slices in the MRI plane. 

Great care was taken in confirming the clinical relevance of the G7 marginal tumor 

infiltration model. Firstly, this highly infiltrative model exhibits sizeable regions of low 

tumor cell density that are not probed by cT1 and which extend into and beyond the regions 

of abnormal T2 signal. In addition, the relatively slow rate of progression of the G7 model 

enables considerable cell infiltration to take place, recapitulating the clinical scenario where 

edema/infiltration T2 lesions are systematically larger than cT1 lesions. By contrast, 

frequently reported GBM models, where tumor cells poorly infiltrate the depth of the brain 

tissue, exhibit a sharp transition between tumor bulk and healthy brain regions, resulting in 

similar sized T2 and cT1 lesions (18). Without infiltration, tumor growth resembles that of 

cells injected in avascular spaces, where the lack of host blood vessels is associated with 

angiogenesis at very early stages in tumor development (29). As a consequence, these poorly 

infiltrative models tend not to reproduce the clinically observed difference between cT1 and 

T2 growth patterns (30).  

Reproducing a realistic marginal invasion microenvironment is another important challenge. 

In the clinical context, marginal infiltration typically occurs outside contrast enhancing 

regions, in a quasi-normoxic micro-environment. Perfusion drops with increasing distance 

from the contrast-enhancing part of the tumor partly due to limited angiogenesis (31). The 

vascular endothelial growth factor (VEGF) secreted by GBM cells appears to be involved not 
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only in neovascularization but also in edema production(32) through the induction of vascular 

permeability(33). Distant from the hypoxic micro-environment of the tumor core, brain 

tumors may develop and grow using vascular co-option as the main mechanism of neo-

vascularisation(33), without needing an angiogenic switch(34,35). Such co-option 

mechanisms, widely documented in clinical specimens, and have been shown to compromise 

the efficacy of treatments that either target angiogenesis (36) or promote vascular 

normalization or integrity (37) in both primary and metastatic tumors. Consistent with the 

clinical context, G7 tumor cells have been shown to express VEGF both in vivo and in 

vitro(20), hence angiopoiesis is expected close to the tumor core. Here, investigating at 

earlier stages of tumor development allowed to minimize effects related to tumor 

angiogenesis or necrosis. Decreased perfusion in tumor regions is commonly observed in 

rodent glioblastoma models and can be explained by the early stage of tumor progression, 

before contrast-enhancement related to leaky vessels that arise from angiogenesis. In fact, 

newly formed tumor vessels are often non-functional, displaying low blood flow or not 

participating in the microcirculation (31,32). Functional angiogenesis requires solid tumor 

conditions (e.g. significant tumor burden, hypoxia), that can be observed either in non-

infiltrative models that lack clinical relevance, or when the tumors reach such large sizes that 

animal survival and welfare is compromised. Infiltrative preclinical models typically exhibit a 

detectable reduction in perfusion within the tumor lesion(18). The infiltrative nature of the 

G7 model simultaneously ensures reliance on intact host blood vessels (34) and delays 

development of hypoxic tumor core conditions that induce angiogenesis, thus allowing 

accurate modeling of the invasive border of GBM.  

Despite the clear relationship between tumor cell density and perfusion shown in this work, a 

direct connection cannot be assumed and several potential mechanisms should be considered. 

Compression of the peritumoral tissue caused by edema in conjunction with increased 
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intracranial pressure (ICP) is a known cause of reduced local perfusion with increasing 

distance from the contrast-enhancing part of the tumor (31). ICP effects are expected to be 

minimal in this marginal infiltration model due to the relatively small tumor volumes. On the 

other hand, infiltrated tumor burden could cause healthy tissue compression leading to 

perfusion drop. Of note, both tumor infiltration and the observed reduction in perfusion 

extend beyond the detectable T2 lesion. Finally, infiltration along vascular pathways, as seen 

in the G7 model, can affect perfusion by both co-option mechanisms and VEGF vascular 

fenestration effects as discussed earlier. These potential underlying causes of the observed 

relationship will be explored in future studies. 

Marginal glioblastoma infiltration is difficult to probe and evaluate. It challenges MRI 

sensitivity limits and often exhibits inhomogeneous spatial distributions that compromise 

conventional histological validation approaches. In this study, the latter challenge was 

addressed by developing a method for quantitative MRI assessment using a stack of in-plane 

histology slices. This method allowed the quantitative evaluation of a range of MRI 

techniques. T2 sensitivity limits were highlighted, with abnormal T2 signal shown to 

significantly under-evaluate tumor infiltration. The high specificity of T2 in comparison with 

TCD maps reveals that most abnormal T2 regions correspond to regions of tumor infiltration. 

This relationship between high T2 signal and invasion is in agreement with clinical findings, 

both with histological data showing high infiltration in the high T2 signal region surrounding 

cT1 enhancement(5) and patient survival analysis showing a negative correlation with 

abnormal T2 volume(35).  

In this marginal infiltration model, perfusion MRI measurements detected larger lesions than 

any other MRI sequence suggesting that perfusion could be used as a marker of low tumor 

cell density regions. However it is important to consider how these findings may be translated 

to clinical management of GBM. Clinical studies involving perfusion MRI tend to focus on 
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regions surrounding cT1 enhancement where higher signal is expected because of 

angiogenesis. This approach minimizes the SNR issues and enables studying biopsy 

compatible regions, but fails to detect marginal infiltration. However studies can be found 

where cerebral blood flow was measured in more remote regions. Li et al.(36) measured a 

negative perfusion gradient at the margins of metastatic lesions that could be related to the 

co-option/edema mechanisms discussed in this work. The significant relationship observed 

between infiltrating tumor burden and perfusion at the margins suggests that probing 

abnormal perfusion gradients far from the cT1 enhancement regions could facilitate the 

characterization of marginal glioblastoma infiltration into healthy tissue. The sensitivity of 

the approach will be strongly dependent on the SNR of the perfusion MRI used. While in 

high SNR perfusion images the perfusion gradient could be used as a direct marker of tumor 

cell infiltration into the healthy tissue, lower SNR perfusion images could still potentially be 

used to produce tumor infiltration probability maps. It is also crucial to consider the impact of 

alternative, clinically relevant causes of local perfusion perturbation, such as radiation 

therapy and surgery, which may limit the applicability of this technique to pre-therapy 

planning. However, the ability of this approach to improve tumor delineation at the initial 

treatment planning stage would be of enormous value, and might lead to better responses to 

first line surgery and radiation therapy. 

This study was, by necessity, subject to certain limitations which we have sought to address, 

both in its design and also through consideration of its potential for clinical translation. First, 

our analysis used a relatively small number of mice, mainly imposed by the time consuming 

data acquisition and histology processing protocols. This was counterbalanced by the 

introduction of a quantitative histopathologic assessment method which enabled collection of 

high quality data from each mouse, and our main findings exhibited robust statistical 

significance. Another limitation relates to differences between tumor and vessel growth 
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between human gliomas and the G7 model in which tumors grow in the brains of 

immunodeficient mice. We contend that immune status is unlikely to have a significant effect 

on the analysis of the relation between local perfusion and tumor burden proposed here. In 

fact, the tumor-related perfusion drop was related to infiltration through the biomechanical 

effect of vascular co-option and/or edema, which are clinically relevant mechanisms. To 

minimize intracranial pressure and vascular compression effects, tumor size was generally 

limited to less than 10% of total brain volume. This also increased the relevance of evaluation 

tests requiring significant difference between tumor volume and brain volume(27). Finally, 

there are MRI specificities in this work that should be emphasized. The combination of a 7T 

instrument with a novel perfusion sequence allowed us to overcome SNR limitations of 

clinical perfusion imaging based on ASL sequences, enabling the study of low perfusion 

regions. This advantage was counterbalanced by the need to use much higher resolution than 

in a clinical context in order to properly resolve the perfusion distribution within the mouse 

brain. Hence, it is important to recognize that alternative perfusion MRI techniques (e.g. 

DSC) could be more efficient in probing infiltration in a clinical context. 

In conclusion, this work identified a negative relationship between tumor cell burden and 

perfusion MRI signal in infiltrative areas of low tumor cell density distant from regions of 

cT1 enhancement. The robust protocol that we developed to assess the performance of a 

range of MRI modalities at the tumor margins constitutes a significant step toward 

quantitative evaluation of the ability of MRI protocols to probe regions of low tumor cell 

density. Our results indicate that the relationship between perfusion gradient and tumor cell 

density has potential as a marker of tumor infiltration. Future work will concentrate on 

assessment of the clinical relevance of these findings. 
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