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A NOTE ON THE ORDER OF THE ANTIPODE OF A POINTED

HOPF ALGEBRA

P. GILMARTIN

Abstract. Let k be a field and let H denote a pointed Hopf k-algebra with
antipode S. We are interested in determining the order of S. Building on the
work done by Taft and Wilson in [7], we define an invariant for H, denoted
mH , and prove that the value of this invariant is connected to the order of
S. In the case where char k = 0, it is shown that if S has finite order then
it is either the identity or has order 2mH . If in addition H is assumed to be
coradically graded, it is shown that the order of S is finite if and only if mH is
finite. We also consider the case where char k = p > 0, generalising the results
of [7] to the infinite-dimensional setting.

1. Introduction

In this paper we are interested in determining the order of the antipode of a
pointed Hopf algebra over an arbitrary field k. We suspect that the results of this
paper are well-known to experts, but their proofs are apparently lacking in the
literature.

For a pointed Hopf k-algebra H , we introduce an invariant, denoted mH , which
is, in a sense which we shall make precise, a measure of the extent to which a group-
like element x ∈ H commutes with any h ∈ H such that ∆(h) = h ⊗ x + 1 ⊗ h.
Whilst in general mH can take values in Z

≥0∪{∞}, the condition that mH is finite
is valid in a variety of natural settings, for example whenever G(H) is finite or
central in H (see Proposition 2.7). We record our main results below (where part
(3) appears as Theorem 4.1 and part (4) appears as Corollary 5.2). These results
connect the order of the antipode of a pointed Hopf algebra H to the value of mH

in both the cases of zero and positive characteristic. For the relevant definitions
see §2.

Theorem 1.1. Let k be a field. Suppose H is a pointed Hopf k-algebra. Let
{Hn}n≥0 denote the coradical filtration of H and let grH denote the associated

graded pointed Hopf algebra with respect to the coradical filtration. Let S and S

denote the antipode of H and grH respectively.

(1) If mH = ∞ then |S| = ∞.
(2) (Taft, Wilson) If mH <∞ then (S2mH − id)(Hn) ⊆ Hn−1 for n ≥ 1.
(3) Suppose char k = 0. If |S| <∞ then either S = id or

|S| = 2mH = 2mgrH = |S|.
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(4) Suppose char k = p > 0. If mH <∞ and H = k〈Hn〉 for some n ≥ 0, then
|S| divides 2mHp

l, where l ∈ N is such that pl ≥ n ≥ pl−1.

Theorem 1.1(2), from which everything else quickly follows, has exactly the same
proof as part (1) of the following result of Taft and Wilson from 1974, and so we
credit it to them. Parts (3) and (4) of Theorem 1.1 should be compared to the
analogous results for H finite-dimensional as presented in part (2) of the result
below. It will be clear from the definition that mH divides the exponent of G(H)
whenever the exponent is finite.

Theorem 1.2. (Taft, Wilson, [7]) Let k be a field and let H be a pointed Hopf
k-algebra. Assume that G(H) has finite exponent e.

(1) ([7, Proposition 3, Proposition 4]) For n ≥ 1, (S2e − id)(Hn) ⊆ Hn−1.
(2) ([7, Corollary 6]) Assume that H is finite-dimensional and that H = Hn

for some n ≥ 0. If chark = 0 and S has finite order, then |S| divides 2e.
If chark = p > 0, S2epm

= Id, where pm ≥ n > pm−1.

Remark 1.3. It was subsequently proved by Radford, [5], that the order of the
antipode of a finite-dimensional Hopf algebra is always finite, allowing us to drop
the assumption that S has finite order in the finite dimensional setting of Theorem
1.2(2).

As noted in Remark 4.6, the converse of Theorem 1.1(1) is in general not true.
However, as an almost immediate consequence of of Theorem 1.1(2), in the case
where H is known to be coradically graded (see Definition 3.8), the condition that
mH <∞ is equivalent to the condition that S has finite order. That is, we deduce
the following, which appears later as Proposition 3.9.

Proposition 1.4. Let k be a field and let H be a pointed coradically graded Hopf
k-algebra.

(1) |S| = ∞ if and only if mH = ∞.
(2) If mH <∞, S = id or |S| = 2mH .

Remark 1.5. (1) In positive characteristic, there exist examples of pointed
Hopf algebras where the antipode has order strictly less than the bound
obtained in Theorem 1.1(4). Take, for example, a field k such that char k =
p > 0 and let H be a pointed coradically Hopf graded Hopf k-algebra with
mH < ∞ and H 6= H0 (see Example 2.8 for an explicit example of such a
Hopf algebra). By Proposition 1.4, |S| = 2mH , which is strictly less than
the bound obtained in Theorem 1.1.

On the other hand, there exist examples of pointed Hopf algebras over
fields of positive characteristic where the bound obtained in Theorem 1.1
(4) is actually attained. In Example 5.4 we give an example, originally due
to Taft and Wilson, [6], of a finite dimensional connected Hopf algebra R
over a field of characteristic p ≥ 3 with R = R2, mR = 1 and an antipode
of order 2p.

(2) Note that for an arbitrary pointed Hopf algebra H , mH will be in general
strictly less than the exponent of G(H) - in Example 2.8 we see that, if q
is a primitive nth root of unity, the pointed coradically Hopf graded Hopf
algebra H = Uq(b

+) has the property that mH = n and that G(H) has
infinite exponent.
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2. Preliminaries

Throughout k will denote an arbitrary field (unless otherwise stated). For a Hopf
k-algebra H the usual notation ∆, ǫ and S will denote the coproduct, counit and
antipode respectively. By the order of the antipode S, which we shall denote by
|S|, we mean the minimal n such that Sn = id, the identity map of H .

The coradical filtration of a Hopf algebra H is denoted {Hn}
∞
n=0, where H0 is

the coradical of H (that is, the sum of its simple subcoalgebras), and we define
inductively, for all n ≥ 1,

Hn := ∆−1(H ⊗Hi−1 +H0 ⊗H).

For a Hopf algebra H , an element g ∈ H is said to be group-like if ∆(g) = g ⊗ g.
It is a simple exercise to prove that the set of all group-like elements of H forms
a group, which we shall denote G(H). A Hopf algebra H is said to be pointed if
H0 = kG(H) (or, equivalently, if each simple subcoalgebra is one-dimensional). As
proved in [3, Lemma 5.2.8], for example, if H is pointed then the coradical filtration
{Hn}

∞
n=0 is in fact a Hopf algebra filtration of H and hence the associated graded

space with respect to the coradical filtration, which we denote by grH , inherits the
structure of a pointed Hopf algebra from H .

2.1. Defining mH . The aim of this section is to define, for any pointed Hopf
algebra H , the invariant mH which appears in Theorem 1.1. We begin by recalling
the definition of a skew-primitive element of a pointed Hopf algebra.

Definition 2.1. Suppose H is a pointed Hopf algebra. For any x, y ∈ G(H), define
the space of (x, y)-skew-primitive elements of H ,

Px,y(H) := {h ∈ H : ∆(h) = h⊗ x+ y ⊗ h} .

Remark 2.2. As noted in the opening remarks of [3, §5.4], if H is a pointed Hopf
algebra and x, y ∈ G(H), then Px,y(H) ∩ H0 = k(x − y). For each such pair
x, y ∈ G(H), let Px,y(H)′ denote a subspace such that

Px,y(H) = k(x− y)⊕ Px,y(H)′.

The following result, which appears as stated below as [3, Theorem 5.4.1], but is
originally due to Taft and Wilson, [7], is the crux of the proof of our main result,
Theorem 1.1.

Theorem 2.3. Let H be a pointed Hopf algebra. Then

H1 = kG(H)⊕ (⊕x,y∈GPx,y(H)′).

We also require the following well-known and easy lemma.

Lemma 2.4. Let H be a pointed Hopf algebra, let x ∈ G(H) and let 〈x〉 denote the
subgroup of G(H) generated by x.

(1) Px,1(H) is an 〈x〉-invariant subspace of H, where x acts by conjugation.
(2) Px,1(H) ⊆ ker ǫ.

Proof. (1) Let h ∈ Px,1(H). Since ∆ is an algebra homomorphism,

∆(xhx−1) = (x⊗ x)(h ⊗ x+ 1⊗ h)(x−1 ⊗ x−1)

= xhx−1 ⊗ x+ 1⊗ xhx−1

hence xhx−1 ∈ Px,1(H).
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(2) Let h ∈ Px,1(H). By the counit axiom of the coproduct, hǫ(x) + ǫ(h) = h.
Since x is group-like, ǫ(x) = 1. The result follows.

�

In light of Lemma 2.4 (1), we make the following definition.

Definition 2.5. Let H be a pointed Hopf algebra. For any x ∈ G(H), define

ax = |〈x〉 : C〈x〉(Px,1(H))|

where C〈x〉(Px,1(H)) denotes the centraliser of Px,1(H) in 〈x〉 under the conjugation
action by 〈x〉.

Definition 2.6. For a pointed Hopf algebra H , define

mH := lcm{ax : x ∈ G}.

We record a couple of simple observations about mH .

Proposition 2.7. Let H be a pointed Hopf algebra.

(1) If G(H) is central in H then mH = 1.
(2) Suppose G(H) is finite. Then mH is finite and divides the exponent of the

group G(H).
(3) If H = H0 = kG(H) then mH = 1.

Proof. Parts (1) and (2) are immediate from the way we defined mH . For part (3),
let x ∈ G(H). If H = kG(H), then as noted in Remark 2.2, Px,1(H) = k(x− 1). It
follows that ax = 1 and hence mH = 1. �

For an arbitrary pointed Hopf algebra H , mH can take values in Z
≥0 ∪{∞} and

will be in general strictly less than the exponent of the group G(H), as shown by
the following example.

Example 2.8. Let k be a field and let 0, 1 6= q ∈ k. Set H = Uq(b
+), the

quantised enveloping algebra of the positive two dimensional Borel. This is defined
as the algebra generated by the letters E,K and K−1, subject to the relations
KK−1 = 1 = K−1K and

KE = qEK.

Then, as proved in [2, I.3.4], for example, H becomes a pointed Hopf algebra, with
coproduct ∆ : H → H ⊗ H and antipode S : H → H defined on generators as
follows

∆(E) = E ⊗ 1 +K ⊗ E, ∆(K) = K ⊗K

S(K) = K−1, S(E) = −K−1E.

Set E′ := EK−1 ∈ PK−1,1(H). An elementary calculation shows that S2n(E′) =
q−nE′ and KnE′ = qnE′Kn for all n ≥ 1. Since K,K−1 and E′ form a set of
generators of H , it is clear that the value of mH depends only on the action of K
on E′. Thus

(1) If q is an nth primitive root of unity for some 1 ≤ n <∞, G(H) has infinite
exponent, mH = n and |S| = 2n.

(2) If q is not a root of unity, then G(H) has infinite exponent, mH = ∞ and
|S| = ∞.
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3. Preliminary computations

The main results of this section, Proposition 3.3 and Proposition 3.7, along with
their proofs, are almost identical to [7, Proposition 3, Theorem 5], the only differ-
ence being that, for a pointed Hopf algebra H , we state our results in terms of mH ,
instead of the exponent of G(H), and do not restrict ourselves to stating the result
for H being finite-dimensional only.

The results of this section are valid over any field.

Lemma 3.1. Let H be a pointed Hopf algebra. Let x ∈ G(H). Then, for h ∈
Px,1(H), S(h) = −hx−1.

Proof. Let x ∈ G(H) and choose h ∈ Px,1(H), so that ∆(h) = h ⊗ x + 1 ⊗ h. By
Lemma 2.4(2), ǫ(h) = 0. By the counit axiom of the antipode,

S(h)x+ h = 0.

That is, S(h) = −hx−1. �

The following lemma is valid over any field.

Lemma 3.2. Let H be a pointed Hopf algebra. Let x ∈ G(H) and let h ∈ Px,1(H).

(1) For any m ≥ 1, S2m(h) = xmhx−m.

(2) If in addition mH <∞, S2mH (h) = h.

Proof. Fix h ∈ Px,1(H). By Lemma 3.1, S(h) = −hx−1. This gives

(3.1) S2(h) = −S(x−1)S(h) = xhx−1.

Proceeding inductively, for any m ≥ 1,

S2m(h) = xmhx−m.

It is then clear from the definition of mH that if mH <∞, S2mH (h) = h.
�

Proposition 3.3. Let H be a pointed Hopf algebra with mH <∞. Then

(S2mH − Id)(H1) = 0.

Proof. Let h ∈ H1. If h ∈ H0 then S
2(h) = h sinceH0 = kG(H) and S2|kG(H) = id.

Thus by Theorem 2.3 and linearity, we can without loss of generality assume that
h ∈ Px,y(H) for some x, y ∈ G. Using the fact that ∆ is an algebra homomorphism,
an elementary calculation then shows that hy−1 ∈ Pxy−1,1(H). Then, using Lemma
3.2(2) and the fact that S2mH is an algebra morphism,

hy−1 = S2mH (hy−1) = S2mH (h)S2mH (y−1) = S2mH (h)y−1,

giving S2mH (h) = h, as required.
�

Next we shall prove a sufficient condition for the antipode of a pointed Hopf
algebra to have infinite order. Before we do this, we need the following well-known
lemma.

Lemma 3.4. Let H be a Hopf algebra with |S| < ∞. Then either S = id or
|S| = 2k for some k ∈ N.
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Proof. Suppose S 6= id. If H is commutative, |S| = 2 by [3, Corollary 1.5.12], so
without loss of generality assume that H is noncommutative. Choose x, y ∈ H such
that xy 6= yx. Let |S| = m < ∞. Suppose m is odd - write m = 2q + 1 for some
q ≥ 1. Since S is an anti-algebra morphism, so too is S2q+1, hence

xy = S2q+1(xy) = S2q+1(y)S2q+1(x) = yx.

This contradicts the assumption that x and y do not commute, thus S must have
even order.

�

Proposition 3.5. Let H be a pointed Hopf algebra with mH = ∞. Then |S| = ∞.

Proof. Suppose |S| < ∞. By Lemma 3.4, we can write |S| = 2t for some t ∈ N.
Then by Lemma 3.2(1), for any x ∈ G(H) and h ∈ Px,1(H),

h = S2t(h) = xthx−t.

If mH = ∞, there exists some y ∈ G(H) and f ∈ Py,1(H) such that ytfy−t 6= f .
Thus it must be that mH <∞. �

Following the arguments of [7], the following result allows us to extend Proposi-
tion 3.3 to higher terms in the coradical filtration.

Proposition 3.6. Let H be a pointed Hopf algebra, let i ≥ 1 and let ψ : H → H be
a coalgebra homomorphism. Suppose (ψ − id)(Hj) ⊆ Hj−1 for all 0 ≤ j ≤ i. Then
(ψ − id)(Hi+1) ⊆ Hi.

Proof. This is [7, Proposition 4]. �

Proposition 3.7. Let H be a pointed Hopf algebra with mH < ∞. Then, for any
n ≥ 1,

(1) (S2mH − id)(Hn) ⊆ Hn−1.
(2) (S2mH − id)n(Hn) = 0.

Proof. This is immediate from Proposition 3.3, Proposition 3.6 and the fact that
S2mH is a coalgebra morphism. �

3.1. Coradically graded Hopf algebras.

Definition 3.8. Let H be a Hopf algebra. We say a family of subspaces {H(n)}n≥0

is a Hopf algebra grading of H if {H(n)}n≥0 is both an algebra and coalgebra
grading with the additional property that S(H(n)) ⊆ H(n) for all n ≥ 0. If in
addition we have, for each n ≥ 0, that

Hn =

n⊕

i=0

H(i)

we say H is a coradically graded Hopf algebra.

Proposition 3.9. Let H be a pointed coradically graded Hopf algebra. Then

(1) mH = ∞ if and only if |S| = ∞.
(2) If mH <∞, S = id or |S| = 2mH .
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Proof. If mH = ∞, |S| = ∞ by Proposition 3.5. For the converse, let H =⊕∞
i=0H(i) be a pointed coradically graded Hopf algebra, so that, for n ≥ 1, Hn =⊕n

i=0H(i), and let mH <∞. Fix n ≥ 1. By Proposition 3.7, it follows that

(S2mH − id)(H(n)) ⊆

n−1⊕

j=0

H(j − 1).

However, since {H(n)}n is a Hopf grading, (S2mH − id)(H(n)) ⊆ H(n) for each
n ≥ 0. It must therefore be that (S2mH−id)(H(n)) = 0 for n ≥ 0, hence S2mH = id.
To complete the proof, it suffices to prove that for any q < mH , there exists h ∈ H

such that S2q(h) 6= h, since Lemma 3.4 guarantees that the order of the antipode is
always either 1 or divisible by 2. Suppose for a contradiction that there exists some
q < mH such that |S| = 2q. By Lemma 3.2(1), for any x ∈ G(H), h ∈ Px,1(H),

h = S2q(h) = xqhx−q.

However, since q < mH , by definition there exists some y ∈ G and f ∈ Py,1(H)
such that

f 6= yqfy−q,

a contradiction. This completes the proof.
�

Let H be a pointed Hopf algebra. As is mentioned at the beginning of §2, the
associated graded space with respect to the coradical filtration of H , grH , inherits
the structure of a pointed Hopf algebra from H . It is well-known, and proved in [4,
Proposition 4.4.15], for example, that, with respect to the Hopf structure inherited
from H , grH becomes a pointed coradically graded Hopf algebra. The following is
thus an immediate corollary of Proposition 3.9.

Corollary 3.10. Let H be a pointed Hopf algebra with mH <∞. Then mgrH <∞
and either S = id or |SgrH | = 2mgrH .

4. The antipode in characteristic zero

We now consider what happens when we work over a field of characteristic 0.

Proposition 4.1. Let H be a pointed Hopf k-algebra. Suppose char k = 0. If
mH = ∞ then |S| = ∞. If mH < ∞ then either |S| divides 2mH , or there exists
h ∈ H such that the orbit of S on h is infinite. In particular, either |S| divides
2mH or |S| = ∞.

Proof. We can, without loss of generality, assume that mH < ∞, since otherwise
Proposition 3.5 guarantees that |S| = ∞. Suppose S2mH 6= id, and choose n
minimal such that h ∈ Hn and S2mH (h) 6= h. We shall prove that S2l(h) 6= h for
any l ≥ 1. By Proposition 3.7(1), S2mH (h) = h + r for some r ∈ Hn−1. By the
choice of h, we can assume r 6= 0.

Claim 4.2. Retain the above notation. For t ≥ 1, S2mHt(h) = h+ tr.

Proof. of Claim 4.2: We proceed by induction on t ≥ 1. The t = 1 case was
Proposition 3.7(1). Fix t ≥ 1. Then, by Proposition 3.7(1),

(4.1) S2(t+1)mH (h) = S2tmHS2mH (h) = S2tmH (h) + S2tmH (r).
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By the minimality of n, S2tmH (r) = r. By the inductive hypothesis, equation (4.1)
becomes

S2(t+1)mH (h) = (h+ tr) + r = h+ (t+ 1)r

proving the claim by induction.
�

So, S2mHt(h) = h+ tr for all t ≥ 1. Since char k = 0, this implies S2mHt(h) 6= h

for all t ≥ 1. Thus |S2mH | = ∞, and so |S| = ∞. In particular, if i and j are distinct
integers, then Si(h) 6= Sj(h), since otherwise S2mH(i−j)(h) = h, contradicting the
above. This completes the proof.

�

Theorem 4.3. Let H be a pointed Hopf k-algebra, where chark = 0. If |S| < ∞
then either |S| = 2mH or S = id.

Proof. Suppose S 6= id. By Proposition 4.1 and Lemma 3.4, it suffices to show that
if |S| <∞, then, for any q < mH , there exists h ∈ H such that S2q(h) 6= h.

Suppose for a contradiction that there exists some q < mH such that |S| = 2q.
By Lemma 3.2 (1), for any x ∈ G, h ∈ Px,1(H),

h = S2mH (h) = xqhx−q.

However, since q < mH , by definition there exists some y ∈ G and f ∈ Py,1(H)
such that

f 6= yqfy−q,

a contradiction. This completes the proof. �

Combining Corollary 3.10 and Theorem 4.3, we prove the following result which
connects the order of the antipode of a pointed Hopf algebra H to the order of
the antipode of the associated graded Hopf algebra, grH . The proof is essentially
exactly the same as the proof of Proposition 4.1.

Theorem 4.4. Let H be a pointed Hopf k-algebra, where chark = 0. If |SH | <∞
then |SH | = |SgrH |.

Proof. Suppose S 6= id. If |SH | < ∞ then mH < ∞ by Proposition 3.5. Let S
denote the antipode of H , let S denote the antipode of grH and let l = mgrH . By

Corollary 3.10 then it follows that l < ∞ and |S| = 2l. Let n ≥ 0, h ∈ Hn and let

h = h+Hn−1 ∈ grH . Then S
2l
(h) = h and so

S2l(h) = h+ r

for some r ∈ Hn−1. Then, by exactly the same proof as the one given for Claim
4.2 above, we get that

S2lt(h) = h+ tr

for each t ≥ 1. If r 6= 0 then, since chark = 0, |S2l| = ∞ and hence |S| = ∞.
However we assumed |S| <∞, so we must have r = 0. Thus we have S2l = id and
so |S| divides 2l. However, |S| = 2mH by Theorem 4.3, which implies that mH

divides l. Clearly l = mgrH ≤ mH in general, and so it must be that mgrH = mH .
The result follows.

�

Corollary 4.5. Let H be a pointed Hopf k-algebra. Assume char k = 0 . Then



9

(1) If G(H) is central in H, then either |S| = ∞, |S| = 2 or S = id.
(2) If H is a connected Hopf algebra (i.e. G(H) = {1}), then either |S| =

∞, |S| = 2 or S = id.

Proof. Clearly if G(H) is central in H then mH = 1, so (1) follows from Proposition
4.1. Part (2) is immediate from (1).

�

Remark 4.6. Note that in Theorem 4.3 all alternatives can occur, even in the
case where H is connected, where mH = 1 always. It is noted in [1, §3.5] that the
connected Hopf algebra B(λ) introduced by Zhuang in [8, §7] has an antipode of
infinite order.

5. The antipode in positive characteristic

In [7, Corollary 6], a bound is obtained for the order of the antipode of a finite
dimensional Hopf algebra H over a field of positive characteristic in terms of the
exponent of G(H). It turns out that the proof of that result is equally valid if we
drop the assumption that H is finite dimensional, and also that, in light of the
results of §3, the result can be restated in terms of mH , rather than the exponent
of G(H). As such, we again credit the results of this section to Taft and Wilson.

Proposition 5.1. Let H be a pointed Hopf k-algebra with mH <∞. Let n ≥ 1 and

h ∈ Hn. Choose l ∈ N such that pl ≥ n ≥ pl−1. If chark = p > 0, S2mHpl

(h) = h.

Proof. Let n ≥ 1 and h ∈ Hn. Choose l ∈ N such that pl ≥ n ≥ pl−1. By
Proposition Lemma 3.7(2),

0 = (S2mH − id)p
l

(h) = S2mHpl

(h)− h.

where the final equality follows from the binomial theorem in characteristic p > 0,
which works here since S and id commute in Endk(H). The result follows. �

The following corollary is immediate.

Corollary 5.2. Let H be a pointed Hopf k-algebra with mH <∞. Assume char k =
p > 0.

(1) Suppose that H can be generated as an algebra by Hn for some 0 ≤ n <∞.
Choose l ∈ N such that pl ≥ n ≥ pl−1. Then |S| divides 2mHp

l.
(2) If H is affine (that is, finitely generated as an algebra), then |S| divides

2mHp
n for some 0 ≤ n <∞. In particular, |S| <∞.

Corollary 5.3. Let H be an affine pointed Hopf k-algebra, where char k = p > 0.

(1) Suppose G(H) is central in H. Then there exists some n ≥ 0 such that |S|
divides 2pn.

(2) Suppose H is connected. Then there exists some n ≥ 0 such that |S| divides
2pn.

Proof. Part (1) follows immediately from the Corollary 5.2 and fact that if G(H)
is central in H then mH = 1. Part (2) is a special case of (1). �

As shown by the following example, originally due to Taft and Wilson, [6], the
bound on the order of the antipode obtained in Corollary 5.2 is in general not
attained, even in the finite-dimensional connected case.
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Example 5.4. Let k be a field with char k = p ≥ 3. Let R be the algebra with
generators X,Y and Z subject to the following relations.

[X,Y ] = X [Y, Z] = −Z, [X,Z] =
1

2
X2,

Xp = 0, Y p = Y, Zp = 0.

It is proved in [6] that R is a connected Hopf algebra of vector space dimension p3

with coproduct, counit and antipode defined on generators as follows:

ǫ(X) = 0, ∆(X) = 1⊗X +X ⊗ 1,

ǫ(Y ) = 0, ∆(Y ) = 1⊗ Y + Y ⊗ 1,

ǫ(Z) = 0, ∆(Z) = 1⊗ Z +X ⊗ Y + Z ⊗ 1,

S(X) = −X, S(Y ) = −Y, S(Z) = −Z +XY.

Since R is connected, mR = 1. Morover, notice that X,Y ∈ R1 and Z ∈ R2, so
R can be generated in at least coradical degree 2. If R was generated in coradical
degree one, it would be cocommutative, since R being connected implies R1 =
k ⊕ P (R), [3, Lemma 5.3.2]. Since p ≥ 3, the bound on the order of the antipode
of R as determined by Corollary 5.2 is therefore 2p. A simple calculation yields the
identity

S2t(Z) = Z − tX

for any t ≥ 1. In particular, S2p(Z) = Z. Since S is an anti-algebra morphism, it
follows that |S| = 2p.

Example 5.5. For an example of a pointed Hopf k-algebraH over a field of positive
characteristic which has an antipode of infinite order, see Example 2.8: when q is
not a root of unity, the Hopf algebra H = Uq(b

+) has an antipode of infinite order
over any field.

We know of no example of a connected Hopf algebra H in positive characteristic
with an antipode of infinite order. This prompts the following question.

Question 5.6. Suppose H is a connected Hopf k-algebra, where char k = p > 0.
Does the antipode of H always have finite order?

By Corollary 5.3(2), an example which gives a negative answer to the above
question would be necessarily non-affine. More generally, we could ask the following.

Question 5.7. Suppose H is a pointed Hopf k-algebra, where char k = p > 0 and
mH <∞. Does the antipode of H always have finite order?
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