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I schemic heart disease (IHD), stroke, and dementia are
leading causes of death and disability worldwide,1,2

notably affecting aging populations. The public health burden
related to chest pain is substantial and the epidemiology of
IHD because of large-vessel coronary atherosclerosis is well
documented.2 By contrast, the epidemiology of small-vessel
disease (SVD) in the heart is less well established.3,4 Cohort
studies indicate that the underlying cause of anginal chest
pain may be SVD in more than 1 in 3 of all-comers with stable
symptoms.3,4 IHD because of SVD associates with vascular
risk factors, such as hypertension and female sex.3–6

The vascular anatomy of the heart and brain is similar in
that conduit arteries are distributed on the surface of these
organs with tissue perfusion achieved through deep pene-
trating arteries. In the heart, SVD involves the deep
penetrating coronary arterioles and the subendocardial plexus
of microvessels.7 The clinical sequelae of SVD in the heart
include stable and acute coronary syndromes and heart failure
in the longer term.3,4 SVD in the brain mainly involves small
subcortical cerebral arteries. Occlusion of 1 of these vessels

may result in a clinical stroke syndrome known as a lacunar
syndrome. Acute imaging may show a lesion (<20 mm) on
diffusion-weighted magnetic resonance imaging (MRI) indicat-
ing an acute lacunar infarct. Later imaging may continue to
identify the resulting end-stage lesion as a lacune (<15 mm).
Long-term ischemia from SVD may show only white matter
hyperintensities with or without lacunes and may manifest as
vascular cognitive impairment.8,9 SVD may manifest as a
multisystem disorder10 implying commonality between disor-
ders of small vessels of the heart and brain (and potentially
other organs such as the kidney) (Figure 1).

In this article, we review the co-existence of SVD in heart
and brain. We consider evidence for and against a patho-
physiological link between SVD in the heart and brain. We
identify gaps in knowledge and disease-modifying therapy.
Clinical cases are presented in Figure 2.

Methods
We undertook a literature search for original research articles
including information on SVD in both heart and brain. The
search used PubMed and covered the period January 1, 1973
to May 31, 2018. We searched for Human studies in English
that included these terms in the Title or Abstract (small-
vessel disease, microvascular, arteriolar, arteriole, arteri-
olosclerosis, leukoaraiosis) AND (heart, cardiac, cardiol,
myocardial, myocardium, angina, Syndrome X) AND (Brain,
cerebral, cerebrovascular). This search yielded 513 hits and 2
researchers (N.S., A.C.P.) independently screened the
abstracts. Eighteen abstracts were selected and the outputs
were discussed by 4 investigators (N.S., A.C.P., C.B., and
A.H.H.). By consensus, we identified 9 research articles that
provided information on SVD in both the heart and the brain,
and 1 other on microvascular disease in the kidney and brain.
The search was updated on October 12, 2018 and no new
original articles fulfilling these criteria were identified. The
totality of evidence was insufficient to support a meta-
analysis. The articles that are included in this review11–19 are
summarized in Table 1. The articles that are not included are
summarized in Table S1.
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SVD in the Heart—Microvascular Angina
SVD in the heart was historically referred to as “Cardiac
Syndrome X.” 3,4 This term has been superseded by the more
appropriate term microvascular angina (MVA). Symptoms in
affected patients may be triggered by exertion, emotional
stress, cold weather, the menstrual cycle, and menopause.4

Structural microvessel abnormalities, extravascular compres-
sive forces, and abnormal coronary microvascular tone may
be underpinning mechanisms leading to MVA.4 The diagnostic
criteria for MVA have been recently proposed by the COVADIS
(Coronary Vasomotion Disorders International Study) steering
group (Table 2).20

Invasive coronary angiography is the key test for the
diagnosis and treatment of coronary artery disease. However,
since the diameter of coronary microvessels is typically
<0.5 mm, they are too small to be resolved visually by the
cardiologist. Therefore, angiography is primarily an investiga-
tion for large artery coronary disease, and only a subset (40–
50%) of patients undergoing coronary angiography have
obstructive disease identified.21,22 Building on these studies,
in the recent British Heart Foundation Coronary Microvascular
Angina (CorMicA) trial, 185 of 391 (47%) patients with angina
undergoing clinically-indicated elective coronary angiography
during a 12-month period had no obstructive coronary artery
disease when assessed using invasive coronary angiography
and fractional flow reserve. SVD was identified in 134 (89%) of
151 patients who had invasive measurement of coronary
vascular function. This result points to the high prevalence of
SVD in patients with ischemia and no obstructive coronary
disease (INOCA).23 The coronary slow-flow phenomenon may
be disclosed by angiography in a subset of patients with
INOCA (Table 2). Patients with INOCA may have impaired
health-related quality of life comparable to that of patients

with obstructive coronary artery disease,22 and prognosis may
be affected.3,4,22–24 Compared with population-matched con-
trols, patients with INOCA have almost double the risk of
death, myocardial infarction, and stroke over a 7.5-year
period.25

Establishing the correct diagnosis in the catheter labora-
tory is a patient-centered approach. Since coronary angiog-
raphy alone may be insufficient, SVD-specific tests of
coronary function should be considered in selected patients
with INOCA. Invasive tests of microvascular function include a
diagnostic guidewire to measure microvascular resistance
directly and coronary flow reserve and/or intracoronary
infusion of acetylcholine. In current cardiological practice,
these are rarely used. The reasons are multifactorial. Lack of
evidence from randomized controlled trials and inadequate
education and training of physicians are relevant.4,26,27 The
CorMicA trial23 has reduced this gap in evidence. For the first
time, CorMicA provided proof-of-concept evidence that a
management strategy involving routine use of coronary
function tests at the time of invasive coronary angiography
in patients with INOCA improved symptoms and quality of life,
compared with standard management guided by coronary
angiography. These results support a stratified medical
approach involving specific tests for SVD with linked therapy.
Overall, more education and research are needed to improve
patient-centered management.

SVD of the Brain
Cerebral SVD (referred to in older literature as lipohyalinosis,
Binswanger disease, subcortical leukoencephalopathy)8,25

may manifest clinically as stroke (infarction) or a cognitive
syndrome usually with executive dysfunction (because of
subcortical white matter disruption or atrophy). Cerebral SVD
is the primary cause of lacunar ischemic stroke, which
represents �20% of all stroke. It appears to be the most
common source of vascular contributions to cognitive
impairment and dementia.24

Cerebral SVD encompasses a range of vascular pathologies
including arteriolosclerosis, small-vessel atheroma, and cerebral
amyloid angiopathy as reviewed elsewhere.9,28 Most prevalent is
arteriolosclerosis, or “simple” SVD, which is a concentric hyaline
thickening of deep penetrating small arteries (outer diameter
<200 lm) with fibrosis of the vessel wall and depletion of
vascular smooth muscle cells.9 This is detected as diffuse white
matter hyperintensities on T2-weighted MRI, associated with
small focal ischemic lesions in subcortical areas, sometimes
accompanied by microbleeds and, more rarely, deep intracere-
bral hemorrhage. While age and hypertension are strong risk
factors, the molecular mechanisms in cerebral SVD are little
known. Systematic review and meta-analyses have suggested

Figure 1. Microvascular disease as a multisystem disorder.
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that white matter hyperintensities (indicative of underlying SVD)
are associated with an increased risk of dementia (hazard ratio
1.9),28 whereas prospective population-based data indicate that
white matter hyperintensities are associated with 1.4-fold
increased risk of dementia.9,28,29

Vascular aging shares some pathophysiological features
seen in hypertensive vascular disease. In the Atherosclerosis
Risk in Communities prospective cohort study of 1827
participants age 45 to 64 years drawn from 4 regions in the
United States,30 small lacunes defined as focal lesions
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Figure 2. Two clinical cases of patients with microvascular angina who experienced an acute ischemic stroke within 12 months of diagnosis.
A, A 69-year-old woman with background of hypertension and treated dyslipidemia underwent invasive angiography for the investigation of
typical angina. She was enrolled in the CorMicA clinical trial (ClinicalTrials.gov Identifier: NCT03193294). Her coronary angiogram was normal
and as per the trial protocol she underwent blinded assessment of coronary artery function. Endothelial function was grossly abnormal using an
acetylcholine probe (10-6 - 10-4 mol/L infused for 2 minutes). A, During acetylcholine, the patient has transient loss of flow in the left coronary
artery despite no gross epicardial coronary diameter change. This represents intense microvascular vasoconstriction with absence of contrast
in the lumen. There were associated dynamic ST-segment changes on ECG with reproduction of angina. B, After GTN the flow returns to normal
with prompt ECG and symptom resolution. Six months later she presented with generalized headache and bilateral visual disturbance and was
found to have a right homonymous hemianopia. C and D, The MRI brain scan shows a left posterior circulation infarct involving the temporal and
occipital lobes. B, A 67-year-old man underwent invasive coronary angiography for severe angina (CCS IV). His background history included
myocardial infarction with nonobstructive coronary disease (MINOCA), hypertension, paroxysmal atrial fibrillation with previous stroke, stage III
chronic kidney disease, obesity, and moderate left ventricular impairment. Invasive coronary angiography showed nonobstructive coronary
disease confirmed with pressure wire (yellow arrow) physiological assessment of the left anterior descending artery (LAD fractional flow reserve
0.84). Indices of coronary microvascular function using adenosine as an endothelial independent probe were profoundly abnormal. The index of
microvascular resistance measured in the LAD coronary artery was 49 (abnormal >25) and the coronary flow reserve in the same artery was 1.7
(abnormal < 2.0). Endothelial function testing with acetylcholine provoked slow flow (Thrombolysis in Myocardial Infarction (TIMI) grade 0) (A),
which represents intense inappropriate microvascular constriction during 10-4 mol/L acetylcholine infusion. Reproduction of angina and ECG
changes ensued in keeping with microvascular spasm–induced ischemia. Changes promptly resolved with GTN (B). An MRI brain (C) scan is
shown after his previous stroke, which was attributed to atrial fibrillation. The scan shows no evidence of intracranial mass lesions, abnormal
enhancement, or signs of raised intracranial pressure. There is marked dilatation of the lateral and third ventricles with right frontal and right
parietal cortical malacia and underlying gliosis in keeping with infarcts. The FLAIR sequence (D) shows periventricular white matter changes and
multifocal punctate white matter hyperintensities that are typical of SVD affecting the brain. CCS indicates Canadian Cardiovascular Society;
GTN, Glyceryl Trinitrate; MINOCA, Myocardial Infarction with No Obstructive Coronary Artery disease; MRI, magnetic resonance imaging.
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hyperintense to gray matter on both proton density and
T2-weighted MRI were independently associated with age (per
year: 1.12 [1.45–2.02]) and other vascular risk factors includ-
ing hypertension (2.11 [1.50–2.97]), diabetes mellitus (1.34
[0.95–1.90]), and ever-smoking (1.47 [1.06–2.03]).

Possible Genetic Link Between Heart and
Brain SVD
Cerebral autosomal dominant arteriopathy with subcortical
infarcts and leukoencephalopathy (CADASIL) is a familial
genetic form of cerebral SVD caused by mutations in the
NOTCH3 gene, which is expressed in vascular smooth muscle
cells.13,15,17,31 The pathological hallmark is deposition of
granular osmophilic deposits in vascular smooth muscle cells.
Radiologically and pathologically, it presents as a severe form
of SVD with younger age of onset (usually before aged
50 years) and little hypertension dependence, relative to
sporadic SVD. While CADASIL classically affects brain vessels,
it has the potential for systemic changes in the microcircu-
lation.22 Lesnik Oberstein et al13 first reported myocardial
infarction as an incidental finding in a case series of patients
with genetically confirmed CADASIL (Table 1). Using a core
laboratory approach, they evaluated the ECGs of 15 unrelated
families who had genotyping to rule-in (n=41; mean age
46 years, 19 [46% men]) or rule-out (n=22; mean age
40 years, 10 [45% men]) the NOTCH3 mutation. They found
ECG evidence of myocardial infarction in 10 of 41 mutation
carriers while none of the 22 nonmutation carriers had any
ECG evidence of myocardial infarction. Cardiac pathology in
one deceased NOTCH3 mutation carrier revealed minimal
atherosclerosis in the coronary arteries, whereas microves-
sels exhibited irregular fibrosis and elastosis of the media.
Park et al17 reported the case history of a 46-year-old woman
who had CADASIL and who was hospitalized following a
stroke. Brain MRI revealed severe ischemic white matter
changes and multiple chronic infarcts. The ECG revealed poor
R-wave progression and subsequent stress-rest 99mTc-tetro-
fosmin myocardial perfusion single photon emission com-
puted tomography (SPECT) revealed reversible myocardial
perfusion defects in the distribution of the left anterior
descending coronary artery. Computed tomography coronary
angiography excluded coronary artery disease, supporting a
diagnosis of coronary SVD.

Evidence Linking SVD in the Heart and Brain
In a clinical–pathological series of 175 cases described as
“vascular dementia,” Andin et al15 found that cardiac patholo-
gies were more prevalent in patients with pathological
evidence of cerebrovascular SVD (characterized by subcorti-
cal lacunes) than in other vascular dementia groups (subtypedTa
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in their report as large-vessel dementia, hypoperfusive,
hypoxic–ischemic dementia, venous infarct dementia, and
hemorrhagic dementia).15

In a population study of 735 cognitively normal adults
65 years and older, the Cardiovascular Health Study-Cogni-
tion Study, Riverol et al18 demonstrated that renal glomerular
dysfunction correlated with cerebral SVD. Serum cystatin C
concentration, taken to represent renal SVD, was associated
with lower neuropsychological tests scores, the presence of
MRI-identified brain infarcts, and the volume of white matter
lesions.18 Age, waist circumference, hypertension, reduced
physical activity, cigarette smoking, and C-reactive protein
were all multivariate correlates of cystatin C concentration.18

These results provide evidence that SVD may be a systemic
disorder, potentially more pronounced in patients with
multimorbidity, and that shared vascular risk factors are
relevant.32

Three case series have found evidence of a high preva-
lence of abnormalities in cerebral blood flow in patients with
cardiac SVD.12,14,33 Weidmann et al33 studied cerebral blood
flow using technetium-99m (Tc-99m)-d,l-hexamethylpropyle-
neamineoxime SPECT in a consecutive series of 95 patients
(mean age 55 years) with MVA. They found that 72 (76%) had
an abnormal brain SPECT scan, with hypoperfusion lesions in
the parietal lobes predominating. Sun et al12 reported similar
findings (Table 1). Pai et al14 found that in a group of 30
patients with cardiac SVD, brain hypoperfusion lesions on
technetium-99m ethyl cysteinate dimer brain SPECT were
common (21/30 patients) and positively associated with the
presence and extent of abnormalities in myocardial perfusion
as revealed by thallium-201 myocardial perfusion SPECT.
Brunelli et al11 studied cerebral blood flow using 133Xe
inhalation and found no differences between 16 patients with
MVA and 16 controls. None of these studies included repeated
assessments over time, and more research into the natural
history of heart and brain SVD seems justified. Taken together,
these studies show that heart and brain hypoperfusion may co-
exist in patients with MVA, supporting the thesis of Sax et al10

of a multisystem SVD disorder.
Thore et al16 provided insights into the natural history of

patho-anatomical changes in brain small vessels with aging.
They undertook a morphometric analysis of arteriolar tortu-
osity in human cerebral white matter of preterm, young, and
aged subjects (age range 23 weeks postconception to
102 years). They used computerized morphometry to deter-
mine a vascular curl score (curvilinear length/straight length)
in white matter arterioles in thick (100 lm) alkaline phos-
phatase–stained sections. They reported that the tortuosity
score increased with age and showed borderline association
with a history of IHD (P=0.058 for distribution).

In patients with acute subarachnoid hemorrhage, ECG
changes including ST-segment deviation and QT-prolongation
are common and an adverse prognostic factor.34 The extent
and nature of the ECG changes correlate with vasospasm
identified on cerebral arteriography.35 An increase in circu-
lating troponin concentration is an adverse prognostic factor
after subarachnoid hemorrhage.36 Although coronary tone
has not been measured directly in patients with subarachnoid
hemorrhage, these results implicate coronary vasospasm as a
secondary process leading to myocardial ischemia in affected
patients.

Mechanisms of SVD Affecting the Heart and
Brain
We hypothesize that SVD is a multisystem disorder with a
common pathophysiological basis that differentially affects the
heart and brain in some patients. The natural history is
incompletely understood. Why some patients with MVA

Table 2. Diagnostic criteria for microvascular angina

Clinical criteria for suspecting MVA*

1. Symptoms of myocardial ischemia

a. Effort and/or rest angina

b. Angina equivalents (i.e., shortness of breath)

2. Absence of obstructive CAD (b = >50% diameter reduction
or FFR N = ≤0.80) by

a. Coronary CTA

b. Invasive coronary angiography

3. Objective evidence of myocardial ischemia

a. Ischemic ECG changes during an episode of chest pain

b. Stress-induced chest pain and/or ischemic ECG changes in the
presence or absence of transient/reversible
abnormal myocardial perfusion and/or wall motion abnormality

4. Evidence of impaired coronary microvascular function

a. Impaired coronary flow reserve (cutoff values depending on
methodology use between ≤2.0 and ≤2.5)

b. Coronary microvascular spasm, defined as
reproduction of symptoms, ischemic ECG shifts but
no epicardial spasm during acetylcholine testing.

c. Abnormal coronary microvascular resistance
indices (e.g., IMR >25)

d. Coronary slow flow phenomenon, defined as
TIMI frame count >25.

CAD indicates coronary artery disease; CTA, computed tomographic angiography; FFR,
fractional flow reserve; IMR, index of microcirculatory resistance; MVA, microvascular
angina; TIMI, thrombolysis in myocardial infarction.
*Definitive MVA is only diagnosed if all 4 criteria are present for a diagnosis of MVA.
Suspected MVA is diagnosed if symptoms of ischemia are present (criterion-1) with no
obstructive coronary artery disease (criterion-2) but only (a) objective evidence of
myocardial ischemia (criterion-3), or (b) evidence of impaired coronary microvascular
function (criterion-4) alone.
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subsequently develop vascular cognitive impairment and others
do not is an unanswered question. Potential underpinning
mechanisms include premature vascular aging, clustering
of vascular risk factors leading to an accelerated cardiovascular
risk, and activation of the endothelin system.9,37 Vascular
fibrosis driven by the transforming growth factor b family of
regulatory signaling proteins may also be causally relevant.38

Premature Vascular Aging and Oxidative
Stress
Vascular aging is associated with endothelial dysfunction,38

oxidative stress,38 increased blood vessel stiffness,39 impaired
angiogenesis,40 rarefaction,41 and extracellularmatrix changes.42

Degeneration and perivascular fibrosis in the microvasculature
supplying cerebral periventricular white matter accumulate with
age.43 Premature vascular aging may have a genetic
component.44 Genetic susceptibility and interactions with envi-
ronmental vascular factors (e.g., smoking, obesity, and lifestyle)
may predispose to accelerated risk of clinical syndromes because
of SVD in the heart and brain.

Systemic Endothelial Dysfunction
In the CorMicA study,45 we tested the hypothesis that
patients with INOCA also have functional abnormalities in
peripheral small arteries. Using arterioles isolated from gluteal
biopsies, we found that patients with microvascular angina
and vasospastic angina had peripheral microvascular abnor-
malities characterized by reduced maximum relaxation fol-
lowing incubation with ACh (in keeping with endothelial
dysfunction) and increased responses to vasoconstrictor
stimuli. Our study provides evidence of associations between
coronary microvascular dysfunction and SVD in other organs,
such as the brain and kidney.

Endothelial activation is mechanistically implicated in SVD
secondary to hypertension and associated with changes in
cognitive performance over time.46 Circulating molecules that
are mediators of endothelial dysfunction are implicated in the
pathophysiology of SVD, leading to angina and cognitive
decline. A systematic review and meta-analysis of circulating
markers of inflammation (C-reactive protein, tumor necrosis
factor-a, interleukin-6) and endothelial dysfunction (notably
homocysteine and von Willebrand factor) disclosed associa-
tions with lacunes, but not circulating markers of coagulation
and fibrinolysis.47

Endothelin-1
Endothelin-1 is implicated in the vascular pathophysiology of
SVD in the heart and brain (Figure 3). Endothelin-1 is a 21-

amino acid peptide that is released mainly by endothelial
cells.48 Endothelin-1 is a highly potent vasoconstrictor via its
ETA receptors expressed on vascular smooth muscle cells. In
addition, this peptide has profibrotic, mitogenic, pro-oxidant,
pro-inflammatory, and inotropic actions and regulates renal
fluid and electrolyte homeostasis.48

Endothelin-1 increases peripheral49 and coronary50 vas-
cular tone via ETA-activation.

51 Endothelin-1 contributes to
coronary endothelial dysfunction,50 and its tonic inhibitory
effect on myocardial perfusion, as revealed by positron
emission tomography, is related to the presence and extent
of risk factors for atherosclerosis.52 Kaski et al53 observed
that in patients with MVA, circulating endothelin-1 concen-
trations were increased and associated with a shorter time to
onset of angina during exercise. In subsequent studies,54

they showed that increased endothelin-1 activity is associ-
ated with reduced coronary flow responses, notably in
women. Using rest/dipyridamole positron emission tomog-
raphy with Rb-82 for the assessment of IHD, Johnson et al55

identified an abnormal pattern of diffuse heterogeneous
myocardial perfusion that was associated with coronary SVD.
They observed that in patients with heterogeneous reduc-
tions in resting myocardial perfusion (consistent with coro-
nary SVD), treatment with the ETA antagonist, darusentan,
improved myocardial perfusion, and increased the homo-
geneity of the perfusion pattern. They concluded that in
patients with coronary SVD, endothelin-1 caused regional
reductions in myocardial perfusion and that these abnormal-
ities could be improved by ETA receptor blockade. In a
randomized placebo-controlled trial of an oral ETA antagonist
(atrasentan, 10 mg PO daily) administered for 6 months in
47 patients with coronary microvascular disease, Reriani
et al56 observed that chronic ETA antagonist therapy
improved microvascular coronary endothelial function. This
change was accompanied by greater reductions in mean
arterial blood pressure and plasma glucose.56 Recent genetic
fine mapping linked the endothelin gene, EDN1, to multiple
cardiovascular disease states, including coronary heart
disease, coronary calcification, migraine headache, cervical
artery dissection, fibromuscular dysplasia, and hyperten-
sion.57 In the CorMicA study,45 peripheral arterioles isolated
from patients with INOCA had enhanced vasoconstriction in
response to ET-1 and the thromboxane agonist U46619
compared with vasoconstrictor responses from control
subjects. The results support the provocative concept that
patients with INOCA are at risk of developing generalized
SVD.

Future Directions
Many of the current studies have limitations, such as their
cross-sectional design and lack of longitudinal follow-up. Age-
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related changes may be a confounding factor in the associ-
ations between SVD in the heart and brain. Longitudinal
studies of the pathological changes and risk factors with
appropriate controls would help in better understanding the
natural history of these conditions. For example, are patients
with microvascular disease in the heart indeed more likely to
develop vascular cognitive impairment? Potential therapeutic
targets may emerge and the effects of endothelin-1 receptor
antagonists in cerebral SVD would be of interest.

Advances for Diagnosis, Treatment, and
Epidemiology of SVD in the Heart and Brain
The positive results from the CorMicA study should be
investigated further for external validity in a multicenter trial.
Nuclear imaging with SPECT and positron emission

tomography and cardiovascular MRI are highly informative
for investigating ischemia in the heart and brain. Advances in
cardiovascular MRI now enable quantitative measurements of
myocardial blood flow (mL/min per g tissue) with pixel-level
resolution in near real-time,58 which holds promise to be
diagnostically useful for patients with INOCA with potentially a
combinatory approach with advanced cardiovascular MRI in
the heart and brain.

Advances in brain imaging to quantify SVD include
diffusion imaging at 3.0 T, susceptibility-weighted MRI (to
detect cerebral microbleeds), T1-weighted MRI (lacunes),
fluid-attenuated inversion recovery MRI (white matter hyper-
intensities), diffusion tensor imaging (white matter integrity),
subcortical atrophy (3D-T1-weighted imaging), and brain
arterial spin labeling to map regional cerebral blood flow with
CO2 challenge to quantify cerebrovascular reactivity. Recent

Figure 3. Endothelial function and harmony of the vascular endothelin system. There is complex
homeostatic interplay between endothelial (dys)function and the effects of ET-1 on vascular tone and
atherogenic milieu. Endothelial dysfunction causes coronary and systemic (peripheral) microvascular
disease and the underlying mechanisms involve dysregulation of the endothelin-1 (ET-1) system. EDN1
gene transcription in vascular endothelial cells produces pre-pro ET-1, which is cleaved to big ET-1 and
subsequently to ET-1. Around 80% of ET-1 secretion occurs abluminally, where it binds to ETA and ETB
are G-protein coupled receptors that are expressed on the vascular smooth muscle cell surface
mediating constrictor and mitogenic effects. In healthy endothelial cells, luminal ET-1 binds to and
activates ETB receptors, providing a crucial homeostatic role. Endothelial ETB activation leads to eNOS
activation and PGI2 and nitric oxide (NO) production. Endothelial dysfunction is associated with
reductions in NO, prostacyclin, and endothelium-derived hyperpolarizing factor and a preponderance of
oxidants, ET-1, and other vasoconstrictor and mitogenic substances within the vascular wall. ROS
indicates reactive oxygen species.
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advances in brain imaging have evidenced the clinical
significance of microbleeds, which are a biomarker for some
manifestations of SVD. MRI at 7.0 T offers a number of novel
insights into the arterial and parenchymal lesions associated
with SVD.59 MRI at 7.0 T visualizes perforating arteries,
cerebral micro-infarcts, and lesions in the arterial walls.
Future research using 7.0 T MRI of the brain in patients with
cardiac SVD seems warranted.

Advances in Therapy
Preventive measures for SVD in at-risk or affected individuals
currently focus on modification of vascular risk factors,
notably hypertension, obesity, and smoking. Lifestyle inter-
ventions, notably through regular aerobic exercise, are
recommended.3,4,27 There are no targeted specific disease-
modifying therapies for SVD in the heart or brain, presenting a
major opportunity for research and potential therapeutic
intervention.3,5,6

Endothelin-1 Receptor Antagonists
Endothelin-1 receptor antagonists are an established treat-
ment for microvascular disease in the lung; for example, they
are a drug of choice for pulmonary arterial hypertension.
Although they were thought to have renoprotective effects,
the SONAR trial (ClinicalTrials.gov Identifier: NCT01858532;
atrasentan phase 3 trial, diabetic nephropathy) closed early
(Q4.2017) because of a lack of primary end-point events in
the study population. Two small randomized trials of an
endothelin-1 receptor antagonist in MVA55,56 had favorable
results, but these compounds are not available following
“negative” phase 2/3 trials in oncology and hypertension.
There were no safety concerns.

Rho Kinase Inhibitors
The RhoA/Rho kinase system plays an important role in
vasoconstriction. RhoA/Rho kinase inhibitors have therapeu-
tic potential for patients with MVA. A study of the effects of
SAR407899 on coronary vasomotor function using coronary
flow reserve in patients with MVA (NCT03236311) was halted
early because of slow enrollment. This outcome reflects the
need for future trials to adopt eligibility criteria and methods
of assessment that facilitate enrollment.

Conclusion
Our review provides evidence that abnormalities in cerebral
blood flow are common in patients with MVA and that SVD can
be considered a multisystem disorder. Vascular risk factors

alone cannot explain INOCA because many patients with MVA
lack risk factors for vascular disease. Key gaps in knowledge
include (1) the natural history and prognosis of multisystem
SVD; (2) causal genetic variants; (3) underlying molecular
mechanisms; (4) optimal diagnostic methods for SVD in heart,
brain, and other organs; and (5) preventive and/or disease-
modifying therapy (pharmacological and nonpharmacological).
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Table S1. Relevant papers identified in literature review not relating to SVD in the heart and brain. 

Authors/Date SVD component Design Objective Focus 
Time 

frame 

Sample 

size 
Relevant findings 

Gerdes et al 

2006[1] 
Brain SVD 

Prospective 

cohort study 

Determine if WML is 

associated with future extra-

cerebral ischaemic events 

Patients with 

recent 

CVA/MI/PAD 

1992-

1994 
230 

Cerebral WML (especially PVL) are 

associated with ischaemic events (IS 

& MI) – possible ischaemia in an 

arterial borderzone, hypoperfusion 

caused by large vessel disease, 

diminished cerebral vasomotor 

reactivity, or SVD developing 

parallel to systemic large vessel 

disease 

van Elderen et 

al 2010[2] Brain SVD 
Prospective 

cohort study 

Determine (with MRI) if 

aortic stiffness (reflected by 

aortic pulse wave velocity) is 

associated with LV 

function/mass and cerebral 

SVD 

Patients with 

Type 1 

diabetes 

2008-

2009 
86 

Aortic stiffness is associated with LV 

systolic function and cerebral WMH 

in patients with Type 1 diabetes 

(independent of hypertension) 

Conijn et al 

2011[3] Brain SVD 
Prospective 

cohort study 

Determine if WML & LI 

(markers of SVD) increase 

risk of vascular and 

nonvascular deaths 

Patients with 

atherosclerotic 

disease and 

WML/LI on 

brain MRI 

2001-

2005 
1228 

WML & LI increase risk of all-cause 

and vascular deaths; LI increases risk 

of nonvascular deaths too; WML & 

LI are not associated with “ischaemic 

cardiac complications” 

Poels et al 

2012[4] Brain SVD 
Population-based 

cohort study 

Determine if arterial stiffness 

is associated with cerebral 

SVD (WML, LI, CMB) 

Elderly 

patients in the 

Netherlands 

1990s 1460 

Arterial stiffness is associated with a 

larger volume of WML (especially in 

patients with uncontrolled 

hypertension) but not LI or CMB 

Shimizu et al 

2014[5] Brain SVD 
Prospective 

cohort study 

Determine if WML is 

associated with LV diastolic 

dysfunction 

Patients 

between 65 & 

75 with normal 

LVSF and no 

history of 

HF/IHD/AF/C

VA/dementia 

2010-

2012 
75 

WML is associated with LV diastolic 

dysfunction (but no causal 

relationship can be determined) 

Harbaoui et al 

2015[6] Brain SVD 
Prospective 

cohort study 

Determine contributions of 

BP, aortic stiffness and SVD 

on coronary events, 

Patients with 

hypertension 

1969-

1976 
1031 

Atherosclerosis score & pulse 

pressure are associated with coronary 

events; Mean BP is associated with 

cerebrovascular and renal-related 
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cerebrovascular events and 

renal-related events 

deaths; Retinopathy is associated 

with cerebrovascular-related deaths 

Kamel et al 

2015[7] Brain SVD 
Prospective 

cohort study 

Determine if ECG LA 

abnormality (and therefore 

LA disease is associated with 

stroke (both cortical infarcts 

and leukoaraiosis) 

Patients with a 

baseline brain 

MRI and no 

history of 

AF/CVA 

1989-

1993 
3129 

ECG LA abnormality is associated 

with vascular brain injury, especially 

non-lacunar infarcts 

Bang et al 

2016[8] Brain SVD 
Prospective 

cohort study 

Determine risk factors of 

intracranial microangiopathy 

& macroangiopathy 

Patients with 

MCA infarcts 

in tertiary 

stroke centre 

2008-

2012 
714 

Mild-moderate renal dysfunction 

associated with both microangiopathy 

& macroangiopathy, possibly due to 

endothelial dysfunction 

Leung et al 

2017[9] Brain SVD 
Prospective 

cohort study 

Determine if BP and HR are 

associated with with incident 

brain infarcts and worsening 

leukoaraiosis 

Patients with a 

baseline brain 

MRI and no 

history of CVA 

1989-

1993 
878 

Elevated SBP is associated with 

increased risk of covert brain 

infarction and elevated DBP is 

associated with increased risk for 

worsening leukoaraiosis 

 

SVD: small vessel disease, MCA: middle cerebral artery, WML: white matter lesion, LI: lacunar infarct, MRI: magnetic resonance imaging scan, CVA: 

cerebrovascular accident, MI: myocardial infarction, PAD: peripheral arterial disease, PVL: periventricular leukomalacia, IS: ischaemic stroke, BP: blood 

pressure, ECG: electrocardiogram/electrocardiograph, LA: left atrial, AF: atrial fibrillation, HR: heart rate, SBP: systolic blood pressure, DBP: diastolic 

blood pressure, CMB: cerebral microbleeds, LV: left ventricular, LVSF: left ventricular systolic function, HF: heart failure; IHD: ischaemic heart disease, 

WMH: white matter hyperintensities. 
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