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Abstract 

In recent years, civil engineers have started to use discrete-element modelling to simulate large-scale soil 

volumes thanks to technological improvements in both hardware and software. However, existing procedures to 

prepare ‘representative elementary volumes’ are unsatisfactory in terms of computational cost and sample 

homogeneity. In this work, a simple but efficient procedure to initialise large-scale discrete-element models is 

presented. Periodic cells are first generated with a sufficient number of particles (enough to consider the cell a 

representative elementary volume) matching the desired particle size distribution and equilibrated at the desired 

stress state, porosity and coordination number. When the cell is in equilibrium, it is replicated in space to fill the 

problem domain. And when the model is filled, only a small number of mechanical cycles is needed to 

equilibrate a large domain. The result is an equilibrated homogeneous sample at the desired initial state in a 

large volume. 
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1. Introduction 

 

The discrete-element method (DEM), first proposed by Cundall and Strack (1979), is a 

numerical approach widely used to study fundamental aspects of soil response (Calvetti et al., 

2003; Huang et al., 2014b; Ciantia et al., 2016b, 2018). Typically, small cubic or cylindrical 

samples are generated to obtain a ‘representative elementary volume’ (REV), which is later 

tested to explore different links between micromechanical features and the mesomechanical 

response of soil. Element tests may be simulated by adopting boundaries that mimic 

conditions typical of physical soil tests. These include rigid walls (Tamagnini et al., 2005; 

Calvetti, 2008; Ciantia et al., 2015, 2016b), flexible membranes (Kuhn, 1995; Cheung and 

O’Sullivan, 2008) and periodic boundaries (Thornton, 2000; Esnault and Roux, 2013). This 

latter has the advantage of eliminating boundary-effects (e.g. Thornton and Zhang, 2010) 

which are known to influence the material response (Huang et al., 2014a). 

 

The mechanical response of granular media is strongly dependant on the initial state of the 

material. In particular, stress and porosity at the mesoscopic level and coordination number 

(Z) at the microscale (Roux, 2004; Agnolin and Roux, 2007a). Hence attaining a specified 

initial state for a given particle size distribution (PSD) is a crucial step of DEM modelling in 

soil mechanics. Different procedures have been tried and tested with some success to create 

REVs suitable for element testing. Those used more often include the radius expansion 

method (REM) (Cundall and Strack, 1979; Rothenburg and Bathurst, 1992), the fixed point 

method (Katsuki et al., 1989), the isotropic compression method (Cundall and Strack, 1979), 

the modified isotropic compression method (Thornton, 2000) and the multi-layer under 

compaction method (Jiang et al., 2003). These procedures pose important problems when the 

method is used to initialise engineering scale geotechnical problems. Indeed, when the model 

dimension to particle size ratio becomes large, the computational cost of system initialisation 

quickly becomes prohibitive. Moreover, specimen homogeneity is difficult to attain 

(Butlanska et al., 2014; Ciantia et al., 2014). 

 

In this paper, building on the preliminary studies of Ciantia et al. (2017) and Ciantia and 

Shire (2017), a simple but efficient procedure to initialise large-scale DEM models is 

presented: the periodic cell replication method (PCRM). Small samples are first generated 

under zero gravity with a sufficient number of particles (enough to consider the cell as a 

REV) by matching a desired PSD and using periodic boundaries. These are then equilibrated 

at the desired stress, porosity and coordination number. Once the cell is in equilibrium, by 

exploiting the periodic characteristic of the sample, it is replicated in space to fill the whole 

model domain. If the boundary conditions of the large model are still periodic, no gravity is 

considered and the stress state imposed is uniform and equivalent to the original cell, just a 

few mechanical cycles are needed to re-equilibrate the large domain. The result is a large 

homogeneous sample, equilibrated under a prescribed stress at the desired porosity. 

In the first part of this paper it is shown that the PCRM can hence be used to speed up REV 

sample generation. On the other hand, as both zero-gravity and periodic boundaries do not 

appear naturally in the definition of most engineering-scale boundary value problems (BVPs), 

the PCRM alone is found to be unsuitable for the initialisation of BVP samples. In the second 

part of the paper, novel numerical techniques that enable the use of the PCRM to initialise 

large-scale DEM models under gravity conditions and in the presence of rigid walls are 

presented. In particular, to achieve equilibrated and homogenous samples, features such as 

contact force (CF) scaling and contact overlap modification are employed to minimize the 



 

effect of using rigid wall boundary conditions of the BVP. CF scaling and contact gap 

modification are also fundamental features used to prescribe non-uniform stress states such as 

typical field and small scale BVP experimental stress conditions (including centrifuge 

experiments) where the principal directions are vertical and horizontal and the effective 

horizontal stress is proportional to the effective vertical one (hence k where k h v). 

Finally, it is shown that for BVPs such as a cylindrical calibration chamber, REV samples 

characterised by a rigid cylindrical wall in the radial direction and periodic boundary 

conditions in the cylinder axis direction make sample preparation 17 times faster than the 

classic pluviation technique. In this work efficiency will be represented by model runtime as 

all the simulations were performed using the same hardware (Intel Xeon CPU E5 2680 v4 

@2.4GHz with 32GB of Ram) and software, PFC3D (Itasca, 2017). 

 

2. The periodic cell replication method (PCRM) 

2.1. Sample preparation and initial conditions 

A small (S), medium (M) and large (L) cubical discrete specimens with 1.5, 3, 6 mm side 

(corresponding to about 1,500, 5,000 and 40,000 particles respectively) in periodic space 

were created using the Radius Expansion Method (REM). Particle sizes were selected to 

match the weight cumulative PSD of Fontainebleau sand (FS). Following the REM, velocities 

were set to zero. Isotropic compression to an initial mean normal stress (p0´) of 10 kPa with 

an interparticle friction coefficient (μ) selected by trial and error was used to generate a 

sample with a close fit to the target initial porosity (n0) of 0.39. n0 was selected in order to 

numerically reproduce an experimental triaxial compression test on FS performed by El Dine 

et al. (2010). The average internal porosity was monitored through a measurement sphere 

(MS) centred in the centre of the cubic sample in exam and with a diameter equal to 0.8 times 

the minimum sample length. The total porosity of the sample was also measured by 

considering the whole sample size. To highlight the strong influence of coordination number 

(Z) on the REV mechanical response, a second small sample (S*), characterised by the same 

n0 and p0´ of S but with a higher initial Z (Z0), was also prepared. This was done by starting 

form a slightly lower initial porosity during the particle random generation stage and 

applying longer cycle intervals with μ = 0 during the compaction stage. Table 1 summarises 

the DEM model characteristics at the end of the generation phase. In order to capture the 

rotational resistance that exists between real non-spherical irregular grains, instead of using a 

moment resisting contact law, the DEM spherical particle rotation is inhibited (Ting et al., 

1989; Calvetti, 2008; Ciantia et al., 2014). In this work, the simplified Hertz–Mindlin contact 

law is used along with the standard DEM formulation (Itasca, 2017). Table 2 reports the 

calibrated contact model parameters while Figure 1 represents the initial state of the S, M and 

L DEM samples. Triaxial compression tests on 100 kPa isotropically confined samples were 

then performed and the results are shown in Figure 2 where experimental trends are also 

reported. To perform a quasi-static test, during the shearing stage a strain rate was employed 

such that the inertial number was always maintained less than 10
-3

. The large fluctuations 

clearly visible for the S sample reduce as the cell size and particle number increase. It can 

also be observed that the S* sample, despite having the same n0, has a much stiffer response 

when compared to the S sample. This result is in line with the observations of Agnolin and 

Roux (2007b) in that the response of the sample with higher Z0 is stiffer despite n0 and p0´ 

being equivalent. As the response of the S sample is very unstable, depending on the 

application either the M or the L models, which show a smoother response, can be selected as 

REVs. When using the DEM a REV may be defined as a model whose mechanical response 

is independent of the sample size and type of boundaries used (rigid or periodic). There are 



 

no clear indications in the literature that define what is the minimum sized REV. According 

to the authors being the size of an REV strongly dependent on the PSD the trial and error 

technique is the only and safest approach that should be used. As reported in Table 1 the 

equilibrated initial state for the S, M and L samples was obtained after 4, 31 and 160 minutes 

respectively. 

 

2.2. REV from PCRM 

To exploit the idea of the PCRM, the equilibrated S and M samples were replicated in space 

to fill cubic cells with the size of the L sample. The S sample was hence replicated 27 time 

while sample M was replicated 8 times. In this way two large cell replicated samples (L-CRS) 

were generated: L-CRS(S) made from 27 S cells and L-CRS(M) made from 8 M cells. Both 

samples now have the same number of particles of an L sample but they were made starting 

from a non-REV and an REV cell respectively. The main characteristics of L-CRS(S) and L-

CRS(M) are summarised in Table 3. The slight differences between the internal and total 

values of both initial porosity and coordination number in Table 1 represent the level of non-

homogeneity of the unit cells used. Upon replication the total values remain unchanged while 

the internal ones get closer to the total ones (Table 3). For an ideal perfectly homogenous 

sample the internal and total values would coincide and remain unchanged upon replication. 

The same triaxial compression test was then performed on these two new samples and the 

results are shown in Figure 3. Although one may expect the L-CRS(S) sample, now made up 

40,000 particles, to behave as a REV, this does not occur. The model does lose the local 

fluctuations but inherits a smoothed general trend of the S sample as a sort of best line fit. On 

the other hand, the L-CRS(M) which was generated from a REV (sample M) continues to 

behave as a REV. The time needed to generate these samples in an equilibrated condition 

from replicas resulted to be 8 minutes. If we add the time required to prepare the S and M 

cells, it results that a L sample can be obtained in 12 and 37 minutes respectively. This 

corresponds to 7.5% and 23% of the time spent with the standard procedure (160 minutes). 

As it would be highly efficient to prepare a large DEM sample starting from a non-REV cell 

(sample S), a parametric analysis testing a procedure aimed at disturbing the L-CRS(S) to 

obtain a REV was performed. The diameter of each particle was randomly multiplied by a 

factor between 1±D and re-equilibrated before the compression phase. As reported by 

Ciantia and Shire (2017), diameter expansion coefficients D of 0.1% and 0.0001% were not 

sufficient to disrupt the cell replicated sample (CRS) inherited behaviour while, as 

represented in Figure 4, a factor of D = 0.75% is sufficient to disrupt this periodic inherited 

behaviour without changing the PSD. However, the re-equilibration following the diameter 

modification required 60 minutes, making the procedure less efficient than the one using the 

M sample as initial unit cell. An alternative method in which a small (0.01 m/s) random initial 

velocity (vini) was assigned to each particle and the sample was then re-equilibrated before 

the compression test was also trialled. Here the re-equilibration time was of the order of few 

minutes run time, but the inherited behaviour was not disrupted. The main conclusion that 

can be drawn from this parametric study is that the most effective approach is to use a REV 

as the smallest unit cell to replicate. Figure 5 summarises all the times needed to generate the 

DEM models (tgen) in an equilibrated condition at the wanted p0´, n0 and Z0. 

  



 

3. The PCRM and BVPs 

The technological improvement of both hardware and software and the success of the DEM 

in simulating fundamental aspects of soil behaviour have increased the interest in applications 

for direct simulation of engineering scale BVPs in geotechnical applications. If quantitative 

results are sought, the DEM sample initialisation becomes one of the most difficult and time-

consuming aspects of the numerical model. In this respect, in the following it is shown how 

the PCRM, which has proven to be an efficient approach to prepare REVs, can be used to 

efficiently initialise 2D and 3D BVP numerical models. First a general overview of the 

process is presented and some exemplar applications are shown. Then a detailed analysis of 

3D cylindrical sample preparation to model calibration chambers (CCs) under gravity 

conditions is presented. CCs are used to experimentally find correlations between penetration 

resistance and soil state (Jamiolkowski et al., 2003). As these experiments are relatively 

complicated, long and require an expensive laboratory setup recently the modelling of CCs 

has gained more and more interest (Mcdowell et al., 2012; Zhang et al., 2018a, 2018b). One 

of the main difficulties in modelling CCs with DEM is sample preparation (Butlanska et al., 

2009) and, as presented in section 3.2, employing the PCRM, with some precautions when 

dealing with the boundaries, will make sample preparation very effective and efficient. 

 

3.1. General methodology 

To illustrate the concept behind BVP generation using the PCRM and to highlight the 

computational efficiency of adopting this method, the PCRM is here employed to initialise a 

large scale 2D domain, of base B and height H, under any gravitational field g (Figure 6). The 

intent is to show how any stress profile can be generated through the PCRM, hence using the 

DEM as a virtual experimental centrifuge platform. Centrifuge lab tests are widely used in 

geomechanics and, by imposing an increased ‘gravitational’ acceleration to the physical 

model, it is possible to reproduce in the lab self-weight stress profiles comparable to the ones 

in the field. In this way, it possible to obtain accurate data to help solve complex geotechnical 

problems (Bolton et al., 1999; White and Lehane, 2004; Liang et al., 2017). Centrifuge tests 

however are expensive and time consuming, so accurate DEM models may be useful in 

helping to design the experiments themselves. The approach considered to initialise a 2D 

centrifuge DEM model is schematized in Figure 7 and can be summarised as follows. 

 

 Generate a LxL 2D periodic cell and equilibrate a sample under a stress state such that a) 

the effective vertical stress (σ´v) corresponds to the effective vertical stress the ground 

should have at a depth of H and b) the effective horizontal stress (σ´h) corresponds to the 

target k0. 

 rizontal direction and 

direction. 

 Loop through all the contacts and scale the CF by a ratio z/H where z is the depth from 

the ground level to the position of the contact. 

 As described in more detail below, introduce a virtual overlap g
 which gives the exact 

scaled CF from part (iii) but does not change the physical overlap  of the particles. 

 Activate gravity and fix a thin layer of particles in contact with the boundaries. 

 Cycle to equilibrate. 

 

The approach also applies for 3D problems where the initial REV is a 3D periodic cell which 

has to be then replicated in a third dimension. For point (iv) above the value to assign to g
 in 

order to modify original contact force FN 
0
 to scaled contact force FN 

scaled
 (Figure 8) results 
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For the Hertzian contact model. In Eqs. (1) and (2), kn and hn represent the normal contact 

stiffness for the corresponding contact models respectively. The main limitation of this 

general approach is that the boundaries are composed by fixed particles; hence they are 

‘rough’. Such effect can be limited by increasing the domain size, but the difficulty of 

imposing zero shear stresses at the boundaries would remain. 

 

3.2. Application of the PCRM in the presence of rigid boundaries 

As already mentioned above, generating DEM models for CCs, which require the presence of 

rigid or flexible servo-controlled lateral boundaries, is very time consuming. In this section 

two approaches aimed at tacking such a limitation are proposed: Method A starts from a 

cubic REV cell and, using the PCRM (similarly to the general procedure presented above), 

fills the cylindrical domain. Method B requires the generation of an initial sample which is 

characterised by a rigid cylindrical wall in the radial direction and periodic boundary 

conditions in the cylinder axis direction. 

 

3.2.1. Method A 

Referring to Figure 9, the rigid wall cylinder sample generation can be summarised as 

follows. 

 

 Generate a LxLxL 3D periodic cell and equilibrate a sample under a stress state such that 

a) σ’v corresponds to the effective vertical stress the ground should have at a depth of H 

and b) σ’h corresponds to target k0. 

 Replicate the cell  times in the x direction,  times in the y direction and  times in the 

vertical direction. 

 Delete any particle whose centre is outside of the cylinder and below the base wall. 

 Perform 1 mechanical cycle to generate the inevitable large CFs between the rigid walls 

and the particles in contact with them. 

 Assign to the wall-particle contacts a value corresponding to the mean CF of the original 

REV by adjusting the contact gap (g
). 

 Continue from step (iii) of the general methodology (section 3.1) described above without 

fixing particles at the boundaries. 

 

3.2.2. Method B 

This method is aimed at completely removing the rigid cylinder-wall boundary effects which 

are inevitable for Method A above. The concept here is to generate a thin cylindrical sample 

having periodic boundaries in the cylinder axis direction and a rigid cylinder in the radial one 

(Figure 10). By means of a servo control of the rigid cylinder and the periodic domain, it is 

possible to equilibrate the cylindrical REV to the required σ’v and σ’h (i.e. radial stress) at the 



 

desired porosity. At this point, referring to Figure 11, the equilibrated CC model can be 

obtained by the following. 

 

 Loading the 3D cylindrical - only periodic in z - cell up to a stress state such that a) σ’v 

corresponds to the vertical stress the ground should have at a depth of H and b) the radial 

stress corresponds to target k0. 

 Replicating the cell  times in the vertical direction. 

 Continuing from step (iii) of the general methodology (section 3.1) described above 

without fixing particles at the boundaries. 

 

4. Results 

4.1. 2D BVPs 

First, the efficiency of adopting the PCRM to prepare a 2D virtual centrifuge model is 

presented. The geometrical dimension of the sample and the number of particles (Np) 

involved to generate the model are summarised in Table 4. Both 1g and 10g samples were 

prepared and Figure 12 illustrates the final state of the equilibrated 2D centrifuge models. As 

can be observed from the distribution of porosity (n), σ’v and σ’h, the final samples are 

homogenous and the target stress profiles are captured very well. The time required to 

prepare the model was roughly 30 minutes. To compare the computational advantage of using 

the PCRM, a third sample was prepared using the Pluviation Method (PM) under 1g gravity 

conditions. The time required to equilibrate the latter resulted to be around 11,000 minutes 

(just over 1 week). The stress trends obtained with the PCRM and PM model are compared 

with the theoretical trend in Figure 13. It is clear that for the same quality of result the PCRM 

is really efficient compared to the PM, which is the most common method used to recreate k0 

conditions in DEM. Moreover, with the PCRM it is also possible to better control the desired 

k0 conditions, which are a direct result of sedimentation in the PM. 

 

4.2. 3D BVPs 

To assess the efficiency of using the PCRM a cylindrical shaped sample (Figure 14a) is 

generated using two well-known methods and both Method A and B presented in the 

previous section, as presented in Figure 15. The two more traditional methods are the 

sedimentation method (SM) and a method consisting of generating a ‘cloud’ of non-

contacting particles. In the former case, particles are generated at some height above the final 

analysis domain and then allowed to fall downwards under a vertical body force. This process 

involves significant particle movements and many collisions resulting in a varying contact 

configuration. Consequently, the computational cost of this stage is high. It is therefore faster 

to create a ‘cloud’ of close but non-contacting particles by employing the random number 

generation approach within the system domain and apply gravity to these particles, allowing 

them to settle. Moreover, to ensure sample homogeneity, these two existing methods were 

performed in 3 steps of 100 mm thickness each. 

 

Following Arroyo et al. (2011) and similarly to Ciantia et al. (2014, 2016a), a factor of 38 is 

applied to increase particle sizes of FS (Figure 14b) with the aim of reducing the final number 

of particles filling the chamber. The contact parameters are the same as the samples presented 

in Section 2 (Table 2). In addition to the time required to generate each sample, the quality of 

the end result is gauged on final porosity and stress distributions. Figure 14c shows the cubic 

and cylindrical periodic REVs required for method A and B. According to the volume 

response analysis, the Np in the cubic REV (3290) is comparable to the M sample in Section 2 



 

which was considered to be the minimum sized REV. Assuming axisymmetric conditions, 2D 

contours for porosity and stresses of each of the four samples are presented in Figure 16 and 

Figure 17. Porosity calculations accounted for corrections needed to consider particles 

crossing the averaging volumes, while for the average stress calculations within each portion 

the individual particles’ representative stresses were weighted for their own volume only 

when the centre is inside the averaging volume. Figure 16 represents the corresponding 

contours for n, while Figure 17 reports values for vertical, radial and circumferential stresses 

(σz, σr, σθ). The theoretical (expected/target) trends are compared with the numerical ones in 

Figure 18, by considering only the internal region and disregarding the boundaries. It is clear 

that satisfactory results, both in terms of porosity and stress state distributions, are obtained 

employing these two innovative methods, especially Method B. In Method A, despite the 

internal homogeneity, boundary effects are clearly visible. Finally, Figure 19 compares the 

time required to generate the samples with the different techniques and adopting the PCRM 

combined with Method B is clearly the most efficient and effective approach. 

 

5. Conclusions 

In this paper an original approach for fast initialisation of DEM models has been presented. 

The periodic cell repetition method (PCRM) builds upon a simple idea: using equilibrated 

periodic DEM models which are large enough to form a REV to fill larger spaces. This idea 

is complemented by force scaling to initialise anisotropic stress fields of magnitude variable 

in space. The computational efficiency, control of initial conditions and homogeneity of the 

generated specimen make the PCRM very attractive for simulations requiring large scale 

DEM models. 

 

 

  



 

List of notations 

α cell-replication factor in the horizontal direction (2D mode) 

β cell-replication factor in the vertical direction (2D model) 

BVP boundary value problem 

CF contact force 

Cu homogeneity coefficient 

D50 median particle size 

D diameter expansion coefficient 

 physical contact overlap 

g
 virtual contact overlap 

DEM discrete element method 

εvol volumetric strain 

εz axial strain 

Fb sum of the magnitudes of all the forces acting on a body b 

FN
0
 original contact force 

FN
scaled

 scaled contact force 

FS Fontainebleau sand 

g gravity acceleration 

G shear modulus 

H BVP model height 

hn normal contact stiffness (Hertz contact model) 

k0 coefficient of earth pressure at rest 

kn normal contact stiffness (linear contact model) 

L cell length 

L large sample 

L-CRS(S) large small-cell replicated samples 

L-CRS(M) large medium-cell replicated samples 

M medium sample 

MS measurement sphere 

μ interparticle friction coefficient 

n porosity 

n0 initial porosity 

n0,int initial internal porosity 

Np number of particles 

ν Poisson’s ratio 

p0´ initial effective mean normal stress 

PCRM periodic cell replication method 

PM pluviation method 

 cell-replication factor in the y direction (3D model) 

PSD particle size distribution 

q deviatoric stress 

ρ radial coordinate 

ρs grain density 

REM radius expansion method 

REV representative elementary volume 

S small sample 

S* small sample with higher initial coordination number 

SM sedimentation method 



 

σh´ horizontal effective stress 

σθ´ circumferential effective stress 

σv´ vertical effective stress 

σz´ longitudinal stress 

tgen  sample generation time 

Ub magnitude of the unbalanced force acting on a body b 

vini initial velocity 

 cell-replication factor in the x direction (3D model)  

y* vertical axis downward from free surface in 2D BVPs 

Z coordination number 

Z0 initial coordination number 

Z0,int initial internal coordination number 

 cell-replication factor in the z direction (3D model) 
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Table 1. 

Sampl
e 

p0´ 
 [kPa] 

n0,int 
 [-] 

n0 

[-] 
Z0,int 
 [-] 

Z0 
[-] 

Np 
[-] 

tgen 
[min] 

S 10 0.373 0.376 2.84 2.53 1,465 4  

M 10 0.375 0.387 2.37 2.30 5,036 31 

L 10 0.378 0.388 2.43 2.34 40,326 160 

S* 10 0.372 0.376 3.45 3.23 1,465 4 

 

Table 2. 

 [-] G [GPa]  [-] D50 [mm] Cu [-] 

0.275 3 0.3 0.21 1.57 

 

Table 3. 

Sample p0´ 
[kPa] 

n0,int 
[-] 

n0 
 [-] 

Z0,int 
[-] 

Z0 
 [-] 

Np 

[-] 
tgen 

 [min] 

L-CRS(S) 10 0.379 0.377 2.51 2.53 39,555 4+8 

L-CRS (M) 10 0.387 0.387 2.74 2.44 40,288 31+6 

L-CRS (S) D  10 0.378 0.376 2.42 2.35 39,555 4+8+6
0 

 

Table 4. 

H [m] B [m] Number of 
disks per cell [-] 

Total number of 
disks [-] 

1.1 1 2,511 45,910 

 

  



 

Figure captions 

Figure 1. DEM models of the S, M and L periodic cell samples (a-c), corresponding PSDs by 

volume (d) and number (e). 

Figure 2. Evolution of deviatoric stress, q=σz´–σx´ (a), volumetric strain, εvol (b) and 

coordination number, Z (c) with axial strain, εz of the S, M, L and S* DEM models 

under triaxial compression (cell pressure of 100 kPa). Experimental curves from El 

Dine et al. (2010). 

Figure 3. Evolution of deviatoric stress, q=σz´–σx´ (a), volumetric strain, εvol (b) and 

coordination number, Z (c) with axial strain, εz of the L-CRS(S), L-CRS(M) and L 

DEM models under triaxial compression (cell pressure of 100 kPa). 

Figure 4. Evolution of deviatoric stress, q=σz´–σx´ (a), volumetric strain, εvol (b) and 

coordination number, Z (c) with axial strain, εz of the L-CRS(S), L-CRS(S) vini and 

L-CRS(S) ΔD DEM models under triaxial compression (cell pressure of 100 kPa). 

Figure 5. Cubic samples generation times as a function of model size (in terms of number of 

particles, Np). Comparison between a standard method and the cell replication 

approach. 

Figure 6. Geometry of 2D model with target vertical and horizontal effective stresses. 

Figure 7. Flowchart of the 2D BVP DEM model initialisation technique using the PCRM. 

Figure 8. Reference gap modification to change contact force without changing interparticle 

physical overlap δ. 

Figure 9. Flowchart of the 3D rigid wall BVP DEM model initialisation technique using the 

PCRM Method A. 

Figure 10. Cylindrical REV characterised by a rigid cylindrical wall in the radial direction 

and periodic boundary conditions in the cylinder axis direction. 

Figure 11. Flowchart of the 3D rigid wall BVP DEM model initialisation technique using the 

PCRM Method B. 

Figure 12. Porosity and stress contours for 2D DEM models. 

Figure 13. Theoretical and numerical trends of horizontal and vertical stresses for 2D DEM 

models (y* vertical axis downward from free surface). 

Figure 14. Geometry of 3D chamber (H=300 mm and B=200 mm) (a), experimental and 

scaled PSD (b) and cubic and cylindrical REV cells (not in scale) (c). 

Figure 15. Sketch representing the 4 techniques used to initialise the 3D chamber. 

Figure 16. Plane projection of porosity contours for 3D DEM models assuming an 

axisymmetric average of the results (ρ = 0 corresponds with the cylinder centre and ρ 

= 100mm with the outer edge). 

Figure 17. Plane projection of stress state contours for 3D DEM models assuming an 

axisymmetric average of the results (ρ = 0 corresponds with the cylinder centre and ρ 

= 100mm with the outer edge) 

Figure 18. Theoretical and numerical trends of horizontal and vertical stresses for 3D DEM 

models (disregarding boundary effects). 

Figure 19. 3D chamber preparation times as function of sample generation technique. 

 

 

 



 

 



 

 



 

 



 

 



 

 



 

 



 

 



 

 



 

 



 

 



 

 



 

 



 

 



 

 



 

 



 

 



 

 



 

 



 

 


