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POISSON λ-BRACKETS FOR DIFFERENTIAL-DIFFERENCE

EQUATIONS

ALBERTO DE SOLE1, VICTOR G. KAC2, DANIELE VALERI3 AND MINORU WAKIMOTO4

Abstract

We introduce the notion of a multiplicative Poisson λ-bracket, which plays the same role
in the theory of Hamiltonian differential-difference equations as the usual Poisson λ-bracket
plays in the theory of Hamiltonian PDE. We classify multiplicative Poisson λ-brackets in
one difference variable up to order 5. As an example, we demonstrate how to apply the
Lenard-Magri scheme to a compatible pair of multiplicative Poisson λ-brackets of order 1
and 2, to establish integrability of the Volterra chain.

1. Introduction

The notion of a Lie conformal algebra appeared naturally in the study of commutators
of local formal distributions. Namely, expanding the commutator in terms of derivatives
of the formal delta-function δ(z − w) =

∑
n∈Zw

nz−n−1,

(1.1) [a(z), b(w)] =

N∑
j=0

cj(w)∂jwδ(z − w)/j!,

we may define the λ-bracket as the Fourier transform of (1.1):

(1.2) [a(w)λb(w)] =

N∑
j=0

λj

j!
cj(w).

Then, letting ∂ = ∂w, it is easy to see that the λ-bracket (1.2) satisfies the following
properties [K98]:

C1 (sesquilinearity) [∂aλb] = −λ[aλb], ∂[aλb] = [∂aλb] + [aλ∂b],
C2 (skewsymmetry) [bλa] = −←[a−∂−λb],
C3 (Jacobi identity) [aλ[bµc]]− [bµ[aλc]] = [[aλb]λ+µc].
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Here and thereafter the arrow to the left (resp. right) means that ∂ should be moved to
the left (resp. right).

Recall that a Lie conformal algebra is a vector spaceR with an endomorphism ∂, endowed
with a λ-bracket R⊗R→ R[λ], a⊗ b 7→ [aλb], such that the axioms C1, C2, and C3 hold.

Subsequently, in the paper [GK98] the notion of a Γ-locality was studied, where Γ is a
subgroup of the group of fractional linear transformation w 7→ aw+b

cw+d . Here we consider the
simplest case when Γ is a cyclic group, generated by a transformation γ. Then, instead of
(1.1), we consider the bracket of the form

(1.3) [a(z), b(w)] =
N∑

j=−N
cj(w)δ(z − γj · w).

It is easy to see that, letting

a(w)(j)b(w) = cj(w), Sa(w) = γ′(w)a(γ · w),

the following properties hold [GK98]:

(1.4) (Sa)(j)b = a(j+1)b, S(a(j)b) = (Sa)(j)Sb,

(1.5) b(j)a = −Sj(a(−j)b),

(1.6) a(i)(b(j)c)− b(j)(a(i)c) = (a(i−j)b)(j)c.

Introducing, in analogy with (1.2), the λ-bracket [aλb] =
∑

j λ
j(a(j)b), the properties (1.4)–

(1.6) can be rewritten as follows:

M1 (sesquilinearity) [Saλb] = λ−1[aλb], S[aλb] = [SaλSb],
M2 (skewsymmetry) [bλa] = −←[a(Sλ)−1b],
M3 (Jacobi identity) [aλ[bµc]]− [bµ[aλc]] = [[aλb]λµc].

We thus arrive at the following definition.

Definition 1.1. A multiplicative Lie conformal algebra is a vector space R with an auto-
morphism S, endowed with a λ-bracket R ⊗ R → R[λ, λ−1], a ⊗ b 7→ [aλb], such that the
axioms M1, M2, and M3 hold.

Note that the axioms M1–M3 are obtained from C1–C3 by replacing λ+µ by λµ and the
derivation ∂ by the automorphism S, hence the name “multiplicative”. The multiplicative
Lie conformal algebras are classified by pairs (g, S), where g is a Lie algebra and S its
“admissible” automorphism due to the following

Remark 1.2. [GK98] A multiplicative Lie conformal algebra R carries a Lie algebra struc-
ture with the bracket [a, b] = a(0)b (the coefficient of λ0 in the λ-bracket). Furthermore, S
is an automorphism of this Lie algebra, satisfying the following admissibility property:

(1.7) [Sna, b] = 0 for all but finitely many n ∈ Z.
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Conversely, given a Lie algebra g with an automorphism S, satisfying (1.7), we can intro-
duce on g the associated structure of a multiplicative Lie conformal algebra, letting

(1.8) [aλb] =
∑
n∈Z

λn[Sna, b].

The purpose of the present paper is to study the multiplicative Poisson vertex algebras
(PVA) and explain their role in the theory of Hamiltonian differential difference equations.
Our main idea is that the multiplicative PVA play the same role in the theory of Hamil-
tonian differential difference equations as the usual PVA play in the theory of Hamiltonian
PDE (see [BDSK09] for the latter). Thus, this paper may be viewed as a development of
ideas of Boris Kupershmidt [Ku85], to whom this paper is dedicated.

Definition 1.3. A multiplicative PVA is a unital commutative associative algebra V with
an automorphism S, endowed with a multiplicative Lie conformal algebra λ-bracket {aλb},
such that one has

L1 (left Leibniz rule) {aλbc} = {aλb}c+ b{aλc}.

Using skewsymmetry M2, we deduce

L2 (right Leibniz rule) {abλc} = {aλSc}→b+ {bλSc}→a.

Remark 1.4. Remark 1.2 extends to any multiplicative PVA V. Namely, the Lie algebra
bracket on V, defined by Remark 1.2, together with the associative commutative multipli-
cation on V, is a Poisson algebra with an automorphism S, for which the Poisson bracket
satisfies (1.7).

The first main result of the paper is the classification of multiplicative PVA λ-brackets
of order N ≤ 5 on the space of functions V1 in one difference variable u. Note that, due to
skewsymmetry M2, such a λ-bracket of order N has the form

(1.9) {uλu} =
N∑
j=1

(λj − (Sλ)−j)fj , fj ∈ V, fN 6= 0,

and, extending (1.9) to V using the sesquilinearity M1 and the Leibniz rules L1 and L2 (or
rather the master formula (2.2)), the obtained λ-bracket satisfies skewsymmetry.

Let un = Sn(u), so that u0 = u. The first series of examples of multiplicative Poisson
λ-brackets on V1 (i.e., satisfying, in addition, the Jacobi identity M3) is given by

(1.10) {uλu}k,g = λkg(u)g(uk)− λ−kg(u)g(u−k),

where g(u) ∈ V1. All these λ-brackets are compatible, i.e. their arbitrary linear combination∑N
j=1 cj{uλu}j,g, where cj ’s are constants, is again a multiplicative Poisson λ-bracket, called

the multiplicative Poisson λ-bracket of general type.
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The second series of examples, called the complementary type multiplicative λ-brackets,
is of the form (1.9) with N ≥ 2, where

(1.11)

f1 = f2 = . . . = fN−3 = 0, if N ≥ 4,

fN−2 = g(u)g(uN−2)F1(u) . . . FN−1(uN−2), if N ≥ 3,

fN−1 = g(u)g(uN−1)(εN−2F1(u) . . . FN−1(uN−2) + ε2−NF1(u1) . . . FN−1(uN−1)),

fN = g(u)g(uN )F1(u1) . . . FN−1(uN−1),

g(u), Fj(u) are non-zero elements of V1 and ε is a constant, such that

(1.12) g(u)F ′j(u) = εj−1Fj(u), j = 1, . . . , N − 1, εN−1 = −1.

We denote this Poisson λ-bracket by {.λ.}N,g,ε . For example,

(1.13) {uλu}2,g,−1 = (λ−(λS)−1)(g(u)g(u1)(F (u)+F (u1))+(λ2−(λS)−2)g(u)g(u2)F (u1),

where F ′(u)g(u) = F (u), F ′(u) 6= 0.
Next, note that, given n ∈ Z≥1, replacing in (1.9) λj by λnj , Sj by Snj and fj =

fj(u, u1, u2, . . .) by fj(u, un, u2n, . . .), we obtain from a multiplicative Poisson λ-bracket

{.λ.} the n-stretched multiplicative Poisson λ-bracket {.λ.}(n). Its order is nN.
It is straightforward to check that all the above examples indeed satisfy the Jacobi

identity M3 for a = b = c = u (by Proposition 2.2 it follows that these examples are
multiplicative Poisson vertex algebras). We prove that any multiplicative Poisson λ-bracket
on V1 of order ≤ 5 is one of the following:

(i) general type,
(ii) constant multiple of the complementary type,

(iii) linear combination of the λ-brackets {.λ.}N,g,ε and {.λ.}1,g where N = 2 or 3,
(iv) linear combination of the complementary type λ-bracket {.λ.}2,g,−1 and the follow-

ing λ-bracket of order 4

f1 = 0, f2 = g(u)g(u2)F (u)F (u1)−1F (u2),

f3 = g(u)g(u3)(F (u)F−1(u1)F (u2) + F (u1)F−1(u2)F (u3)),

f4 = g(u)g(u4)F (u1)F−1(u2)F (u3),

where g(u)F ′(u) = F (u) and F (u) 6= 0.

(v) linear combination of the 2-stretched λ-brackets {.λ.}
(2)
2,g,−1 and {.λ.}

(2)
1,g,

(vi) constant multiple of the following c-deformed complementary type multiplicative
λ-bracket of order 4, where g(u), Fj(u), and ε are as in (1.12) for N = 4, ε 6= −1:

f1 = g(u)g(u1)(cF1(u)F3(u1)− c2),

f2 = g(u)g(u2)(F1(u)F2(u1)F3(u2) + c(ε2F1(u)F3(u1) + ε−2F1(u1)F3(u2))),

f3 = g(u)g(u3)(ε2F1(u)F2(u1)F3(u2) + ε−2F1(u1)F2(u2)F3(u3) + cF1(u1)F3(u2)),

f4 = g(u)g(u4)F1(u1)F2(u2)F3(u3).
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(vii) linear combination of the order 2 general type λ-bracket {uλu}1,g + {uλu}2,g and
the following λ-bracket of order 5:

f1 = g(u)g(u1)F (u)G(u1),

f2 = −g(u)g(u2)(εF (u)G(u1) + ε−1F (u1)G(u2)),

f3 = g(u)g(u3)(ε−1F (u)G(u1) + F (u1)G(u2) + εF (u2)G(u3)),

f4 = −g(u)g(u4)(εF (u1)G(u2) + ε−1F (u2)G(u3)),

f5 = g(u)g(u5)F (u2)G(u3),

where ε is a primitive 3rd root of 1, g(u) 6= 0, and g(u)F ′(u) = εF (u) and
g(u)G′(u) = G(u).

(viii) constant multiple of the following multiplicative λ-bracket of order 5, attached to
non-zero functions F (u), g(u) ∈ V, such that g(u)F ′(u) = F (u) and a constant c ,
given by

f1 = g(u)g(u1)(F (u)F (u1) + c(F (u) + F (u1)) + c2),

f2 = −g(u)g(u2)(F (u)F (u1) + F (u1)F (u2) + c(F (u) + F (u1) + F (u2)) + c2),

f3 = g(u)g(u3)(F (u)F (u1) + F (u1)F (u2) + F (u2)F (u3) + c(F (u1) + F (u2))),

f4 = −g(u)g(u4)(F (u1)F (u2) + F (u2)F (u3) + cF (u2)),

f5 = g(u)g(u5)F (u2)F (u3).

We give a detailed proof of this classification for N = 1, 2, 3 and 4 (Theorems 2.5, 8.1,
and 9.1). The proof for N = 5 (under the same assumptions on V as in Theorems 2.5, 8.1,
and 9.1) is similar, but involves much more computations, which are skipped.

Thus, we see that, in spite of many analogies, the classification of multiplicative Poisson
λ-brackets is radically different from that of ordinary Poisson λ-brackets, see [DSKW10].

One of the referees pointed out that without loss of generality by a point transformation
F (u) can be set to F (u) = u, so that g(u) = u, or else one can choose g(u) = 1, so that
F (u) = eu. In both cases the resulting expressions for multiplicative λ-brackets are greatly
simplified.

Multiplicative PVA V gives rise to a Hamiltonian differential-difference equation as fol-
lows. Denote by

∫ : V → V̄ := V/(S − 1)V
the canonical quotient map. Then it is immediate to see that the following key lemma
holds.

Lemma 1.5. Formula

(1.14) {∫ f, ∫ g} = ∫{fλg}|λ=1

endows V̄ with a well-defined Lie algebra structure, and the formula

(1.15) {∫ f, g} = {fλg}|λ=1
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defines a representation of the Lie algebra V̄ by derivations of the multiplicative PVA V,
which commute with S.

Choosing a Hamiltonian functional
∫
h ∈ V̄, we define the corresponding Hamiltonian

equation

(1.16)
du

dt
= {∫ h, u}, u ∈ V.

A Hamiltonian function
∫
h1 is called an integral of motion of this equation if

∫
dh1
dt = 0

in virtue of (1.16), i.e. {
∫
h,
∫
h1} = 0. The equation (1.16) is called integrable if it has

infinitely many integrals of motion in involution, i.e. if
∫
h is contained in an infinite-

dimensional abelian subalgebra of the Lie algebra V̄ with bracket (1.14).
The most famous example of a differential-difference equation is the Volterra chain:

(1.17)
du

dt
= u(u1 − u−1)

(applying Sn to both sides, we obtain its more traditional form dun
dt = un(un+1−un−1), n ∈

Z). This equation can be written in a Hamiltonian form (1.16) with respect to the order 1
general type Poisson λ-bracket {uλu}u,1 = λuu1−λ−1uu−1 by choosing

∫
u as a Hamilton-

ian functional. Moreover, equation (1.17) is bi-Hamiltonian, i.e. it can be written in the
form (1.16) with a different, complementary type order 2 multiplicative Poisson λ-bracket
{uλu}2,u,−1 and the Hamiltonian functional 1

2

∫
log u. These two multiplicative Poisson λ-

brackets are compatible, hence the Lenard-Magri type scheme could be applied. We prove
that indeed in this case the Lenard-Magri sequence can be infinitely extended, proving
thereby that the Volterra chain (1.17) has infinitely many linearly independent integrals of
motion, i.e. is integrable (this is a special case of Proposition 7.3 for F (u) = u).

In the paper we develop the related theory of the variational complex. Of course some
of it has been done already in [Ku85].

Our work was stimulated by the book [Ku85] and the paper [KMW13], from which we
learned the basics of the subject.

We are grateful to S. Carpentier for pointing out that the equations obtained from
compatible multiplicative Poisson λ-brackets of higher order via the Lenard-Magri scheme
reduce to the Volterra equation. In fact, we do not know any compatible pair of (local) mul-
tiplicative Poisson λ-brackets in one variable which leads to a different equation. However,
there are non-local ones.

We would like to thank the referees for very useful comments.

2. Classification of multiplicative PVA of order ≤ 2 in one variable

Analogously to the case of ordinary PVA [BDSK09], we shall work in the framework
of an algebra of “difference” functions V. The simplest and most important example is
the algebra of difference polynomials P` in ` variables u1, . . . , u`. This is the algebra of
polynomials over F (our base field) in the variables uin, where i ∈ I = {1, . . . , `} and n ∈ Z.
This algebra carries an automorphism S, defined by Suin = uin+1, i ∈ I, n ∈ Z. It satisfies
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the following relation

(2.1) S
∂

∂uin
=

∂

∂uin+1

S, i ∈ I, n ∈ Z.

Definition 2.1. An algebra of difference functions in ` variables u1, ..., u` is a commutative
associative unital algebra V, containing P`, and endowed with commuting derivations ∂

∂uin
extending those on P`, and an automorphism S extending that on P`, such that the following
two properties hold:

(i) ∂f
∂uin

= 0 for all but finitely many pairs (i, n);

(ii) formula (2.1) holds.

Let

F =

{
f ∈ V

∣∣∣∣ ∂f∂uin = 0 for all (i, n)

}
.

Let C = {f ∈ V |Sf = f} be the subalgebra of constants. Note that, by (2.1) and axiom
(i), C ⊂ F and SF = F .

The proof of the following Proposition is the same as for the ordinary PVA, see [BDSK09],
Theorem 1.15.

Proposition 2.2. Let V be an algebra of difference functions in ` variables u1, . . . , u`. For
each pair i, j ∈ I choose {uiλuj} ∈ V[λ, λ−1]. Then

(a) The master formula

(2.2) {fλg} =
∑
i,j∈I
m,n∈Z

∂g

∂ujn
(λS)n{uiλSuj}→(λS)−m

∂f

∂uim

defines a multiplicative λ-bracket on V, satisfying the sesquilinearity M1 and the
Leibniz rules L1 and L2 (see introduction), which extends the given λ-brackets on
the generators ui, i ∈ I.

(b) Formula (2.2) satisfies the skewsymmetry M2, iff it holds on each pair of generators.
(c) Assuming that the skewsymmetry holds on each pair of generators, the multiplica-

tive λ-bracket (2.2) satisfies the Jacobi identity M3, iff it holds on any triple of
generators.

Remark 2.3. The master formula defines a unique multiplicative λ-bracket on P`, satisfying
the sesquilinearity and the Leibniz rules, with the given {uiλuj}, i, j ∈ I. This uniqueness
holds also if V is obtained from P` by adjoining solutions of polynomial or differential
equations with coefficients in V, like inverses of non-zero elements or exponentials.

Definition 2.4. A λ-bracket, defined by the master formula (2.2), is called a multiplicative
Poisson λ-bracket if it defines a structure of a multiplicative PVA on V.

Theorem 2.5. Let V be an algebra of difference functions in one variable u without zero
divisors and such that C = F is a field. Then any multiplicative Poisson λ-bracket on
V of order ≤ 2 is either of general type (= linear combination of λ-brackets (1.10) with



8 POISSON λ-BRACKETS FOR DIFFERENTIAL-DIFFERENCE EQUATIONS

k ≤ 2), or is a linear combination of the λ-bracket {.λ.}2,g,−1 of complementary type, given
by (1.13), and the λ-bracket {.λ.}1,g of general type, given by (1.10).

Proof. Let {uλu} =
∑

k∈Z λ
kfk, fk ∈ V. Using the master formula, the Jacobi identity M3

(from the Introduction) for a = b = c = u becomes:

(2.3)

∑
i,k

λi+k(Sifk)
∂

∂ui

∑
j

µjfj −
∑
i,k

µi+k(Sifk)
∂

∂ui

∑
j

λjfj

=
∑
i,k

(λµ)i+kfkS
i+k(

∂

∂u−i

∑
j

λjfj).

Note that for the λ-bracket, satisfying skewsymmetry, the coefficients of λmµn, λnµm,
λ−nµm−n and λm−nµ−n in (2.3) give the same equation on the fj ’s. Hence all the equations
come from the coefficients of λmµn with 0 < m < n. Hence for such a pair (m,n) for the
multiplicative Poisson λ-bracket of degree N the corresponding term appears in (2.3) iff
0 < m ≤ N and m < n ≤ m+N . The number of such pairs is N2.

We now use the following lemma.

Lemma 2.6. Identity (2.3) and skewsymmetry imply that fk = fk(u, u1, . . . , uk) for k > 0.

Proof. Let N = max{i | fi 6= 0}, ik = max{i | ∂fk∂ui
6= 0}, and suppose that ik ≥ k + 1.

Computing the coefficient of λik+Nµk in (2.3), we obtain: (SikfN ) ∂fk∂uik
− 0 = 0, hence

∂fk
∂uik

= 0, a contradiction. Hence ∂fk
∂ui

= 0 for i > k if k > 0. In a similar way we prove

that
∂f−k
∂ui

= 0 for i < −k if k > 0. The lemma follows due to the skewsymmetry relation

fk = −Skf−k, k ∈ Z. �

By (1.9) and Lemma 2.6, the λ-bracket {uλu} of order N has the form

(2.4) {uλu} =
N∑
k=1

(λk − (λS)−k)fk(u, u1, ..., uk).

Let now N ≤ 2. Then (2.3) is equivalent to the following four equations on f1 = f1(u, u1)
and f2 = f2(u, u1, u2), which correspond to coefficients of λ2µ4, λ2µ3, λµ3, λµ2, respectively:

(2.5) f2S
2∂f2

∂u
= (S2f2)

∂f2

∂u2
,

(2.6) (S2f1)
∂f2

∂u2
+ (Sf2)

∂f2

∂u1
= f2S

2∂f1

∂u
,

(2.7) (Sf2)
∂f1

∂u1
= f1S

∂f2

∂u
+ f2S

∂f2

∂u1
,

(2.8) (Sf1)
∂f1

∂u1
+ (Sf1)

∂f2

∂u2
= f1

∂f2

∂u
+ f1S

(
∂f1

∂u

)
− f2

∂f1

∂u
+ f2S

∂f1

∂u1
.
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First, consider the case N = 2, i.e. f2 6= 0. Note that, by (2.5),

(2.9)
∂f2

∂u2
/f2 = S2(

∂f2

∂u
/f2).

Since the LHS (resp. RHS) of this equation is a function of u, u1, u2 (resp. u2, u3, u4), we
conclude that both sides are functions of u2. It follows from (2.9) that log f2 is a sum of
a function in u2 and a function in u, u1 (resp. a sum of a function in u and a function in
u1, u2). Hence

f2 = p(u2)ϕ(u, u1) = g(u)ψ(u1, u2).

It follows that f2/p(u2) is independent of u2, hence ψ(u1, u2)/p(u2) = h(u1). Thus

f2 = g(u)h(u1)p(u2).

It follows that
∂f2

∂u2
/f2 =

∂

∂u2
log p(u2),

∂f2

∂u
/f2 =

∂

∂u
log g(u).

Substituting this in (2.9), we obtain, using (2.1),

∂

∂u2
(log p(u2)− log g(u2)) = 0.

Hence p(u2) = cg(u2), where c is a non-zero constant. Absorbing this constant in h(u1),
we obtain:

(2.10) f2(u, u1, u2) = g(u)h(u1)g(u2).

Note that, conversely, (2.10) implies (2.5).
Next, we analyse equation (2.6). Substituting in it (2.10) and dividing both sides by

g(u)h(u1), we obtain

(2.11) (S2f1)
∂g(u2)

∂u2
+ g(u2)h(u2)g(u3)

g(u1)

h(u1)

∂h(u1)

∂u1
= g(u2)S2∂f1

∂u
.

Since the first term in the LHS and the RHS are independent of u1, we conclude that the
second term in the LHS is independent of u1. Hence

(2.12)
g(u)

h(u)

∂h(u)

∂u
= a ∈ C.

First consider the case when h′(u) 6= 0. Then we can see from (2.10) that

(2.13) f2 = g(u)g(u2)h(u1), where g(u) = a
h(u)

h′(u)
, a 6= 0,

which is the coefficient of λ2 in (1.10) with F = h. Substituting (2.12) in (2.11), we obtain
the following equation, to which S2 is applied:

f1(u, u1)g′(u) + ag(u)h(u)g(u1) = g(u)
∂f1(u, u1)

∂u
.
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Dividing both sides by g(u)2, we obtain:

∂

∂u

f1(u, u1)

g(u)
= a

h(u)

g(u)
g(u1) = h′(u)g(u1)

Integrating by u and multiplying by g(u), we obtain

(2.14) f1(u, u1) = g(u)h(u)g(u1) + g(u)A(u1).

Next, we use equation (2.7), in which we substitute (2.13) to get:

g(u1)
∂f1(u, u1)

∂u1
= f1(u, u1)

∂g(u1)

∂u1
+ ag(u)g(u1)h(u1) .

Dividing both sides by g(u1)2, we obtain

∂

∂u1

(
f1(u, u1)

g(u1)

)
= ag(u)

h(u1)

g(u1)
,

and, using (2.12), we get

∂

∂u1

(
f1(u, u1)

g(u1)

)
= g(u)h′(u1) .

Integrating by u1, we have, after multiplying both sides by g(u1),

(2.15) f1(u, u1) = g(u)h(u1)g(u1) + g(u1)B(u).

Equating the RHS’s of (2.14) and (2.15) and dividing by g(u)g(u1), we obtain:

A(u1)− g(u1)h(u1)

g(u1)
=
B(u)− g(u)h(u)

g(u)
.

It follows that both sides are equal to c ∈ C, hence

A(u1) = g(u1)h(u1) + cg(u1),

and, by (2.14), we see that

f1(u, u1) = g(u)g(u1)(h(u) + h(u1) + c),

completing the case when h′(u) 6= 0.
Finally, consider the case h′(u) = 0, i.e. h(u) ∈ C. This case also includes the case f2 = 0

by letting h = 0 in (2.10). In this case (2.11) and (2.13) become:

∂

∂ui
(log f1) =

∂

∂ui
log g(ui) for i = 0, 1,

so that log f1 = log g(u) + C(u1) = log g(u1) +D(u). Hence f1 = c1g(u)g(u1), c1 ∈ C, and
by (2.10), f2 = c2g(u)g(u2) , c2 ∈ C.

It is straightforward to check that the f1 and f2, obtained above, do satisfy equations
(2.5)–(2.8), completing the proof of Theorem 2.5. �

Remark 2.7. If we drop the assumption that C = F in Theorem 2.5, the classification of
multiplicative Poisson λ-brackets of order ≤ 2 is similar, but a little different. Namely, one
has the following two possibilities:



POISSON λ-BRACKETS FOR DIFFERENTIAL-DIFFERENCE EQUATIONS 11

(i) (general type)

fj = cjgS
j(g), j = 1, 2, where cj ∈ F , g ∈ V,

∂g

∂ui
= 0 for i ≥ 1;

(ii) (complementary type)

f1 = gS(g)(
S−1(a)

a
F + S(

S(a)

a
F ) +

c

aS(a)
), f2 = gS2(g)S(F ),

where g, F ∈ V, a ∈ F , c ∈ C, ag 6= 0, ∂g
∂ui

= 0 = ∂F
∂ui

for i ≥ 1, g ∂F∂u = aF .

Remark 2.8. Given a Lie algebra g, we can construct a multiplicative Lie conformal algebra
Cur g = F[S, S−1]g with the multiplicative λ-bracket

[aλb] = [a, b] for a, b ∈ g,

extended by sesquilinearity M1. We conjecture that a finite rank over C[S, S−1] simple mul-
tiplicative Lie conformal algebra is isomorphic to Cur g for some simple finite-dimensional
Lie algebra g. (Added in proof: this conjecture has been proved recently by Efim Zel-
manov.) For example, it is easy to check that any rank 1 multiplicative Lie conformal
algebra is trivial. Indeed, if [uλu] = f(λ, S)u for some f(λ, S) ∈ F[λ, λ−1, S, S−1], by the
sesquilinearity M1, the Jacobi identity for a = b = c = u reads:

(2.16) f(µ, λS)f(λ, S)− f(λ, µS)f(µ, S) = f(λ, (λµ)−1)f(λµ, S).

Suppose that f 6= 0, and let n be the maximal power of S, appearing in f . Then it is
immediate to see that the maximal power of S which occurs in the LHS (resp. RHS) of
(2.16) is 2n if n 6= 0 and is negative if n = 0 (resp. is n), a contradiction.

The following lemma is useful.

Lemma 2.9. Let V be an algebra of difference functions, such that the subalgebra of con-
stants C is a domain and the subalgebra F contains no eigenvectors of S other than from
C. Let P (x) ∈ C[x, x−1] be such that P (−1) 6= 0. Then the kernel of P (S) in V is zero.

Proof. It suffices to show that the kernel of S + a is zero for any constant a 6= −1. Let
f ∈ V be outside of F and such that (S + a)f = 0. Then there exists i, such that ∂f

∂uin
6= 0

for some integer n. Take maximal such n. By (2.1) we have:

S
∂

∂uin
=

∂

∂uin+1

(S + a)− a ∂

∂uin+1

.

Applying both sides to f, we obtain S ∂f
∂uin

= 0, a contradiction. �

3. Evolution difference equations and related notions

An evolution difference equation over an algebra of difference functions V in ` variables
u = {ui}i∈I is a system of equations of the form

(3.1)
du

dt
= P, where P = (P i)i∈I ∈ V`.
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Applying Sn to both sides, we obtain a system of ordinary differential equations on all uin :

duin
dt

= Sn(P i), i ∈ I, n ∈ Z.

Recall that elements of V̄ = V/(S − 1)V are called Hamiltonian functionals and are
denoted by

∫
f, f ∈ V. Such an element is called an integral of motion of (3.1) if d

dt

∫
f = 0

in virtue of (3.1). Using the chain rule, this condition becomes

(3.2) ∫ XP (f) = 0,

where

(3.3) XP =
∑
n∈Z
i∈I

Sn(P i)
∂

∂uin

is the difference evolutionary vector field, attached to P ∈ V`. This is a derivation of the
algebra V, commuting with the automorphism S.

Since, by definition,
∫
S(f) =

∫
f, we have integration by parts

(3.4) ∫ Sn(f)g = ∫ fS−n(g), n ∈ Z.

Applying integration by parts to (3.2), (3.3), we obtain that
∫
f is an integral of motion

of the equation (3.1) if and only if

(3.5) ∫ δf
δu
· P = 0 .

Here δf
δu ∈ V

` is the column vector of difference variational derivatives

(3.6)
δf

δui
=
∑
n∈Z

S−n
(
∂f

∂uin

)
,

and P ·Q =
∑

i∈I P
iQi stands for the dot product in V`. In the sequel we shall also need

the difference Frechet derivative DF (S) of F ∈ V`, defined as an ` × ` matrix difference
operator

(3.7) (DF (S))i,j∈I =
∑
n∈Z

∂F i

∂ujn
Sn .

Recall that the space of difference evolutionary vector fields is closed under the usual
Lie bracket (P,Q ∈ V`):

(3.8) [XP , XQ] = X[P,Q], where [P,Q] = XP (Q)−XQ(P ).

The vector field XQ is called a symmetry of the equation (3.1) if [XP , XQ] = 0. This

property is equivalent to the compatibility of equation (3.1) and the equation du
dt1

= Q in

the sense that d
dt

d
dt1

= d
dt1

d
dt .
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4. Hamiltonian difference operators

Let V be a unital associative algebra with an automorphism S. Then V[S, S−1] is a unital
Z-graded associative algebra with the product ◦ defined by the relation

(4.1) S ◦ f = S(f)S, f ∈ V,

and the Z-grading, defined by degV = 0, degS = 1. The algebra V[S, S−1] is called the
algebra of difference operators over V. This algebra carries an anti-involution ∗ defined by

f∗ = f for f ∈ V, S∗ = S−1 .

Let now V be an algebra of difference functions in ` variables ui, i ∈ I = {1, . . . , `} (see
Definition 2.1). Let V be endowed by a λ-bracket, defined by the master formula (2.2).
The `× ` matrix difference operator

(4.2) H(S) = ({ujSu
i}→)i,j∈I

is called the Hamiltonian operator (or Poisson structure), associated with the λ-bracket
(2.2), provided that it satisfies the skewsymmetry and Jacobi identities.

It is immediate to see that (1.15) for g = uj , j ∈ I, can be written as

(4.3) {∫ f, u} = H(S)
δf

δu
,

where u is the column vector of the ui’s and δf
δu is the column vector of difference variational

derivatives (3.6).
Applying integration by parts to (2.2), we obtain

(4.4) {∫ f, ∫ g} = ∫ δg
δu
·H(S)

δf

δu
.

Of course, formulas (4.3)–(4.4) are completely analogous to those in the differential case
(cf. [Ku85]).

Note also that while the Hamiltonian operator H(S) is defined via the λ-bracket (2.2)
by (4.2), conversely, the λ-bracket (2.2) can be expressed via H(S) by

(4.5) ({ujλu
i})i,j∈I = H(λS)I`.

It follows from (4.3) that the Hamiltonian equation (1.16) with a λ-bracket, corresponding
via (4.5) to the Hamiltonian operator H(S), and a Hamiltonian functional

∫
h ∈ V̄, is an

evolution difference equation

(4.6)
du

dt
= H(S)

δ ∫ h
δu

.

Recall that, by Lemma 1.5, we have a homomorphism of the Lie algebra V̄ with bracket
(1.14) to derivatives of V, commuting with S. By (4.3) it is given by the formula

(4.7) ∫ f 7→ X
H(S) δ ∫ f

δu
.

Consequently, we obtain the standard
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Proposition 4.1. If
∫
f is an integral of motion of the Hamiltonian equation (4.6), then

the evolutionary vector field XH(S) δ
δu

∫
f is a symmetry of this equation.

The following proposition translates the properties of the Poisson λ-brackets to that of
the corresponding Hamiltonian operators. It is a “difference” analogue of Proposition 1.16
from [BDSK09].

Proposition 4.2. (a) The multiplicative λ-bracket (2.2) is skewsymmetric if and only
if the associated via (4.2) difference operator H(S) = (Hij(S))i,j∈I is skewadjoint:

H(S)∗ = −H(S), where (Hij(S))∗ = (Hji(S)∗) .

(b) If the operator H(S) is skewadjoint, then the corresponding λ-bracket, defined by
(2.2) and (4.5), satisfies Jacobi identity if and only if one of the following equivalent
conditions holds:
(i) the multiplicative λ-bracket on V , associated to H(S) via (4.5), satisfies the

Jacobi identity,
(ii) the following identity holds for any i, j, k ∈ I :

∑
t∈I,n∈Z

(
∂Hk,j(µ)

∂u
(t)
n

(λS)nHt,i(λ)−
∂Hk,i(λ)

∂u
(t)
n

(µS)nHt,j(µ)

)

=
∑

t∈I,n∈Z
Hk,t(λµS)(λµS)−n

∂Hj,i(λ)

∂u
(t)
n

,

(iii) the following identity holds for any F,G ∈ V` :

H(S)DG(S)H(S)F +H(S)D∗H(S)F (S)G−H(S)DF (S)H(S)G+H(S)D∗F (S)H(S)G

= DH(S)G(S)H(S)F −DH(S)F (S)H(S)G,

where DF (S) is the difference Frechet derivative of F ∈ V`, defined by (3.7).

Proof. (a) is straightforward and equivalence of (i) and (ii) in (b) is clear by (4.2). In order
to prove equivalence of (ii) and (iii), note the following identity for any F ∈ V` :

(DH(S)F (S))ij − (H(S)DF (S))ij =
∑

k∈I,n∈Z

∂H(S)ik

∂ujn
F kSn

Applying both sides to H(S)G, we obtain for F,G ∈ V`, i ∈ I:
(4.8)

(DH(S)F (S)H(S)G)i − (H(S)DF (S)H(S)G)i =
∑

j,k∈I,n∈Z
(
∂H(S)ik

∂ujn
F k)Sn((H(S)G)j) .

Denote by (4.8)* the identity, obtained from (4.8) by applying * to it,and by (4.8)F ,
obtained from (4.8) by substituting G by F. Then the identity (4.8)− (4.8)∗+(4.8)F shows
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that identity (iii) is equivalent to the following identity for any F,G ∈ V`:

(4.9)

∑
j,k,t∈I
n∈Z

∂Hik(S)

∂ujn
GkSn(Hjt(S)F t)−

∑
j,k,t∈I
n∈Z

∂Hit(S)

∂ujn
F tSn(Hjk(S)Gk)

=
∑
j,k,t∈I
n∈Z

Hij(S)S−n((
∂Hkt(S)

∂ujn
F t)Gk).

Since identity (4.9) holds for every F,G ∈ V`, we can replace in it S, acting on F t, by λ,
and S, acting on Gk, by µ, and write it as an identity for polynomials in λ and µ. This
shows that identity (4.9) is equivalent to (ii). �

Corollary 4.3. Let H(S) be a Hamiltonian operator, acting on V`. Then H(S)V` is a
subalgebra of V` with respect to the bracket (3.8).

Proof. Since DF (S)G = XGF, the RHS of (iii) in Proposition 4.2 is the bracket (3.8) of
H(S)F and H(S)G, while the LHS lies in the image of H(S). �

According to Remarks 1.2 and 1.4, there is an alternative language of Poisson brackets
on an algebra of difference functions V in ui, i ∈ I, with an automorphism S.

Proposition 4.4. (a) Given a Poisson λ-bracket on V, defined by the λ-brackets

{uiλuj} =
∑
k∈Z

λkf ijk , i, j ∈ I,

let

(4.10) [uim, u
j
n] = Snf ijm−n, i, j ∈ I, m, n ∈ Z,

and extend this to the whole of V by the ordinary Leibniz rules:

(4.11) [f, g] =
∑
i,j∈I
m,n∈Z

∂f

∂uim
[uim, u

j
n]
∂g

∂ujn
.

(This is the coefficient of λ0 in (2.2).) Then V becomes an (ordinary) Poisson
algebra with an automorphism S, and such that

(4.12) [uim, u
j
n] = 0 for |m− n| � 0.

(b) Conversely, if V has a structure of a Poisson algebra with S-invariant bracket [. , .],
and satisfying the locality property (4.12), then, letting

{uiλuj} =
∑
k∈Z

λk[uik, u
j
0]
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and extending by the master formula (2.2), endows V with the structure of a mul-
tiplicative PVA. The corresponding Hamiltonian operator is

H(S) =

(∑
k∈Z

[ujk, u
i
0]Sk

)
i,j∈I

.

Proof. Straightforward verification. �

Remark 4.5. In the case of one difference variable u the multiplicative λ-bracket is defined
by {uλu} =

∑
k∈Z fkλ

k, and, by (4.10) the corresponding Poisson bracket becomes

[um, un] = Snfm−n, m, n ∈ Z.

For example, in case of the general type multiplicative λ-bracket of order N , given by
fk = ckg(u)g(uk), c−k = −ck, k = 1, ..., N , the corresponding Poisson bracket is

(4.13) [um, un] = cm−ng(um)g(un).

In the case of the complementary multiplicative λ-bracket of degree 2 we have

f1 = g(u)g(u1)(F (u) + F (u1)), f2 = g(u)g(u2)F (u1),

and the corresponding Poisson bracket is

(4.14) [um, un] =

 ±g(um)g(un)F (un±1) if m− n = ±2,
±g(um)g(un)(F (um) + F (un)) if m− n = ±1,
0 otherwise.

Bracket (4.13) for N = 1 is compatible with bracket (4.14). A linear combination of these
brackets for g(u) = F (u) = u is the well-known Faddeev-Takhtajan-Volkov bracket [FT86].

5. The variational complex

Let V be an algebra of difference functions in the variables ui, i ∈ I = {1, . . . , `}. The

basic de Rham complex Ω̃ = Ω̃(V) is defined as a free commutative superalgebra over V
with odd generators δuin, i ∈ I, n ∈ Z. It has the same properties as the basic de Rham
complex, studied in [BDSK09], Section 3. We recall here the most necessary of them.

The superalgebra Ω̃ consists of finite sums of the form

(5.1) ω̃ =
∑

i1,...,ik∈I
m1,...,mk∈Z

fm1,...,mk
i1,...,ik

δui1m1
∧ . . . ∧ δuikmk , fm1,...,mk

i1,...,ik
∈ V,

and has the usual (super)commutative product ∧. This is a Z+-graded superalgebra:

Ω̃(V) =
⊕

k∈Z+
Ω̃k, where the grading is defined by letting degV = 0, deg δuin = 1. It

carries an odd derivation δ of degree 1, defined by

δ(δuin) = 0, δf =
∑
i∈I
n∈Z

∂f

∂uin
δuin for f ∈ V.
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It is immediate to check that δ2 = 0, hence we have cohomology of this complex

H(Ω̃(V), δ) =
⊕
k≥0

Hk(Ω̃(V), δ) .

In the same way as in [BDSK09] we show that the complex (Ω̃(V), δ) is acyclic, provided
that the algebra of difference functions V is normal, as defined below. The algebra V carries
a filtration by subspaces

Vn,i =

{
f ∈ V

∣∣∣∣ ∂f
∂ujm

= 0 for (m, j) > (n, i) in the lexicographical order

}
.

The algebra V is called normal if ∂
∂uin
Vn,i = Vn,i for all i ∈ I, n ∈ Z.

Theorem 5.1.

Hk(Ω̃(V), δ) =

{
F , if k = 0
0, if k > 0

provided that V is normal.

Next, we extend the automorphism S of the algebra V to an automorphism of the

superalgebra Ω̃(V), letting

S(δuin) = δuin+1, i ∈ I, n ∈ Z,

and denote it again by S. It is immediate to check, using (2.1), that S commutes with δ,

hence (S − 1)Ω̃(V) is a δ-invariant subspace, and we can define the reduced complex

(5.2) Ω(V) = Ω̃(V)/(S − 1)Ω̃(V) =
⊕
k≥0

Ωk(V),

with the induced action of δ. It is called the variational complex.
In the same way as in [BDSK09], Section 3, using the long cohomology exact sequence,

we prove (cf. [Ku85])

Theorem 5.2.

Hk(Ω(V), δ) =

{
F/(S − 1)F , if k = 0
0, if k > 0

provided that V is normal.

In the same way as in [DSK09] and [BDSK09] we have identifications of Ω0(V) with
V/(S − 1)V, Ω1(V) with V`, Ω2(V) with the space of skewadjoint ` × ` matrix difference
operators, and Ωk(V) for k > 2 with the space of skewsymmetric k-difference operators.
With these identifications we have explicit formulas for δ, similar to that in the above
quoted papers. We shall need only the first two of them (f ∈ V, F ∈ V`) :

(5.3) δ(∫ f) =
δ ∫ f
δu

, δ(F ) = DF (S)−DF (S)∗ ,

where DF (S) is the difference Frechet derivative of F ∈ V`, defined by (3.7). As a result,
we obtain the following corollary of Theorem 5.2.
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Corollary 5.3. Let V be an algebra of difference functions. Then

(a) Ker δ
δu ⊆ F + (S − 1)V, and we have the equality if V is normal.

(b) If F ∈ Im δ
δu , then F is closed, i.e. DF (S) = DF (S)∗. If V is normal, the converse

holds. �

Examples 5.4. (a) The algebra P` is a normal algebra of difference functions with F =
C = F. Hence Ker δ

δu = F + (S − 1)P`.
(b) The algebra P`[x] with S extended from P` by S(x) = x + 1, is normal with
F = F[x] = (S − 1)F . Hence Ker δ

δu = (S − 1)P`.
(c) The algebra P1[u−1

n , log un |n ∈ Z] is a normal algebra of difference functions.

As explained in [DSK13], Lemma 4.3. any algebra of difference functions V can be
extended to a normal one, which can be taken to be a domain if V is.

The importance of the variational complex is revealed by the following theorem.

Theorem 5.5. Let H and K ∈ Mat`×` V[S, S−1] be two compatible Hamiltonian difference
operators and assume that K is non-degenerate (i.e. KM = 0 implies M = 0 for any
M ∈ Mat`×` V[S, S−1]). Let ξ0, ξ1, ξ2 ∈ Ω1(V) = V` be such that

(5.4) Kξn+1 = Hξn for n = 0, 1.

If ξ0 and ξ1 are exact, then ξ2 is closed (in the variational complex).

This theorem is well known in the theory of evolutionary PDE. Its simplest proof was
given in the framework of the theory of Dirac structures [D93], [BDSK09], [DSK13]. A
parallel theory of Dirac structures in the difference case can be developed without difficulty.
In particular, this gives a proof of Theorem 5.5.

The following symmetric bilinear form is used in the definition of a Dirac structure:

(5.5) V` × V` → V̄, (F |G) = ∫ F ·G .
A proof, similar to that in [BDSK09], Proposition 1.3(a), shows that this form is non-
degenerate.

6. The Lenard-Magri scheme.

Let V be an algebra of difference functions in ` variables. Given two difference operators
H(S) and K(S) : V` → V`, a sequence of elements ξ0, . . . , ξN−1 ∈ V`, N ≥ 2, is called a
Lenard-Magri sequence if the following Lenard-Magri relations hold

(6.1) K(S)ξj = H(S)ξj−1, j = 1, . . . , N − 1.

For a difference operator L(S) : V` → V` define the bilinear form

(6.2) V` × V` → V̄, 〈F,G〉L = (L(S)F |G).

Note that this form is skewsymmetric if the operator L(S) is skewadjoint.
The following theorem is analogous to that in the differential case, cf. [D93], [BDSK09].

Theorem 6.1. Let H(S) and K(S) be skewadjoint difference operators on V`, and let
ξ0, . . . , ξN−1 ∈ V` be a Lenard-Magri sequence. Then



POISSON λ-BRACKETS FOR DIFFERENTIAL-DIFFERENCE EQUATIONS 19

(a) For all m,n ∈ {0, . . . , N − 1} one has

〈ξm, ξn〉H = 0 = 〈ξm, ξn〉K .

(b) If ξj are exact, i.e. ξj =
δhj
δu for some hj ∈ V, j = 0, . . . , N − 1, then all the hj are

in involution with respect to both λ-brackets, associated to the operators H and K
via (4.5).

(c) If the following orthogonality condition holds:

span {ξ0, . . . , ξN−1}⊥ ⊆ Im K(S)

where ⊥ stands for the orthogonal complement with respect to the bilinear form
(5.5), then we can extend the sequence ξ0, . . . , ξN−1 to an infinite Lenard-Magri
sequence.

(d) If ξ0 and ξ1 are exact, H(S) and K(S) are compatible Hamiltonian operators and

K(S) is non-degenerate (i.e. its kernel is finite-dimensional), then ξj =
δ
∫
hj

δu for
some hj ∈ V, j = 0, 1, . . . , N − 1, provided that V is normal, and all these

∫
hj

are in involution with respect to the brackets, defined by (4.4) for both H and K.
Furthermore, if N = ∞ and the ξj span an infinite-dimensional subspace of V`,
then

du

dtj
= {∫ hj , u}, j = 0, 1, . . . ,

is a compatible integrable hierarchy of Hamiltonian difference equations.

Proof. a) goes back to Lenard and Magri, and can be found e.g. in [BDSK09], Lemma 2.6.
(b) follows from (a) and (4.4). The proof of (c) is the same as in [BDSK09], Proposition
2.9. Claim (d) follows by Theorem 5.2 for k = 1 and Theorem 5.5. �

Remark 6.2. Usually one begins a Lenard-Magri sequence with ξ0 ∈ Ker K(S). If this
sequence is infinite and one has another Lenard-Magri sequence that begins with ξ′0 ∈
Ker K(S), then we also have 〈ξi, ξ′j〉H or K = 0 for all i, j, provided that both H(S) and

K(S) are skewadjoint (see [BDSK09], Proposition 2.10(c)).

Remark 6.3. Let ξ0 = 0 and ξ1 = δh1
δu ∈ Ker K(S) for some h1 ∈ V. Then, under the

assumptions on H and K of Theorem 5.5, any ξ2 ∈ V`, such that K(S)ξ2 = H(S)ξ1. is
closed.

The method of constructing infinite Lenard-Magri sequences, outlined in this section,
works well in the PDE case, see [BDSK09], [DSK13]. However, it doesn’t work well for
difference equations since it is difficult to verify the orthogonality condition of Theorem
6.1(c). In the next section we use a different method, on the example of the Volterra chain.

7. Integrable bi-Hamiltonian difference equations, associated to
Hamiltonian operators of order ≤ 2

It follows from Theorem 2.5 that the following two difference operators are compatible
(i.e. any their linear combination is a Hamiltonian difference operator):

(7.1) K(S) = g(u)(g(u1)S − g(u−1)S−1),
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(7.2)
H2(S) =g(u)

(
g(u1)(F (u) + F (u1))S + F (u1)g(u2)S2

− g(u−1)(F (u) + F (u−1))S−1 − F (u−1)g(u−2)S−2
)
,

where

(7.3) F ′(u)g(u) = F (u), F ′(u) 6= 0 .

For F = g = u these operators are listed in [KMW13].
Let

(7.4) ξ0 =
1

2g(u)
, ξ1 = F ′(u) .

It is straightforward to check the following:

(7.5) K(S)ξ0 = 0, K(S)ξ1 = H2(S)ξ0 .

It follows from (7.5) that the difference equation

(7.6)
du

dt0
= g(u)(F (u1)− F (u−1))

is bi-Hamiltonian (indeed, the RHS is equal to H2(S)ξ0). For F = u this is the Volterra
chain (1.17); for F = uε this is the Kac-Moerbeke-Langmuir equation (see [KMW13]). The
point transformation v = F (u) transforms (7.6) to the Volterra chain.

We have the following compatible (by Theorem 6.1 and Proposition 4.1) with equation
(7.6) difference equation du

dt1
= H2(S)ξ1, explicitly:

(7.7)
du

dt1
= g(u)(F (u)F (u1) +F (u1)2 +F (u1)F (u2)−F (u)F (u−1)−F (u−1)2−F (u−1)F (u−2)).

We proceed to construct an infinite Lenard-Magri sequence, extending (7.4) and (7.5).
In fact, we shall consider a more general situation. Let V be an algebra of difference
functions in u, and let g(u) be an invertible element of V.

Lemma 7.1. Let K(S) be a difference operator, defined by (7.1), and let H(S) =
∑

k fkS
k ∈

V[S, S−1] be an arbitrary skewadjoint difference operator. Let {ξj}j=0,...,N−1 ⊂ V, N ≥ 2,

be a Lenard-Magri sequence, such that ξ0 = 1
2g(u) ∈ Ker K(S). Then

(a) 1
2g(u)H(S)ξN−1 = (S − 1)AN , where

AN = −g(u)g(u−1)
∑
i,j≥1
i+j=N

ξiS
−1(ξj)−

∑
i,j≥0

i+j=N−1

∑
k≥1

0≤`≤k−1

S`(f−kξiS
−k(ξj)).

(b) If 2S(AN ) = (1 + S)g(u)ξN for some ξN ∈ V, then K(S)ξN = H(S)ξN−1.

Proof. Let ξ =
∑N−1

j=0 ξjz
−j . Since K(S)ξ0 = 0, we have K(S)ξ =

∑N−1
j=1 K(S)ξjz

−j . Using

(6.1), we obtain K(S)ξ =
∑N−1

j=1 H(S)ξj−1z
−j = z−1

∑N−2
j=0 H(S)ξjz

−j . Hence, multiplying
by ξ, we obtain

(7.8) ξK(S)ξ = z−1ξH(S)ξ − ξH(S)ξN−1z
−N .
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Note that, since K(S) = g(u)(S − S−1) ◦ g(u), we have

ξK(S)ξ = ξg(u)S(g(u)ξ)− ξg(u)S−1(g(u)ξ) = S(ξg(u)S−1(ξg(u)))− ξg(u)S−1(g(u)ξ).

Thus

(7.9) ξK(S)ξ = (S − 1)(g(u)ξS−1(g(u)ξ)).

Similarly, since H(S) =
∑

k≥1(fkS
k − S−k ◦ fk), we obtain

(7.10) ξH(S)ξ =
∑
k≥1

(Sk − 1)(ξS−k(fkξ)).

Using (7.9) and (7.10), we can rewrite (7.8) as follows:

(7.11) (S − 1)(g(u)g(u−1)ξS−1(ξ)) = −z−1
∑
k≥1

0≤`≤k−1

S`(f−kξS
−k(ξ))− ξH(S)ξN−1z

−N .

Using that for any k ∈ Z one has

ξS−k(ξ) =
∑
p≥0

z−p
∑

0≤i,j≤N−1
i+j=p

ξiS
−k(ξj),

we can rewrite (7.11) as follows:

(S − 1)(g(u)g(u−1)
∑
p≥0

∑
0≤i,j≤N−1
i+j=p

ξiS
−1(ξj)z

−p)

= −(S − 1)
∑
p≥1

∑
0≤i,j≤N−1
i+j=p−1

∑
k≥1

0≤`≤k−1

S`(f−kξiS
−k(ξj))z

−p

−
∑

0≤j≤N−1

ξjH(S)ξN−1z
−(N+j) .

Looking at the coefficients of z−N of this identity, we obtain claim (a) of the lemma.
By claim (a) we have:

1

g(u)
H(S)ξN−1 = 2(S − 1)S−1S(AN ).

Hence, by the assumption of claim (b), we see that 1
g(u)H(S)ξN−1 = (1−S−1)(1+S)g(u)ξN ,

and therefore H(S)ξN−1 = g(u)(S − S−1) ◦ g(u)ξN = K(S)ξN , proving (b). �

Now we consider the special case of H(S) = H2(S), given by (7.2), (7.3). Consider the
difference operator

D(S) = (S2 ◦ F (u−1) + (S − 1) ◦ F (u)− S−1 ◦ F (u1)) ◦ g(u).

It is straightforward to check that the difference operator H2(S), given by (7.2), (7.3), is
expressed via D(S) as follows:

(7.12) H2(S) = g(u)(1 + S−1) ◦D(S) .
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Lemma 7.2. Let ηN = 2S(AN ), where AN is as in Lemma 7.1(a), let ζN = D(S)ξN−1,
and let ξN = 1

2g(u)(ηN − ζN ). Then

(a) S(ηN − ζN ) = ηN + ζN .
(b) (1 + S)g(u)ξN = ηN .

Proof. By (7.12) we have:

1

g(u)
H2(S)ξN−1 = (1 + S−1)D(S)ξN−1 = (1 + S−1)ζN .

Hence, using Lemma 7.1 (a), we see that

(1− S−1)ηN = (1 + S−1)ζN ,

proving (a). The LHS of (b) is equal to

1

2
(1 + S)(ηN − ζN ) =

1

2
((ηN − ζN ) + S(ηN − ζN )) = ηN

by (a), proving (b). �

Proposition 7.3. Let V be an algebra of difference functions in u, let g(u) be an invertible
function of V, and F (u) ∈ V be such that F ′(u) ∈ V and (7.3) holds. Let K(S) and
H2(S) be the difference operators, defined by (7.1) and (7.2) respectively. Let N ≥ 2 and
let ξ0, ξ1, . . . , ξN−1, where ξ0 and ξ1 are as in (7.4), be a Lenard-Magri sequence for these
operators, i.e. (6.1) holds. Let ξN = 1

2g(u)(ηN − ζN ), as in Lemma 7.2. Then

(a) K(S)ξN = H2(S)ξN−1, i.e. (6.1) holds for ξ0, ξ1, . . . , ξN .
(b) For each j ≥ 0 there exists hj in an algebra of difference functions extension of V,

such that ξj = δ
δu ∫ hj .

(c) The hierarchy of difference equations

(7.13)
du

dtN−1
= K(S)ξN = H2(S)ξN−1, N = 1, 2, . . .

is an integrable system of compatible bi-Hamiltonian equations, for which ∫ hj , j ≥
0, are integrals of motion in involution.

Proof. Claim (a) follows from Lemma 7.1 (b) and Lemma 7.2 (b). Hence we have an infinite
sequence ξ0, ξ1, ξ2, . . . in V, where ξ0 and ξ1 are as in (7.4), satisfying the Lenard-Magri
relation (6.1). The elements ξj for j ≥ 1 are linearly independent, since, clearly, by (6.1),
ord ξj+1 = ord ξj + 1 for j ≥ 1 and ord ξ1 = 0.

Since the difference operators K(S) and H2(S) are compatible Hamiltonian operators,
K(S) is non-degenerate and obviously both ξ0, ξ1 are variational derivatives, by Theorem
6.1 (b) there exists hj in a normal extension of V, such that ξj = δ

δu ∫ hj (see Theorem 5.2
for k = 1), and all the ∫ hj are in involution for both K(S) and H2(S) by Theorem 6.1 (d).
Hence, by the same theorem, (7.13) is a hierarchy of compatible bi-Hamiltonian difference
equations which are linearly independent. Hence this hierarchy is integrable. �
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The first few conserved densities for the hierarchy (7.13) are as follows:

h0 = ∫ du

2g(u)
, h1 = F (u), h2 =

1

2
F (u)2 + F (u)F (u1),

h3 =
1

3
F (u)3 + F (u)2F (u1) + F (u)F (u1)2 + F (u)F (u1)F (u2) .

The corresponding variational derivatives ξj :=
δhj
δu are as follows:

ξ0 =
1

2g(u)
, ξ1 = F ′(u), ξ2 = F ′(u)(F (u−1) + F (u) + F (u1)),

ξ3 = F ′(u)(F (u−1)(F (u−2) + F (u−1) + F (u)) + (F (u−1) + F (u))(F (u) + F (u1))

+ F (u1)(F (u) + F (u1) + F (u2))) .

Conjecture 7.4. The hierarchy of difference evolution equations (7.13) coincides with the
following hierarchy of Lax type equations

(7.14)
dL

dtN
=
[(
L2N+2

)
+
, L
]
, N = 0, 1, 2, . . .

where L = S+F (u)S−1 ∈ V[S, S−1] and the subscript +, as usual, means taking terms with
non-negative powers of S. Moreover, the integrals of motion

∫
hN constructed in Proposition

7.3 are given by

(7.15)

∫
hN =

1

2N

∫
Res L2N , N = 1, 2, . . . ,

where Res : V[S, S−1]→ V means taking the coefficient of S0.

The fact that the Volterra equation (1.17) coincides with (7.14) for N = 0 and F (u) = u,
along with the integrals of motion (7.15), was pointed out in [B88].

One of the referees pointed out that Conjecture 7.4 can be proved using methods of the
paper [GKS99].

Remark 7.5. By Remark 2.7, given a ∈ F , the Hamiltonian operator of order 1 with
f1 = g

aS
( g
a

)
is compatible with the Hamiltonian operator of order 2 with

f1 = gS(g)

(
S−1(a)

a
F + S

(
S(a)F

a

))
, f2 = gS2(g)S(F ),

where ∂g
∂ui

= 0 = ∂F
∂ui

for i ≥ 1, g ∂F∂u = aF. We have a generalization of the Lenard-Magri
scheme, studied in this section with

ξ0 =
a

2g(u)
, ξ1 = S(a)S−1(a)

∂F

∂u
,

so that (7.5) holds. As a result, we get a bi-Hamiltonian equation, generalizing (7.6):

(7.16)
du

dt0
= g(S2(a)S(F )− S−2(a)S−1(F )) .
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The same arguments show that the Lenard-Magri sequence extends to infinity, hence equa-
tion (7.16) is integrable. Moreover, Conjecture 7.4 extends to L = aS + S(a)FS−1. It was
pointed out by one of the referees that, in the variable v = F (u)S(a)S−1(a) equation (7.16)
turnes into the usual Volterra equation (1.17).

8. Classification of multiplicative PVA of order 3 in one variable.

Theorem 8.1. Let V be an algebra of difference functions in one variable u, satisfying
the assumptions of Theorem 2.5. Then any multiplicative Poisson λ-bracket on V of order
N=3 is either of general type, or is a linear combination of the multiplicative λ-bracket of
complementary type {.λ.}3,g,ε (with non-zero coefficient) and the λ-bracket of general type
{.λ.}1,g. Explicitly, the latter is associated to functions g(u), F (u), G(u) ∈ V and constants
a, c ∈ C, subject to the conditions

(8.1) g(u)F ′(u) = aF (u), g(u)G′(u) = aεG(u), ε2 = −1, a 6= 0,

and given by {uλu} =
∑3

j=1(λk − (λS)−k)fk, where

(8.2)

f1 = g(u)g(u1)(F (u)G(u1) + c),

f2 = g(u)g(u2)(εF (u)G(u1) + ε−1F (u1)G(u2)),

f3 = g(u)g(u3)F (u1)G(u2) .

Proof. Recall that {uλu} is given by formula (2.4), where N = 4. The Jacobi identity M3
for a = b = c = u is formula (2.3), which is equivalent to the following nine identities (they
are coefficients in (2.3) of λ3µ6, λ3µ5, λ3µ4, λ2µ5, λ2µ4, λµ4, λµ3, λ2µ3, λµ2 respectively):

(8.3) (S3f3)
∂f3

∂u3
= f3S

3

(
∂f3

∂u

)
,

(8.4) (S3f2)
∂f3

∂u3
+ (S2f3)

∂f3

∂u2
= f3S

3

(
∂f2

∂u

)
,

(8.5) (S3f1)
∂f3

∂u3
+ (S2f2)

∂f3

∂u2
+ (Sf3)

∂f3

∂u1
= f3S

3

(
∂f1

∂u

)
,

(8.6) (S2f3)
∂f2

∂u2
= f3S

2

(
∂f3

∂u1

)
+ f2S

2

(
∂f3

∂u

)
,

(8.7) (S2f2)
∂f2

∂u2
+ (Sf3)

∂f2

∂u1
= f3S

2

(
∂f2

∂u1

)
+ f2S

2

(
∂f2

∂u

)
,

(8.8) (Sf3)
∂f1

∂u1
= f3S

(
∂f3

∂u2

)
+ f2S

(
∂f3

∂u1

)
+ f1S

(
∂f3

∂u

)
,
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(8.9)

(Sf2)
∂f3

∂u3
+ (Sf1)

∂f3

∂u2
− f1

∂f3

∂u
+ (Sf2)

∂f1

∂u1
+ f3

∂f1

∂u

= f3S

(
∂f2

∂u2

)
+ f2S

(
∂f2

∂u1

)
+ f1S

(
∂f2

∂u

)
,

(8.10)

(S2f1)
∂f3

∂u3
− (Sf1)

∂f3

∂u1
− f2

∂f3

∂u
+ (S2f1)

∂f2

∂u2
+ (Sf2)

∂f2

∂u1
+ f3

∂f2

∂u

= f3S
2

(
∂f1

∂u1

)
+ f2S

2

(
∂f1

∂u

)
,

(8.11) (Sf1)
∂f1

∂u1
+ (Sf1)

∂f2

∂u2
= f1

∂f2

∂u
+ f1S

(
∂f1

∂u

)
− f2

∂f1

∂u
+ f2S

(
∂f1

∂u1

)
.

Equation (8.3) can be rewritten as

1

f3

∂f3

∂u3
= S3

(
1

f3

∂f3

∂u

)
.

The LHS of this equation is a function of u, u1, u2, u3, while the RHS is a function of
u3, u4, u5, u6. Hence both sides are equal to ϕ(u3), a function in u3, so

1

f3

∂f3

∂u3
= ϕ(u3),

1

f3

∂f3

∂u
= ϕ(u).

Hence log f3 =
∫
ϕ(u)du+

∫
ϕ(u3)du3+(function in u1, u2), and, letting g(u) = exp

∫
ϕ(u)du,

we obtain for some A(u1, u2) ∈ V :

(8.12) f3 = g(u)g(u3)A(u1, u2).

Next, dividing both sides of equation (8.4) by f3, given by (8.12), we obtain:

(8.13) (S3f2)
g′(u3)

g(u3)
+

(
g(u2)

A(u1, u2)

∂A(u1, u2)

∂u2

)
(A(u3, u4)g(u5)) = S3

(
∂f2

∂u2

)
The first term and the second factor in the second term of the LHS, and the RHS are
functions of u3, u4, u5, while the first factor in the second term of the LHS is a function of
u1, u2, hence it is a constant:

(8.14)
g(u2)

A(u1, u2)

∂A(u1, u2)

∂u2
= b ∈ C.

Hence logA(u1, u2) =
∫

b
g(u2)du2 + (function in u1), and we conclude that

(8.15) A(u1, u2) = G(u2)F (u1)

for some functions F (u) and G(u) in V. Substituting (8.15) in (8.14), we obtain

(8.16) g(u)G′(u) = bG(u).

By (8.12) and (8.16) we obtain:

(8.17) f3 = g(u)g(u3)F (u1)G(u2).
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Next. dividing equation (8.6) by S2f3 and substituting (8.17), we obtain

(8.18)
∂f2

∂u2
= g(u)F (u1)G(u2)

g(u3)F ′(u3)

F (u3)
+
g′(u2)

g(u2)
f2,

from which, as above, we conclude that

(8.19) g(u)F ′(u) = aF (u) for some a ∈ C.
Substituting (8.19) in (8.18), we obtain

(8.20)
∂

∂u2

(
f2

g(u2)

)
= ag(u)F (u1)

G(u2)

g(u2)
.

Substituting (8.14) and (8.15) in (8.13) and dividing both sides by g(u), we obtain

(8.21)
1

g(u)

∂f2

∂u
− g′(u)

g(u)2
f2 = b

F (u)

g(u)
G(u1)g(u2).

First, consider the case a 6= 0. Then, using (8.19), equation (8.21) can be rewritten as

∂

∂u

(
f2

g(u)

)
=
b

a
F ′(u)G(u1)g(u2).

Hence we have for some B1(u1, u2) ∈ V :

(8.22) f2 =
b

a
g(u)g(u2)F (u)G(u1) + g(u)B1(u1, u2).

Next, divide equation (8.5) by f3 and substitute (8.16), (8.17), and (8.19) to obtain:

(8.23) (S3f1)
g′(u3)

g(u3)
+

(
b2

a
+ a

)
F (u2)G(u3)g(u4) + bB1(u3, u4) = S3

(
∂f1

∂u

)
.

Since u2 appears only in the second summand of (8.23), we conclude that

(8.24)

(
b

a

)2

+ 1 = 0.

Then (8.23) becomes, after applying S−3:

(8.25)
g′(u)

g(u)
f1 + bB1(u, u1) =

∂f1

∂u
.

Next, since b 6= 0 by (8.24), using (8.16) and (8.22), we obtain

∂

∂u2

B1(u1, u2)

g(u2)
=
a

b
F (u1)G′(u2),

hence for some B(u) ∈ V we obtain

(8.26) B1(u1, u2) = g(u2)
(a
b
F (u1)G(u2) +B(u1)

)
,

and, by (8.22), we have

(8.27) f2 = g(u)g(u2)

(
b

a
F (u)G(u1) +

a

b
F (u1)G(u2) +B(u1)

)
.
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Next, dividing equation (8.7) by G(u2)G(u3), we obtain, using (8.17) and (8.27),

(8.28)
aB(u3)−B′(u3)

G(u3)
=
F (u2)

G(u2)

bB(u1)−B′(u1)

F (u1)
.

Since, by (8.16), (8.19) and (8.24), F (u2)
G(u2) /∈ C, we conclude from (8.28) that aB(u)−B′(u)

= 0 = bB(u)−B′(u), hence, by (8.24), we conclude that B(u) = 0. Hence (8.27) becomes

(8.29) f2 = g(u)g(u2)

(
b

a
F (u)G(u1) +

a

b
F (u1)G(u2)

)
.

Using (8.26) with B(u) = 0, equation (8.25) becomes

∂

∂u

(
f1

g(u)

)
= a

F (u)

g(u)
G(u1)g(u1),

hence, by (8.19), we obtain for some φ(u) ∈ V :

(8.30) f1 = g(u)g(u1)F (u)G(u1) + g(u)φ(u1).

Next, dividing both sides of (8.8) by Sf3, and using (8.16), (8.17), (8.19), (8.24), (8.29) we
obtain

∂f1

∂u1
= bg(u)F (u)G(u1) +

g′(u1)

g(u1)
f1,

hence, dividing by g(u1), and using (8.16), we have

∂

∂u1

f1

g(u1)
= G′(u1)g(u)F (u).

Hence for some ψ(u) ∈ V we have

f1

g(u1)
= g(u)F (u)G(u1) + ψ(u) .

Therefore, using (8.30) we find that

ψ(u)

g(u)
=
φ(u1)

g(u1)
.

Hence both sides are equal to a constant c, and φ(u1) = cg(u1). So, from (8.30) we obtain
the first equation in (8.2). This completes the proof when a 6= 0.

If a = 0, then, by (8.19), F (u) ∈ C, and we may assume, without loss of generality that
F (u) = 1. Then (8.20) gives for some C1(u, u1) ∈ V
(8.31) f2 = g(u2)C1(u, u1).

Using this, equation (8.21) can be rewritten as

∂

∂u

C1(u, u1)

g(u)
= b

G(u1)

g(u)
,

hence for some C(u) ∈ V we have

C1(u, u1) = bg(u)Φ(u)G(u1) + g(u)C(u1), where Φ(u) =

∫
du

g(u)
.
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Hence, (8.31) becomes

(8.32) f2 = g(u)g(u2)(bΦ(u)G(u1) + C(u1)).

Recall that, by (8.17), we have

(8.33) f3 = g(u)g(u3)G(u2).

Note that G(u) 6= 0, since N = 3. Using (8.32) and (8.33), equation (8.7) becomes, after
dividing by G(u3)

g(u1)C ′(u1)− bC(u1) =
G(u2)

G(u3)
(b2Φ(u2)G(u3) + g(u3)C ′(u3)) .

Since the LHS is a function in u1 and the RHS is a function of u2, u3, we conclude that
both sides are equal to a constant c1, in particular

G(u2)

G(u3)
(b2Φ(u2)G(u3) + g(u3)C ′(u3)) = c1.

This equation can be rewritten as

b2Φ(u2)− c1

G(u2)
= −g(u3)C ′(u3)

G(u3)
.

Hence each side is a constant. Hence b2Φ(u2) − c1
G(u2) is a constant, and applying it to

∂
∂u2

, we obtain b2

g(u2) − c1
G′(u2)
G(u2)2

= 0, which, by (8.16) is equivalent to c1bG(u2) = b2G(u2)2.

Hence G(u) ∈ C, and, by (8.16), b = 0. Without loss of generality we may assume that
G(u) = 1. Thus, (8.32) and (8.33) become:

(8.34) f2 = g(u)g(u2)C(u1), f3 = g(u)g(u3).

Next, since ∂f3
∂u1

= ∂f3
∂u2

= 0, equations (8.5) and (8.8) become:

(S3f1)
∂f3

∂u3
= f3S

3

(
∂f1

∂u

)
, (Sf3)

∂f1

∂u1
= f1S

(
∂f3

∂u

)
.

Using (8.34), this becomes

∂

∂u

(
f1

g(u)

)
= 0 =

∂

∂u1

(
f1

g(u1)

)
.

It follows that

(8.35) f1 = βg(u)g(u1) for some β ∈ C.

Next, equation (8.10) gives, using (8.34) and (8.35): (Sf2) ∂f2∂u1
= 0. Hence ∂f2

∂u1
= 0, and,

by (8.34), C(u) = γ ∈ C. Therefore f2 = γg(u)g(u2), and due to (8.34) and (8.35), we see
that the multiplicative Poisson λ-bracket in question is of general type. �



POISSON λ-BRACKETS FOR DIFFERENTIAL-DIFFERENCE EQUATIONS 29

Remark 8.2. The coefficients of λNµN+j , 1 ≤ j ≤ N, in the Jacobi identity (2.3) for the
multiplicative λ-bracket (1.9) of order N produces the following identities:

(8.36)

N∑
k=j

SN+j−k(fk)
∂fN

∂uN+j−k
= fNS

N

(
∂fj
∂u

)
, j = 1, . . . , N.

Using these equations and applying arguments similar to that proof of Theorems 2.5 and
8.1, we obtain for V as in Theorems 2.5, 8.1:

(8.37) fN = g(u)g(uN )
N−1∏
i=1

Fi(ui),

where g(u), Fi(u) ∈ V satisfy the relations

(8.38) g(u)F ′i (u) = aiFi(u) for some ai ∈ C, i = 1, . . . , N − 1.

However, to compute the fj for 1 ≤ j ≤ N − 1 is more difficult.

9. Classification of multiplicative PVA of order 4 in one variable

Theorem 9.1. Let V be an algebra of difference functions in one variable u, satisfying the
assumptions of Theorem 2.5. Then any multiplicative Poisson λ-bracket on V of order 4
is one of the types (i), (ii), (iv), (v) or (vi) (see the introduction).

Proof. Recall that the multiplicative λ-bracket on V is determined by {uλu}, given by (2.4),
where N = 4. The condition on the functions fj that one has to check is (2.3), and (2.3) is
equivalent to 16 equations, which are the coefficients of λmµn with 1 ≤ m ≤ 4,m+1 ≤ n ≤
m+ 4. By Remark 8.2, the four of these equations, corresponding to λ4µ4+j , j = 1, . . . , 4,
give the following expression for f4 :

(9.1) f4 = g(u)g(u4)Φ(u1, u2, u3),

where

(9.2) Φ(u1, u2, u3) = F1(u1)F2(u2)F3(u3),

(9.3) g(u)F ′i (u) = aiFi(u) for some ai ∈ C, i = 1, 2, 3.

This expression for f4 implies equation (8.36) for N = j = 4, however one still has to study
the remaining 15 equations. For this purpose we let

(9.4) fj(u, . . . , uj) = g(u)g(uj)hj(u, . . . , uj).

By (9.1) and (9.3), we have

(9.5) h4 = Φ(u1, u2, u3),

(9.6) g(ui)
∂h4

∂ui
= aiΦ(u1, u2, u3), i = 1, 2, 3.
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Then equation (8.36) for N = 4, j = 3, becomes, using (9.6) for i = 3:

(9.4/7) a3S
3(h4) = S4

(
g(u)

∂h3

∂u

)
.

It follows that, applying S−3 and using (9.3), (9.5). we have

(9.7) a1
∂h3

∂u
= a3F

′
1(u)F2(u1)F3(u2).

First, consider Case I: a1 6= 0. Then using (9.7) and (9.2) we obtain

∂h3

∂u
=
a3

a1
F ′1(u)F2(u1)F3(u2).

Hence we have for some A1(u1, u2, u3) ∈ V :

(9.8) h3 =
a3

a1
Φ(u, u1, u2) +A1(u1, u2, u3).

Next, equation (8.36) for N = 4, j = 2, after the substitution (9.4) and using (9.6),
becomes

(9.4/6) S4

(
g(u)

∂h2

∂u

)
= a3S

3(h3) + a2S
2(h4).

Applying to this equation S−3 and substituting (9.8), we obtain:

S

(
g(u)

∂h2

∂u

)
=

(
a2

3

a1
+ a2

)
Φ(u, u1, u2) + a3A1(u1, u2, u3).

The LHS of this equation is a function of u1, u2, u3, but ∂Φ
∂u (u, u1, u2) 6= 0, hence

(9.9) a2
3 + a1a2 = 0,

and

(9.10) g(u)
∂h2

∂u
= a3A1(u, u1, u2).

Next, equation (8.36) for N = 4, j = 1, using (9.4) and (9.6), becomes

(9.4/5) S4

(
g(u)

∂h1

∂u

)
= a3S

3(h2) + a2S
2(h3) + a1S(h4).

Substituting h3 and h4, given by (9.8) and (9.5), we obtain:

S2

(
g(u)

∂h1

∂u

)
= a3S(h2) +

a2a3 + a2
1

a1
Φ(u, u1, u2) +A1(u1, u2, u3).

Since Φ(u.u1, u2) depends on u and all other summands do not, we obtain

(9.11) a2a3 + a2
1 = 0,

and

(9.12) S

(
g(u)

∂h1

∂u

)
= a3h2 + a2A1(u, u1, u2).
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It follows from (9.9) and (9.11) that

(9.13) aj = εj−1a1, where ε3 = −1

Without loss of generality we may assume that a1 = 1.
We will use the equations on h1, h2, h3, h4, obtained by the substitution (9.4) in the

coefficients of λmµn in (2.3) for N = 4; as before, such an equation will be denoted by
(9.m/n). First we use the following two of these equations:

(9.3/7) S3(h4)g(u3)
∂h3

∂u3
= h4S

3

(
g(u1)

∂h4

∂u1

)
,

(9.3/6) S3(h3)g(u3)
∂h3

∂u3
+ S2(h4)g(u2)

∂h3

∂u2
= h4S

3

(
g(u1)

∂h3

∂u1

)
+ h3S

3

(
g(u)

∂h3

∂u

)
.

Inserting (9.8) in (9.3/7) and using (9.3) and (9.13), we obtain for some A2(u1, u2) ∈ V :

(9.14) A1(u1, u2, u3) = ε−2Φ(u1, u2, u3) +A2(u1, u2).

Substituting this in (9.8), we have

(9.15) h3 = ε2Φ(u, u1, u2) + ε−2Φ(u1, u2, u3) +A2(u1, u2).

Equation (9.3/6) along with (9.13) then gives, after some rearrangement, the following
equation

(9.16)
A2(u4, u5)− g(u4)∂A2(u4,u5)

∂u4

F2(u4)F3(u5)
=
F1(u3)

F3(u3)

ε2A2(u1, u2)− g(u2)∂A2(u1,u2)
∂u2

F1(u1)F2(u2)
.

The LHS of this equation is a function of u4, u5, while the RHS is a product of a function,
depending non-trivially on u3 if ε 6= −1 (resp. constant if ε = −1) and a function of u1, u2.
Hence

(9.17) both sides of (9.16) are 0 (resp. ∈ C) if ε 6= −1 (resp. ε = −1).

Consider separately two subcases of Case I, Case Ia: ε 6= −1 and Case Ib: ε = −1.
By (9.17) we have in Case Ia:

∂

∂uj
logA2(u1, u2) =

ε2(j−1)

g(uj)
for j = 1, 2.

By (9.3) and (9.13) it follows that

A2(u1, u2) = cF1(u1)F3(u2), for some c ∈ C.
Substituting this in (9.14), (9.15), we obtain:

(9.18) A1(u1, u2, u3) = ε−2Φ(u1, u2, u3) + cF1(u1)F3(u2),

(9.19) h3 = ε2Φ(u, u1, u2) + ε−2Φ(u1, u2, u3) + cF1(u1)F3(u2).

By (9.18) and (9.10), and using (9.3), we obtain for some B1(u1, u2) ∈ V :

(9.20) h2 = Φ(u, u1, u2) + cε2F1(u)F3(u1) +B1(u1, u2).
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Substituting (9.20) and (9.18) in (9.12) and using (9.13), we obtain

(9.21) g(u)
∂h1

∂u
= a3B1(u, u1).

Next, we consider the equation

(9.2/6) S2(h4)g(u2)
∂h2

∂u2
= h4S

2

(
g(u2)

∂h4

∂u2

)
+ h3S

2

(
g(u1)

∂h4

∂u1

)
.

Using (9.15), (9.20) and (9.3) this gives for some B(u) ∈ V :

(9.22) B1(u1, u2) = cε−2F1(u1)F3(u2) +B(u1).

Substituting this in (9.20) and (9.21) we get

(9.23) h2 = Φ(u, u1, u2) + c(ε2F1(u)F3(u1) + ε−2F1(u1)F3(u2)) +B(u1),

(9.24) g(u)
∂h1

∂u
= cF1(u)F3(u1) + ε2B(u).

Since in Case Ia we have 1 + ε2 = ε, by (9.3) and (9.13), we can choose the Fi, such that
F2(u) = F1(u)F3(u). Then the following identities hold:

(9.25) Φ(u, u1, u2)F1(u2)F3(u3) = Φ(u1, u2, u3)F1(u)F3(u1),

(9.26) F1(u)F3(u1)F1(u1)F3(u2) = Φ(u, u1, u2).

Next, we consider the equation

(9.3/5)

S3(h2)g(u3)
∂h3

∂u3
+ S2(h3)g(u2)

∂h3

∂u2
+ S(h4)g(u1)

∂h3

∂u1

= h4S
3

(
g(u1)

∂h2

∂u1

)
+ h3S

3

(
g(u)

∂h2

∂u

)
.

Substituting in this equation (9.19) and (9.23), we obtain, by making use of (9.25): B(u4) =
g(u4)B′(u4). It follows that B(u) = bF1(u), for some b ∈ C. Substituting this in (9.22),
(9.23) and (9.24), we obtain

(9.27) B1(u1, u2) = cε−2F1(u1)F3(u2) + bF1(u1),

(9.28) h2 = Φ(u, u1, u2) + c(ε2F1(u)F3(u1) + ε−2F1(u1)F3(u2)) + bF1(u1),

(9.29) g(u)
∂h1

∂u
= cF1(u1)F3(u1) + bε2F1(u).

Dividing (9.29) by g(u) and using (9.3) and (9.13), we obtain for some P (u) ∈ V :

(9.30) h1 = cF1(u)F3(u1) + bε2F1(u) + P (u1).

Next, we consider the equation, coming from the coefficient of λµ5, which, using that
g(uj)

∂h4
∂uj

= ajh4, j = 1, 2, 3 (see (9.2)–(9.4)), and dividing by S(h4), becomes:

(9.1/5) g(u1)
∂h1

∂u1
= ε2h4 + εh3 + h2.
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Using (9.19) and (9.28), this can be rewritten as

g(u1)
∂h1

∂u1
= cε2F1(u)F3(u1) + bF1(u1).

Using (9.30), this becomes: g(u1)P ′(u1) = bF1(u1), which, using (9.3), becomes P ′(u1) =
bF ′1(u1). Hence P (u1) = bF1(u1) +α for some α ∈ C. Substituting this in (9.30), we obtain

(9.31) h1 = cF1(u)F3(u1) + bε2F1(u) + bF1(u1) + α.

Next, we consider the equation, coming from the coefficient of λ2µ5, which is a differential
equation on h1, h3 and h2. Using the expressions (9.5), (9.19) and (9.28) of this functions
and making use of (9.25), after some calculations, this equation becomes

b(1− ε2)Φ(u2, u3, u4)F1(u1) = 0.

Since we are in Case Ia, it follows that b = 0. Hence, by (9.31), we have

(9.32) h1 = cF1(u)F3(u1) + α.

In the same way, we can see that the coefficient of λµ4 leads to the following equation:

(c2 + α)(ε− ε2)Φ(u1, u2, u3) = 0.

It follows that α = −c2. Hence the expressions (9.5), (9.19), (9.28), and (9.32), show that
Case Ia produces type (vi) from the introduction of order 4 multiplicative PVA. Note that
all the remaining five equations on the hj are equivalent to the equations α = −c2.

Now we turn to the Case Ib: a1 6= 0, ε = −1. Again, we may assume that a1 = 1, so that

(9.33) aj = (−1)j−1 for j = 1, 2, 3.

Hence we may assume that

(9.34) F1(u) = F3(u) = F2(u)−1.

Recall that, by (9.17), both sides of (9.16) are constant, which we denote by 2b1. This
gives the following equations:

∂

∂ui
(F2(u1)F2(u2)A2(u1, u2)) = b1

∂

∂ui
F2(ui)

2, i = 1, 2.

Hence we have for some b2 ∈ C :

F2(u1)F2(u2)A2(u1, u2) = b1(F2(u1)2 + F2(u2)2) + b2.

Using (9.34), we obtain from this

(9.35) A2(u1, u2) = b1(F1(u2)F2(u1) + F1(u1)F2(u2)) + b2F1(u1)F1(u2).

Substituting (9.35) in (9.14) and (9.15) and using (9.34), we obtain

(9.36) A1(u1, u2, u3) = Φ(u1, u2, u3)+ b1(F1(u1)F2(u2)+F2(u1)F1(u2))+ b2F1(u1)F1(u2),

(9.37)
h3 =Φ(u, u1, u2) + Φ(u1, u2, u3) + b1(F1(u1)F2(u2)

+ F2(u1)F1(u2)) + b2F1(u1)F1(u2).
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Substituting (9.36) in (9.10), and using (9.33), we obtain, after integrating by u, for some
B1(u1, u2) :

(9.38)
h2 =F1(u)F2(u1)F3(u2) + b1(F1(u)F2(u1)− F2(u)F1(u1)) + b2F1(u)F1(u1)

+B1(u1, u2).

Substituting (9.36) and (9.38) in (9.12) we obtain

(9.39) S

(
g(u)

∂h1

∂u

)
= −2b1F2(u)F1(u1) +B1(u1, u2).

Since only the first term in the RHS depends on u, we deduce that b1 = 0. Thus, formulas
(9.36), (9.37), (9.38), and (9.39) become:

(9.40) A1(u1, u2, u3) = Φ(u1, u2, u3) + b2F1(u1)F1(u2),

(9.41) h3 = Φ(u, u1, u2) + Φ(u1, u2, u3) + b2F1(u1)F1(u2)

(9.42) h2 = Φ(u, u1, u2) + b2F1(u)F1(u1) +B1(u1, u2),

(9.43) g(u)
∂h1

∂u
= B1(u, u1).

Now we return to equation (9.2/6) . Using that g(uj)
∂h4
∂uj

= ajh4 for j = 1, 2 (see (9.5),

(9.6)), and cancelling this equation by S2(h4), we obtain, using (9.33):

g(u2)
∂h2

∂u2
= −h4 + h3.

Substituting in this equation (9.5), (9.41) and (9.42), and using (9.3) and (9.34), we obtain
for some B(u) ∈ V :

(9.44) B1(u1, u2) = b2F1(u1)F1(u2) +B(u1).

Using this, equations (9.42) and (9.43) can be written as follows:

(9.45) h2 = Φ(u, u1, u2) + b2 (F1(u)F1(u1) + F1(u1)F1(u2)) +B(u1),

(9.46) g(u)
∂h1

∂u
= b2F1(u)F1(u1) +B(u).

Next, returning to equation (9.3/6) , we obtain, using (9.5), (9.6), (9.41), (9.45):

− 2b2 (Φ(u2, u3, u4)F1(u1)F1(u2)− Φ(u1, u2, u3)F1(u3)F1(u4))

= Φ(u1, u2, u3)
(
B(u4)− g(u4)B′(u4)

)
.

By (9.2) and (9.34) after multiplying by F1(u2)F1(u3) this can be rewritten as

− 2b2F1(u2)3F1(u4)F1(u1)

= −2b2F1(u1)F1(u3)3F1(u4) +
(
B(u4)− g(u4)B′(u4)

)
F1(u1)F1(u3)2.
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Since the LHS of this equation depends on u2 and the RHS does not, it follows that b2 = 0
and B(u) = g(u)B′(u). Hence, by (9.3), B(u) = cF1(u) for some c ∈ C. Thus, formulas
(9.41), (9.42), and (9.43) become respectively

(9.47) h3 = Φ(u, u1, u2) + Φ(u1, u2, u3),

(9.48) h2 = Φ(u, u1, u2) + cF1(u1),

(9.49) g(u)
∂h1

∂u
= cF1(u).

Furthermore, by (9.49) and (9.27) we have for some P (u1) ∈ V :

(9.50) h1 = cF1(u) + P (u1).

Next, equation (9.1/5) gives that g(u1)∂h1∂u1
= h4 − h3 + h2, hence, by (9.47)–(9.50), we

obtain that P (u1) = cF1(u1) + α for some α ∈ C. Hence, by (9.50),

(9.51) h1 = c (F1(u) + F1(u1)) + α.

In order to evaluate α, we use the equation coming from the coefficient of λµ4. It is
straightforward to see, using (9.47), (9.48) and (9.51), that this equation gives αΦ(u1, u2, u3) =
0, hence α = 0. Thus, by (9.51), (9.48), (9.47), and (9.4), the Case Ib produces type (iv)
from the introduction.

Now we turn to Case II: a1 = 0. It follows from (9.3) that F ′1(u) = 0. Hence without loss
of generality we may assume that F1 = 1, so that

(9.52) h4 = F2(u2)F3(u3).

Then ∂h4
∂u1

= 0 and it follows from equation (9.3/7) that

(9.53)
∂h3

∂u3
= 0.

Recall that, by (9.2)–(9.4), we have

(9.54) g(uj)
∂h4

∂uj
= ajh4, j = 1, 2, 3.

Hence equation (9.4/5) can be written, after applying S−2, as

(9.55) a3S(h2) + a2h3 = S2

(
g(u)

∂h1

∂u

)
Since in the equation only the second term in the RHS may depend on u, we have

(9.56) a2
∂h3

∂u
= 0,

(9.57) a2 6= 0 implies
∂h3

∂u
= 0.
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Next, consider again equation (9.1/5) . Using (9.54) it gives

(9.58) g(u1)
∂h1

∂u1
= a3h4 + a2h3.

Since hj = hj(u, u1, . . . , uj), by (9.52) and (9.53) we conclude from this equation that
a3h4 = a3F2(u2)F3(u3) is independent on u3. It follows from (9.3) for i = 3 that

(9.59) a3 = 0,

and we may assume that F3 = 1. Hence, by (9.52),

(9.60) h4 = F2(u2).

By (9.58) and (9.59), we have

g(u1)
∂h1

∂u1
= a2h3.

Since the LHS of this equation depends only on u and u1, we conclude that a2
∂h3
∂u2

= 0.
Hence

(9.61) a2 6= 0 implies that
∂h3

∂u2
= 0.

By (9.55) and (9.59), we obtain

(9.62) a2h3 = S2

(
g(u)

∂h1

∂u

)
.

Since the RHS is independent on u1, we get

(9.63) a2 6= 0 implies that
∂h3

∂u1
= 0.

Next, consider equation (9.2/6) . Using (9.54) and (9.60), it can be written as

(9.64) g(u2)
∂h2

∂u2
= a2F2(u2).

By equations (9.4/6), (9.54) and (9.60), we have, after applying S−4 :

(9.65) g(u)
∂h2

∂u
= a2F2(u).

We proceed to consider the following two remaining cases: Case IIa: a1 = a3 = 0, a2 6= 0;
Case IIb: a1 = a2 = a3 = 0. In Case IIa we may assume that a2 = 1. By (9.53), (9.56),
(9.61), and (9.63), in Case IIa we have

(9.66) h3 ∈ C.

Then (9.62) gives

(9.67) g(u)
∂h1

∂u
= h3.
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Next, we consider the equation, coming from the coefficient of λµ4. By (9.66), (9.58),
(9.60), and (9.67), it gives, after applying S−1 :

(9.68) h1F2(u1) + h2
3 + h3F2(u1) = 0.

Due to (9.66), applying to this equation ∂
∂u , we obtain ∂h1

∂u F2(u1) = 0. Multiplying this by
g(u) and using (9.67), we obtain

(9.69) h3 = 0.

Hence, by (9.68),

(9.70) h1 = 0.

Considering again equation (9.3/5) , we have by (9.69): h4S
3
(
g(u1)∂h2∂u1

)
= 0, hence

∂h2
∂u1

= 0. Therefore, using (9.64) and (9.65), we obtain for some α ∈ C,

(9.71) h2 = F2(u) + F2(u2) + α.

Equations (9.60), (9.69), (9.71), and (9.70) show that Case IIa produces Example (v) from
the introduction.

Finally, consider Case IIb. Due to (9.3), we may assume in this case that F2(u) = 1,
hence, by (9.60),

(9.72) h4 = 1.

Then, by equation (9.4/7), we get ∂h3
∂u = 0. Recall that we also have (9.53); (9.64) and

(9.65); (9.58) and (9.62). These together give

(9.73)
∂hi
∂u

=
∂hi
∂ui

= 0 for i = 1, 2, 3.

Next, equation (9.3/6) gives, using (9.72):

(9.74) g(u2)
∂h3

∂u2
= S2

(
g(u1)

∂h3

∂u1

)
.

Due to (9.73) for i = 3, we see that the LHS of this equation depends only on u1 and u2,
while the RHS depends only on u4 and u5. Hence both sides are equal to a constant b :

(9.75) g(u2)
∂h3

∂u2
= g(u1)

∂h3

∂u1
= b.

Next, equation (9.3/5) , after using (9.72) and (9.75), and applying S−2, becomes

(9.76) b(h3 + 1) = S

(
g(u1)

∂h2

∂u1

)
.

By (9.73) for i = 2, the RHS of (9.76) depends only on u2. Therefore, applying g(u1) ∂
∂u1

to

both sides of (9.76), we obtain that bg(u1)∂h3∂u1
= 0, hence, by (9.75), we have b = 0. Thus,

by (9.73), (9.75), (9.76), we obtain that
∂hj
∂ui

= 0 for j = 1, 2, 3 and all i. Since, by (9.72),
h4 = 1, we see that Case IIb produces the multiplicative λ-bracket of general type. This
completes the proof of Theorem 9.1. �
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