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Abstract Active Region 12673 is the most productive active region of solar cycle 24: in a few days of
early September 2017, four X-class and 27 M-class flares occurred. SOL2017-09-06T12:00, an X9.3 flare

also produced a two-ribbon white light emission across the sunspot detected by Solar Dynamics
Orbiter/Helioseismic and Magnetic Imager. The flare was observed at 212 and 405 GHz with the
arcminute-sized beams of the Solar Submillimeter Telescope focal array while making a solar map and at
10 pm, with a 17 arcsec diffraction-limited infrared camera. Images at 10 pm revealed that the sunspot
gradually increased in brightness while the event proceeded, reaching a temperature similar to quiet Sun
values. From the images we derive a lower bound limit of 180-K flare peak excess brightness temperature or
7,000 sfu if we consider a similar size as the white light source. The rising phase of mid-IR and white light is
similar, although the latter decays faster, and the maximum of the mid-IR and white light emission is ~ 200 s
delayed from the 15.4-GHz peak occurrence. The submillimeter spectrum has a different origin than that of
microwaves from 1 to 15 GHz, although it is not possible to draw a definitive conclusion about its emitting
mechanism.

1. Introduction

Solar flares in the mid-infrared (IR) domain have been detected only recently. The first observation at 10 pm
(30 THz) was reported by Kaufmann et al. (2013) for the Geostationary Operational Environmental Satellite
(GOES) M2 event SOL2012-03-13T17:20, which also exhibited white light (WL) emission with a remarkable
coincidence both in space and in time. Trottet et al. (2015) interpret the mid-IR emission as optically thin
thermal from the chromosphere heated by precipitating electrons and ions. Penn et al. (2016) observed the
C7 event SOL2014-09-24T17:50 with two cameras with filters centered at 5.2 and 8.2 pm (57.7 and 36.6 THz,
respectively) and high spatial resolution. Two mid-IR sources were observed to be cospatial with WL and
hard X-ray foot points. The flux at both wavelengths is of the same order, lending support to a thermal opti-
cally thin origin, a conclusion further reinforced by results of radiative hydrodynamic simulations by Simées
et al. (2017). Two other events were registered at 10 pm: SOL2014-08-01T14:47 (Miteva et al.,, 2016) and
SOL2014-10-27T14:22 (Kaufmann et al., 2015), the last one classified as X2.

Emission at submillimeter frequencies during flares is being routinely observed since 2001 when the Solar
Submillimeter Telescope (SST; Kaufmann, et al., 2008) started daily operations at 0.7 (405 GHz) and 1.4 mm
(212 GHz). The origin of the submillimeter emission during the impulsive phase of a flare is still controver-
sial. In some cases it was found that it is mostly optically thin gyrosynchrotron emission produced by greater
than megaelectron volts electrons (Cristiani et al., 2007; Giménez de Castro et al., 2009; Raulin et al., 2004;
Trottet et al., 2002). Some other events present a positive slope between 212 and 405 GHz different from
the microwave source that was interpreted as optically thick gyrosynchrotron emission from a second source
inside a strong magnetic field and with a much smaller size (Kaufmann et al., 2009; Silva et al., 2007). Nonethe-
less, other emitting mechanisms cannot be ruled out since the spectral coverage is still very much incomplete.
Krucker et al. (2013) give a comprehensive and critical analysis of all possible processes that may be respon-
sible for the submillimeter emission. On the other hand, the extended or gradual phase of flares can be
attributed to thermal bremsstrahlung (Luthi, Lidi, & Magun, 2004; Lithi, Magun, & Miller, 2004; Trottet et al.,
2002,2011).
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Figure 1. Time evolution of the spot associated to AR 12673 during the flare observed at 10 pm. While the flare progresses, the spot becomes less dark until it is
indistinguishable from the quiet Sun; as a reference we show the spot associated to AR 12674 in the north. Below every image we plot a slice in the X direction
with the intensity over the flaring spot relative to quiet Sun. The location where the slices are taken is shown in the first panel with a white line.

The unexpected and intense activity of the active region (AR) numbered 12673 by the National Oceanic and
Atmospheric Administration (NOAA) led many researchers to describe it as a Super Active Region (see Romano,
et al., 2018). Indeed, the region, which was in a decaying phase, experienced new flux emergence and pro-
duced between 4 and 10 September 2017 tens of GOES C-class, 27 M-class, and 4 X-class flares as a result of
the greatest magnetic flux emergence ever observed (Sun & Norton, 2017). On 6 September, it produced two
X-class flares: the X2.2 SOL2017-09-06T08:57 and the X9.3 SOL2017-09-06T11:53 (hereafter SOL2017-09-06),
the most powerful event of cycle 24. These events are peculiar not only because of their soft X-ray flux but also
because they produced WL emission, being a rare case of homologous WL flares (Romano et al., 2018). More-
over, SOL2017-09-06 produced two coronal mass ejections, one near the peak time and the next 1 hr later
(Goryaev et al., 2018). It was pointed out that the total emitted energy by the flare is about 10?2 J, that is, in
the lower limit of a super flare (Kolotkov et al., 2018). In this paper we report the observation of SOL2017-09-06
at the wavelengths of 10 pm (mid-IR) and 0.7 and 1.4 mm (submillimeter).

2. Mid-Infrared Observations

Observationsat A = 10 pm (v = 30 THz) were carried out with the Sdo Paulo 30-THz telescope (SP30T; Kudaka
et al,, 2015) which is a Newtonian system with a 15-cm aperture, resulting in a diffraction limit 9, ~ 17".
The original setup described in Kudaka et al. (2015) was changed to have now a FLIR TermoVision™ A20 M
camera with a Focal Plane Array uncooled microbolometer of 160 x 120 pixels that produces interpolated
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Figure 2. Intensity time profiles at selected wavelengths. GOES = Geostationary Operational Environmental Satellite;
EVE = Extreme Ultraviolet Variability Experiment; WL = white light; RSTN = Radio Solar Telescope Network.

digital frames of 320 x 240 pixels with a temperature accuracy +2 °C (internal calibration) or +2%. The optical
setup ensures that the real pixels have the same size as 9,.

On the morning of 6 September 2017, Sdo Paulo had a clear sky, excellent for observations even at large zenith
distance. Observations started at around 8:30 local time (11:30 UTC) and lasted past local noon (15:00 UTC),
producing movies with 10 min duration at one frame per second. Every frame was exported to FITS format to
be able to manipulate it with nonproprietary software. Although the camera has internal procedures that cal-
ibrate in temperature, we applied an external calibration against the Sun. Every image was rescaled to have a
quiet Sun excess temperature over the sky T, = 5000 K (Turon & Léna, 1970); in this way we removed any pos-
sible influence from the terrestrial atmosphere and the optical system. Two spots were visible on the solar disc:
onein the Northern Hemisphere inside AR 12674 and the other in the Southern Hemisphere, within the flaring
AR 12673. Figure 1 displays frames at different moments of the event. Below every image is shown a slice in
the X direction crossing the center of the flaring region spot. Since the camera could not spatially resolve the
emitting region no actual peak in intensity is observed, but rather the images show that, as the flare evolves,
the spot becomes less dark, until it is as bright as the surrounding quiet Sun, at around 11:59:00 UT. Afterward,
the dark spot reappears gradually. To extract the time profile, we used a 2-D a Trous wavelet decomposition,
based on a triangle mother wavelet (Starck & Murtagh, 2006), to reduce random pixel fluctuations. We fitted
a 2-D Gaussian to the square of the third scale of the wavelet transform matrix of each frame. The square root
of the amplitude of the 2-D Gaussian was preflare subtracted. At the end, one still has to rescale the obtained
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Figure 3. An SDO/HMI 6,173 A image taken at 11:40:00 UT, just before the flare. Overplotted, contours at levels

{5, 8, 10, 12, 15} x 10> DN above preflare values of the WL emission during peak time (12:00:34 UT). The dashed circle
in the top left corner represents the Airy disk of the SP30T camera. SDO = Solar Dynamics Orbiter; HMI = Helioseismic
and Magnetic Imager.

temperatures since the wavelet decomposition gives a weighted mean of the area. To do this, the first frame,
where the spot is sharply defined, was fitted to a 2-D Gaussian: the ratio between Gaussian amplitude and the
one obtained with the wavelet transform was used to rescale the whole time series.

The final time profile after being filtered with a 10-s running mean is illustrated in Figure 2, where other wave-
lengths are also shown: soft X-rays from the GOES 1-8 A, C 1 97.7 nm from the Extreme Ultraviolet Variability
Experiment (EVE, Woods, et al., 2012) onboard the Solar Dynamics Orbiter (SDO), the spatially integrated con-
trast (F; — Fy)/F, of the continuum at 6,173 A obtained from the Helioseismic and Magnetic Imager (HMI)
onboard the SDO and microwaves at 15.4 GHz from the Radio Solar Telescope Network (RSTN). Figure 3 shows
an image of the region before the flare started in the continuum 6,173 A; overplotted, the white contours rep-
resent the two-ribbon WL emission at peak time (12:00:34 UT). From the image we can infer a WL emitting
area A, ~ 3 x 10" cm?2. The WL excess contours were obtained as follows: the series of HMI I, images were
processed with the standard routine (aia_prep) and co-aligned using the routine drot_map in the SolarSoft
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Figure 4. Solar Submillimeter Telescope maps starting at 11:53 UT: left panel is for 212 GHz, and right panel is for
405 GHz. The dashed circles in the bottom right corner represent the beams Half Power Beam Width (HPBW).
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Figure 5. Observed (gray) and modeled (black) raster scan profiles. Scans are in azimuth with a fixed elevation. After
each scan, the elevation is changed and the movement direction in azimuth is reversed, that is, after an east to west
follows a west to east movement. Then, again east to west, etc.

(SSW, see http://www.Imsal.com/solarsoft ) package; a mean preflare image (between 11:40 to 11:50 UT) was
obtained and then subtracted from the image taken near the maximum of the impulsive phase (12:00:34 UT).

3. The Submillimeter Emission

At 11:53 UT the Solar Submillimeter Telescope started a solar map. It took 11 min to complete, including the
whole impulsive phase. Figure 4 displays calibrated maps at 212 and 405 GHz, obtained through raster scans.
Between 11:56:30 and 11:58:00 UT, the bursting area was unresolved, that is, it remained within the e=? width
region of the beams. Maps are calibrated against the quiet Sun, adopting a brightness temperature 5900 and
5100 K for 212 and 405 GHz, respectively (Silva et al., 2005).

In order to determine the average value of flux density over the period of 90 s beginning at 11:56:30 UT,
maps were synthesized adopting for the quiet Sun a disk plus another disk for the flaring source; these were
convolved with the beams’ matrix representation. Two different values for the emitting source size were con-
sidered: (i) a compact 25”, which is in accord with what Liithi et al. (2004) determined as the average 210-GHz
source during the impulsive phase of SOL2003-10-28 and also in agreement with the WL area of our event,
and (2) an extended 120" covering the entire AR 12673. For each case, excess brightness temperatures over
the emitting source were determined fitting the observed raster scans. Figure 5 shows the observed and mod-
eled raster scans recovered with one of the four 212-GHz beams. Although the brightness temperatures are
very different for the two assumed source sizes, the flux densities are similar, with differences attributable to
uncertainties in the fitting procedure.

The process must be repeated for each of the beams observing at the same frequency (four at 212 GHz and
two at 405 GHz) until recovering compatible flux density time profiles. To fit the 405-GHz raster scans, it was
necessary to consider a smaller temperature. The fitting accuracy was poorer at 405 GHz as a consequence of
the increased noise in the maps. Final results for the modeling are shown in Table 1.

4. Discussion

To compare the light curves, the normalized fluxes are plotted together in Figure 6. It can be seen that the
WL and mid-IR start and peak together, although the former cools faster. Microwave emissions start together
with these two wavelengths but peak before and have an impulsive shape with short pulses until 12:05 UT.

Table 1

Model Parameters and Results

Frequency (GHz) Source size (') Excess temperature (MK) Flux (sfu)
212 25 1.75 +0.11 2,900 + 250
405 25 0.58 +0.42 4,800 + 1,400
212 120 0.09 +0.01 3,300 + 300
405 120 0.03 +0.03 4,300 + 1,800
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Figure 6. Normalized time profiles at selected wavelengths. UT = universal time.

Afterward, the intensity remains at 5% level with respect to the maximum, which can be an indication of
thermal emission. Soft X-rays start almost together with the rest but increase slower, having the peak flux
later. After the peak, it drops at a similar pace with the mid-IR during the time interval shown. The brightness
temperature at 10 pm (Figure 2) should be considered as a lower bound value since the spatial resolution of
our camera is of the same order of the emitting source size. Assuming that the mid-IR source is cospatial with
the WL source, as it was observed by Penn et al. (2016) with higher spatial resolution; the intensity we observe
at 10 pum might be an average of dark and bright areas (see Figure 3). Indeed, we do not see a brightening
but only variations in the darkness of the spot (Figure 1). Adopting the WL emitting area for the mid-IR source
size, we obtain a peak flux of F;q,,, > 7,000 sfu.

In Figure 7 we show the radio spectrum resulting for a compact submillimeter emitting source, along with

microwaves observed by the San Vito RSTN station, and the lower bound limit for the mid-IR. From the spec-

trum at peak time we cannot determine the gyrosynchrotron turnover frequency at microwaves. On the other

hand, the submillimeter emission seems to come from a different emitting mechanism because (i) the flux

density is an average during the impulsive phase where we adopted a constant brightness temperature, that

is, the instantaneous peak flux density must be much higher than what we have determined and, probably,

higher than the 15.4-GHz flux density and (ii) flux at 212 is smaller than that at 405 GHz (or, in the limit of
the error bar, of the same order). From the results of our models (see Table 1) we note that the flux is weakly
dependent on the adopted source size. However, it is not possible to determine whether the submillimeter
emission comes from a nonthermal source or not; if thermal, however, each frequency would form at dif-
ferent plasma temperatures, that is, a multithermal source is required. In this latter case, a similar result for
the extended phase of SOL2003-10-27 was found by Trottet et al. (2011) who modeled the emission in the
range 8-230 GHz with a multithermal greater than megakelvin optically thin source. They also observed that
345 GHzis optically thick and should come from a lower height. In our case, if the emission were optically thick
gyrosynchrotron, the spectral index between 212 and 405 GHz, a ~ 0.8, would indicate an inhomogeneous
source (Klein & Trottet, 1984; Simbes & Costa, 2006), while Tsap et al. (2018) propose a mixture of gyrosyn-
chrotron and thermal bremsstrahlung absorption to explain the spectral increase between 93 and 140 GHz
during SOL2012-07-05T11:44. The mid-IR flux can be explained, as in Trottet et al. (2015), as optically thin ther-
mal bremsstrahlung emission of a heated chromospheric plasma, since fluxes of the two events are similar.
Moreover, Simdes et al. (2017), using radiative hydrodynamic simulations, have demonstrated that the mid-IR
emission from solar flares may be accounted by optically thin thermal bremsstrahlung due to the increase of
the electron density in the chromosphere, as a consequence of the ionization of hydrogen under non local
thermodynamical equilibrium (non-LTE) conditions.
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Figure 7. Spectrum of the flare, from microwaves to midinfrafed, at peak time 11:56:46 UT. SFU = solar flux unit.

Super flares as the one studied in this paper bring new clues to better understand different aspects of space
weather dynamics and perhaps the most relevant, that is, the origin of solar flares. The high-frequency spec-
trum of solar flares, and its connection with the flaring infrared emission, is still a very new aspect of solar flare
studies. This relation may also reveal the nature of the WL emission for which we do not have a clear expla-
nation at the present time. Finally, these events sometimes present an unusual behavior as diagnosed at few
hundreds of gigahertz, which may indicate the presence of ultrarelativistic electrons and protons that travel
through the interplanetary medium, reach the Earth’s orbit, and penetrate its atmosphere. However, observa-
tions at submillimeter to mid-IR frequencies are scarce, and many frequency gaps must be filled. The Atacama
Large Millimeter Array and the Large Latin American Millimeter Array will widen the submillimeter range up
to 900 GHz. The High-Altitude THz Solar telescope, with first light expected in 2020, will observe the unex-
plored wavelength of 20 pm. Moreover, a spaceborne Solar-T (Kaufmann et al., 2016), observing at 100 and
43 pm, is expected to fly during the new cycle 25.

To summarize our findings, our observations endorse the similarities between the light curves at mid-IR fre-
quencies and WL previously reported (Kaufmann et al., 2013, 2015; Miteva et al., 2016; Penn et al., 2016),
although these emissions have different origins. Another important result is that the derived flux at mid-IR
is well above the obtained density flux at submillimeter wavelengths and detected even with a commercial
camera in the focus of a small telescope. We finally note that the long duration (more than 1 hr) of the 10-pm
emission remains as an open question.
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