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Abstract  

Refractive index sensing is attracting extensive interest. Limited by the weak light–matter 

interaction and the broad bandwidth of resonance, the figure of merit (FoM) of terahertz (THz) 

sensors is much lower than their counterparts in visible and infrared regions. Here, these two 

issues are addressed by incorporating a microfluidic channel as a slot layer into a grating slot 

waveguide (GSW), where guided-mode resonance results in a narrowband resonant peak and 

the sensitivity increases remarkably due to the greatly concentrated electromagnetic fields in 

the slot layer. Both reflective and transmissive sensors are developed with the calculated 

quality (Q) factors two orders of magnitude larger than metamaterial and plasmonic sensors, 

and the sensitivities one order of magnitude larger than grating waveguide sensors, 

contributing to a record high FoM of 692. The measured results match well with the 

simulations considering the fabrication errors, where the degeneration of narrowband 

transmission peaks in experiments is attributed to the error of the microfluidic channel height 

and the divergence of the incident beam. The proposed unity-integrating configuration with 

mailto:longwen@jnu.edu.cn
mailto:David.Cumming.2@glasgow.ac.uk
mailto:chenqin2018@jnu.edu.cn


  

2 

 

simultaneous optimizations of the resonance mechanism, and the spatial overlap between the 

sensing field and the analytes shows the potential for high sensitivity bio and chemo sensing. 

 

1. Introduction 

Terahertz (THz) waves provide unique fingerprints of bio and chemo species caused by the 

rotational and vibrational modes of molecules. [1, 2] This characteristic of the electromagnetic 

region provides promising applications in the area of bio-chemical research, especially label-

free detection of refractive index change induced by molecular interactions.[3] To improve the 

light-matter interaction between the long-wavelength THz wave and the analytes, various 

micro-/nanostructures with strong confinements have been utilized for sensor design, such as 

resonators,[4] photonic crystals (PC),[5] nanowires,[6] plasmonic structures,[7,8] and 

metamaterials.[9, 10]. In most cases, the evanescent fields of the resonant modes are applied for 

sensing. It is crucial to place the analytes where the concentration of electric-field is the 

largest. Recently, some of the authors have demonstrated a remarkable increase of the 

sensitivity (S) via the localized resonant field sensing by integrating the microfluidic channel 

between metal reflector and metal microstructures to form a THz metamaterial absorber 

(MA), which has strongly confined electromagnetic fields between two metal layers.[11] This 

unity-integrating configuration provides greatly increased spatial overlap between the 

localized field and the analytes. Similar improvements have also been observed by partially 

etching away the intermediate layer of MA.[12] However, for a resonant optical biosensor 

based on the detection of the refractive index change, a figure of merit (FoM) defined by the 

ratio of the sensitivity to the linewidth of the resonance is usually used to evaluate the actual 

device performance.[13] Therefore, a large sensitivity does not ensure a low detectivity if the 

resonant peak is too broad. For example, the low quality (Q) factors (<10) of the above 

mentioned MA sensors finally limit the FoMs (<10). A narrow linewidth, that is, a high Q 
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factor, has a positive effect in the light-matter interaction and contributes to the high 

resolution in spectral characterization. So far, the reported Q factors of various THz sensors, 

in particular metamaterial and plasmonic ones, are very low because of the absorption and 

radiation loss.[8, 11] Even by introducing the Fano resonance mechanism, metamaterial sensors 

made out of split-ring resonators generally have Q factors of less than 100.[14] Recently, some 

of the authors have demonstrated a narrowband THz filter with a Q factor over 500 based on a 

grating waveguide (GW), where the low-loss guide-mode resonance (GMR) effect determines 

the filtering property.[15] However, this GW with high-Q resonances is not advantageous for 

sensing because the electromagnetic fields are mostly confined within the waveguide with 

weak evanescent fields overlapped with the analyte outside. [16, 17] 

In this paper, we combine the unity-integrating configuration with the high-Q GMR 

resonance to push the THz sensing limit. It is realized by low-loss grating slot waveguides 

(GSWs), where liquid analytes flow in the slot layer and the incident THz wave is coupled 

into the slot waveguide by the gratings, resulting in a significant increase of the spatial 

overlap of the fields and the analyte. Both dielectric and metallic GSWs were investigated 

based on the coupled mode theory (CMT)[18] and the finite difference time domain (FDTD) 

simulation. The advantages of GSW integrated microfluidic (GSWIM) sensors were presented 

by comparing with the GW and metamaterial sensors. The effects of the material and structure 

parameters on the sensing performance were investigated in detail, where an extremely high 

FoM of 692 was predicted as a result of simultaneous optimizations of the structural 

resonance and the spatial overlap between the sensing field and the analytes. Prototype 

devices were fabricated by assembling a silicon membrane and a quartz with gratings. The 

accuracy of the channel height and the divergence of the incident beam were discussed to 

explain the measured spectra. These sensors have a great potential application to detect real-

time minor index changes or component changes in the analyzed substances. 
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2. Mechanism 

For optical refractive index sensors, the amplitude variation (ΔI) and the resonant frquency 

shift (Δf) induced by the analytes index change (Δn) are usually used for monitoring the bio 

and chemo reactions (Section S1, Supporting information). A large frequency shift per unit of 

refractive index means a strong interaction between the optical field and the analyte indicating 

a sensitive device. For example, the higher-order modes of PC cavities can achieve a 

measured sensitivity S of 321 nm per RIU at a wavelength of 700nm.[19] Plasmonic 

nanosphere/nanorod arrays can simulating realize a sensitivity of 500 nm per RIU ranging 

from UV to the near-infrared.[20] A plasmonic perfect absorber based on U-shaped resonators 

was proposed with a sensitivity of 1445 nm per RIU in the infrared region.[21] A metal-

dielectric-metal waveguide sensor showed a sensitivity over 0.457 THz per RIU at 0.3-3 

THz.[22] In addition, the quality factor Q is another important parameter, which is defined as 

the ratio of f0 to the full width at half maximum (FWHM). At a same S, the sensing system 

with a higher Q can be easier to detect the small signal. Therefore, a FoM is defined as the 

ratio of S to FWHM to consider all the factors.[23, 24] So far, the highest FoM of 590 was 

achieved by using hyperbolic metamaterials with a sensitivity of 30000 nm per RIU at a 

wavelength of 1 μm.[25] In the THz range, FoM is usually very small. For example, a 

calculated FoM of 5.2 had reported with a sensitivity of 14.5μm per RIU based on the higher-

order surface plasmon modes in a graphene strip. [26] A PC cavity had realized a FoM of 19 

with a Q factor over 10000 at 0.318 THz.[27] A THz metamaterial consisting of periodic arrays 

of graphene rings with different radii had achieved a FoM of 17 with a sensitivity of 0.83 THz 

per RIU.[24] 
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Figure 1 a) Schematic of the Si-GW. The period of the grating Λ = 102 μm, the height of the 

grating hg = 5 μm, the width of grating wg = 40 μm and the height of the bulk silicon 

waveguide is 80 μm. b) Schematic of the Si-GSW. Λ = 160 μm, wg = 40 μm, h1 = 20 μm, h2 = 

40 μm, and hg = 5 μm. c) Schematic of the Al-GSW. Λ = 160 μm, wg = 34 μm, h1 = 20 μm, h2 

= 40 μm, h3 = 200nm, and hg = 3 μm. Electric field intensity distributions of the fundamental 

resonant mode in d) Si-GW, e) Si-GSW, and f) Si-GSW with a metal cladding are also shown. 

nsi = 3.413+i7.163×10-5 ,[28] nanalyte=1.5, and the refractive index of Al is described by the 

Lorentz-Drude model. [29]  

    Obviously, a sensing system with low radiation and absorption loss together with strong 

light-matter interaction is preferred. Compared to plasmonic and metamaterial,[10, 14] the GMR 

effect (Section S2, Supporting Information) in a GW has a ultrahigh Q with a near-zero 
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absorption loss.[30-32] As shown in Figure 1a, it is a typical GW where silicon gratings couple 

incident light into the guided mode in the lateral waveguide. Due to the low absorption loss of 

silicon and low radiation loss induced by the shallow gratings, Q is as high as 2466 at 0.977 

THz, 176 times higher than that of the metamaterial perfect absorber.[11] However, as shown 

in Figure 1d the resonant electromagnetic field is mostly confined in the waveguide with 

weak evanescent field overlapped with the analyte for sensing. Therefore, the sensitivity of 

this type of sensors is limited, for example, a sensitivity of 113 nm per RIU around 0.8μm was 

obtained in the GMR optical biosensors.[31] Recently, some of the authors demonstrated a 

sensitive MA integrated microfluidic (MAIM) sensor, where the analyte channel was 

embedded into the MA at the position with the maximum electromagnetic field intensity.[11] 

Driving by this idea, a GSW as shown in Figure 1b could provide much higher sensitivities 

and maintain high Q factors due to the greatly confined electromagnetic field inside the slot as 

shown in Figure 1e. The significantly increased overlap between the electromagnetic field and 

the analyte ensures a strong light-matter interaction. To quantitatively evaluate the sensitivity 

in a point of view of resonant field, we defined an intensity filling ratio (IFR), which is the 

ratio of the integral of the electric field intensity in the sensing region to that of the whole 

resonant fields. The calculated IFR is 23% in Figure 1d and 40% in Figure 1e. Therefore, 

although the analyte is assumed to enwrap the whole GW with a large volume, the light-

matter interaction, that is, IFR, is still much less than that of the Si-GSW with a much smaller 

microfluidic channel volume. The above two free-standing structures are only used to discuss 

the physical mechanisms. For practical application, a Si-GSW with a metal cladding as shown 

in Figure 1c was proposed, where the metal film on a substrate is used to confine the resonant 

field instead of a silicon slab. The calculated Q and IFR are 5600 and 49% respectively 

indicating a promising performance.  

3. Reflective GSWIM sensors  
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As discussed above, the metal-cladding GSW has a good potential for sensing. In this 

section, the performance is evaluated in details. As shown in Figure 2a, the gratings are on the 

upper surface of the Si membrane and the metallic reflector is on another silicon substrate with 

the inset and outlet. The slot layer between the Si membrane and the metallic reflector 

functions as a microfluidic channel. By optimizing the silicon etching time, the height of the 

microfluidic channel and the gratings can be precisely controlled. The ultrathin cap is 

commercial products and also can be fabricated by general thinning techniques such as 

grinding, dry or wet etching.[33, 34] When the incident THz beam shines on the silicon gratings, 

the on-resonance wave is coupled into the guided mode and interacts with the analyte. The 

reflected wave carrying the refractive index information of the analyte is detected and 

analyzed by the spectrometer. The reflection spectra were simulated with different analyte 

indices in the channel at the normal incidence x-polarized THz beams. As shown in Figure 2b, 

a high-Q single resonance with a local reflection minimum is observed in each case, where the 

FWHM of the resonant peak are 0.92, 0.74, 0.62, 0.56, 0.54, and 0.53GHz, respectively. The 

Qs (>1000) are much higher than the previous design based on metamaterial, fano resonance, 

plasmonics.[10, 24, 35, 36] Moreover, the high Q factor is maintained at a wide range of refractive 

index n1 from 1.3 to 1.8 covering most bio and chemo specimens. The near unity absorption of 

the incident THz wave is obtained at n1 = 1.5, that is, all on-resonance incident THz beam is 

trapped and interacts with the analyte greatly enhancing the signal. The resonant frequency 

increases with the decreasing analyte index due to the decreasing effective resonant recycle as 

shown in Figure 2d. A fast analytical method was adopted to predict the upper and lower 

limits of the resonant frequency and the sensor sensitivity (Section S3, Supporting 

information). By treating the grating layer as an effective uniform layer, a slab structure with a 

silicon thickness of 40 or 45 μm, that is, the grating filling ratio (FR) of 0 or 1, provides two 

frequency limits of the actual GSW structure as shown by the two solid lines in Figure 2d. The 
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gradients of these two lines give an approximation of the sensitivity. In this case, the resonant 

peaks shift from 0.991 THz at n1=1.3 to 0.873 THz at n1=1.8, where the sensitivity is 

approximately 240 GHz per RIU. Accordingly, the resulted FoM is above 260 that is 44 times 

higher than the MAIM sensor. [11]  

 

Figure 2 a) Schematic of the reflective metal-cladding GSWIM sensor. Λ = 160 μm, wg = 40 

μm, h1 = 20 μm, h2 = 45 μm, and hg = 5 μm. b) Reflection spectra of the device for the analytes 

with different refractive indices. c) Q factors and d) f0 versus the analyte indices. Black 

squares represent simulation results by the FDTD method. The magenta (h2 = 45 μm) and 

green (h2 = 40 μm) lines are results by the analytical method for two extreme cases, that is, 

FR=1 and 0. e) Reflection spectra of the sensor for detecting analytes with Δn =0.002 around 

n1=1.3 and 1.5. 

    Apart from the sensitivity defined by the frequency shift, the variation of intensity ΔI can 

also be used for signal detecting, [37] where the intensity sensitivity SI is defined as the ratio of 

ΔI to Δn. In particular, when only single frequency source is available, this measurement is 

very useful. As seen from Figure 2b, the critical coupling condition is realized only at n1 = 1.5, 

for example, more than 30% incidence was reflected at n1 = 1.3. When the amplitude variation 

is used for sensing, the non-optimized coupling may degenerate the sensing performance. 
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Considering the small index variation Δn = 0.002 around n1 = 1.3 and 1.5, the associated 

spectra are shown in Figure 2e. The intensity sensitivity SI = 170 per RIU and 350 per RIU 

respectively. It is preferable to have a constant high sensitivity in a broad detecting range. 

According to the CMT, the critical coupling condition for perfect absorption is 1/τa=1/τr 

(Section S4, Supporting information), where 1/τa is related to the propagation loss of TM mode 

and 1/τr is related to the radiation loss by the gratings. Both 1/τa and 1/τr change with n1 in a 

different way. As seen from Figure S3a, Supporting information, the deviation between 1/τa 

and 1/τr are nonnegligible in the case of reflective metal-cladding GSWIM, resulting in a 

distinct mismatch, that is, the non-zero reflection (Section S4, Supporting information). To 

address this issue, a metal-grating GSW structure as shown in Figure 3a is proposed, where the 

microfluidic channel is between a flat silicon membrane and metal-coated dielectric gratings. 

As seen from Figure S3b, Supporting information, the deviation between 1/τa and 1/τr in the 

case of a metal-grating GSW are much smaller than that of silicon-grating ones in a broad 

range of n1. Therefore, the critical coupling condition can be approximately matched. The 

reflection spectra of the metal-grating GSWIM sensor with different analyte indices are shown 

in Figure 3b. It can be seen that the minimum reflection at the resonant peaks for n1=1.1 to 1.9 

are all close to zero, that is, critical coupling maintains for all cases. Therefore, it is expected 

that this design provides better performance for most bio and chemo analytes. It is clear from 

Equation (S5), Supporting information, that no matter dielectric gratings or metal ones, the 

resonance occurs as long as the wave vector is matched. The physical mechanism in the metal 

grating structure is confirmed to be also GMR considering the relation between the resonance 

wavelengths and the period as shown in Figure S5a, Supporting information. In addition, the 

process of this structure design is easy because there is no need to fabricate micro-structures 

on the membrane. In simulation, the slope angle of the dielectric gratings was assumed to be 
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60° considering the imperfection of the fabrication. In fact, the slope angle was found to have 

little influence in the sensor performance. 

 

Figure 3 a) Schematic of the reflective metal-grating GSWIM sensor. b) Reflection spectra of 

GSWIM for the analytes with different refractive indexes. Λ = 160 μm, w1 = 75 μm, w2 = 70.4 

μm, h1 = 30 μm, h2 = 30 μm, and hg = 4 μm. c) Schematic of the MAIM sensor. d) Reflection 

spectra of MAIM for the analytes with different refractive indexes. The cap is semi-infinite 

quartz with the refractive index of 2.1. The reflector is chosen to be 200 nm gold with the 

refractive index is described by Drude mode. The period of microstructure is 52 μm, the height 

of liquid channel is 5 μm, the long and short side lengths of both arms of the metallic cross are 

50 and 3 μm, respectively. e) Schematic of the GWIM sensor. f) Reflection spectra of GWIM 

for the analytes with different refractive indexes. Λ = 102 μm, hg = 5 μm, wg = 40 μm and H = 

80 μm. 
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The MAIM sensor is known to have a large IFR of 66% [11] due to the outstanding light 

trapping effect, which has been widely used in nanophotonic devices.[38-40] The GWIM sensor 

is known to have a large Q over 570 at 785nm. [41] To demonstrate the advantages of the 

unity-integrating of high Q and high IFR configurations in the proposed GSWIM sensors, 

these three types of sensors are compared as shown in Figure 3. As shown in the reflection 

spectra, the frequency shift with n1 is large in the case of the MAIM sensor but with a very 

broad resonance peak. In contrast, the narrowband resonance is achieved in the GWIM sensor 

but with a very small frequency shift. Only in the case of GSWIM sensors, both the large 

frequency shift and the narrowband resonance are achieved. As shown in Figure S4, 

Supporting information, GSWIM and MAIM sensors usually have one-order of magnitude 

larger S than those of GWIM ones, meanwhile, GSWIM and GWIM sensors have two orders 

of magnitude higher Qs than those of MAIM ones. In details, the maximum sensitivity of 438 

GHz per RIU is observed at n1 = 1.3 with a Q of 1879 for the GSWIM sensor. The 

corresponding FoM reaches a record high value of 692. In contrast, the FoMs at n1 = 1.3 for 

the MAIM and GWIM are only 4 and 18, respectively. In most cases, the proposed GSWIM 

sensor has a FoM of at least one order of magnitude higher than the other two types of 

sensors. The significantly improved performance of the proposed GSWIM sensor attributes to 

the unity-integrating configuration with simultaneous optimizations of the resonance 

mechanism and the spatial overlap between the sensing field and the analytes. 

4. Transmissive GSWIM sensors  

Although the reflective sensors have excellent performance, there are some limitations in 

the practical applications, for example, the oblique incidence is usually used instead of the 

normal incidence due to the spatial overlap of the illumination and collection light path. In 

addition, on-chip integration of the sensors to an imager or spectrometer prefers the 

transmissive version of the devices.[42] As shown in Figure 4a, we propose a transmissive 
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GSWIM sensor, where the device configuration is similar to that in Figure 3a but the metallic 

gratings are on a flat substrate to allow the on-resonance transmission. Both the cap (high-

resistance silicon membrane) and the substrate (high-density polyethylene, HDPE) are used to 

suppress the transmission loss of THz waves. In simulation, the refractive index of HDPE is 

assumed to be 1.6 ignoring the imaginary part and the gratings are made of aluminium. The 

transmission spectra with different analyte indices are shown in Figure 4b. There is a 

narrowband single transmission peak in a broad frequency region and the peak transmission 

of the device is as high as 80% with a very low background, which is ideal for transmissive 

sensing. From Figure 4c, we can see that most field intensity localized inside the channel with 

a large overlap with the analytes. There is a bright hot spot in the metal slit which might be 

used in the flow-through type nanophotonic sensors.[43] The resonant frequency decreases 

linearly with the analyte index as shown in Figure 4d, from which the sensitivity is calculated 

to be 0.38 THz per RIU. The highest Q factor is over 2400 that is two orders of magnitude 

larger than metamaterial sensors.[11] Besides, the associated FoM is above 180 that is 10 times 

higher than a terahertz metamaterial based on a dual-band graphene ring resonator.[24] To 

demonstrate a potential application of the proposed THz GSWIM sensor, the transmission 

spectra for various Octane grades of gasline were calculated and shown in Figure 4f. Distinct 

transmission peaks at different frequencies are easy to pick up from the spectra. The 

transmission changes 74% at 1.269 THz between gasoline #87 and #89, in contrast, it is less 

than 1% in the case of metallic nanohole array sensor.[44] The effects of structural parameters 

of the transmissive GSWIM sensors were investigated in details in Section S6, Supporting 

information. Generally, a structure with a small index of the substrate and a small slit provides 

a distinct high Q transmission peak. Furthermore, the resonant frequency shows an obvious 

frequency shift with the incident angle.   
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Figure 4 a) Schematic of a transmissive metal-grating GSWIM sensor. Λ= 140μm. h1 = 50 μm, 

h2 = 30 μm, hg = 0.2 μm and wslit = 1 μm. b) Transmission spectra for the analytes with 

different refractive indices. c) Color maps of the electric field intensity at the resonance peak 

at n1 = 1.5. d) The variation of resonance peak (f0) for n1 = 1.3-1.9. e) The variation of Q factor 

and FoM for n1 = 1.3-1.9. (f) The calculated transmission spectra of three different grades of 

gasoline with octane number of #87, #89, and #93. Refractive indices of various gasolines 

(#87, #89, and #93) are from Ref. [45]. 

5. Experiment and Discussion 

Based on the design in the above sections, the transmissive GSWIM sensor was fabricated 

and the process flow is shown in Figure 5a. The packaged device as shown in Figure 5c 

consists of two components fabricated from two samples, that is, one is a quartz sample with 

metal microstructures and SU8 microfluidic channel, the other is a silicon-on-insulator (SOI) 

sample with a silicon membrane. The two parts were fabricated step-by-step as described in 

Figure 5a. The SOI sample has a silicon device layer of 20μm, a SiO2 buffer layer of 0.38μm 

and a silicon handling layer of 400μm. The thickness of the SiO2 layer and the aluminum 

layer is 200 and 200nm, respectively. For the cap sample, silicon membrane was obtained by 

the silicon and silicon oxide etch, which is surprisingly robust although it has a size of 
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10mm×10mm as shown by the square window in Figure 5c. The transmissive GSWIM sensor 

was achieved by assembling the cap and the substrate samples together using Teflon clamps 

as shown in Figure 5c. The channel height is determined by the thickness of spin-coated SU8 

resist. 

  

Figure 5 a) The process flow of the transmissive GSWIM sensor consisting of two parts. For 

the cap sample, a SiO2 film is deposited on the back surface of the SOI sample followed by 

spin coating of a AZ4620 photoresist layer C1. Then, an opening is formed by 

photolithography and SiO2 etch C2. Finally, the silicon handling layer and the silicon oxide 

layer of the SOI sample are etched through the opening C3. For the substrate sample, a 

AZ5214 photoresist layer is patterned into microstructure array. Then, aluminium 

microstructure array is formed by electron beam evaporation and liftoff. Finally, a 

microfluidic channel as a square seal is formed using the SU8 (Microchem) resist stripes by 

photolithography. b) The photograph of the quartz sample with aluminium microstructures 

and SU8 channel. c) The photograph of the packaged sample.  

The schematic of the fabricated device is shown in Figure 6a. The structure parameters of the 

fabricated device are as follows: Λ = 48 μm, h2 = 20μm, h1 = 4.32μm, wslit = 5μm, hg = 
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200nm. The complex refractive index of the quartz substrate is assumed to be 2.17+0.0039i. 

The calculated transmission spectra as a function of the channel height in Figure 6b. We can 

see three obvious transmission bands indicated by three arrows. With the increase of h1, all 

three bands show red shifts. These three bands look like broken around 2.8THz indicated by 

the white dash dot line, which is attributed to the Rayleigh anomaly.[46] It is fixed for all the 

values of h1 and only determined by the period of the metal structure and refractive index of 

substrate, that is, λ=(ns±sinθ), where λ is the Rayleigh anomaly wavelength, ns is the 

refractive index of substrate, θ is the incident angle. To find out the physical mechanism 

behind these three transmission bands, we calculate the transmission spectra of a similar 

structure to the one in Figure 6a but the metallic microstructure array is replaced by a flat 

metal film with a thickness of 10nm. For such a metal/dielectric multilayer structure, we also 

observe three transmission bands in Figure 6c at the similar places to those shown in Figure 

6b, which are caused by the Fabry-Perot resonances in the metal/glucose/silicon cavity. 

Therefore, in the structure in Figure 6a, FP resonances still exist although the metal layer is 

patterned into microstructure array and they even dominate the transmission spectra especially 

for a large h1. For a small h1, for example h1=5μm, we can see a local maximum and 

minimum around 2.4THz, which is the result of the coupling between the GMR and the FP 

resonance. As we notice, high Q GMR can be only observed in a range of h1, that is, 0.5 μm 

to 10μm. When h1 is too small, the waveguide mode is cut off. When h2 is too large, the 

coupling coefficient between the incident light and the well confined waveguide mode is too 

weak. Both cases cannot support a distinct transmission peak, which is a main reason for a 

missing high Q resonance in experiment. In Figure 6d, the measured transmission spectrum 

(Bruker IFS 66 v/s) of a device with glucose inside is shown together with a fitting spectrum 

h1=50μm. There are three transmission peaks at 1.67THz, 2.35THz and 3.42THz indicated by 

three arrows in the measured spectrum, which agree well with the fitting spectrum. Therefore, 
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they are the FP resonances as marked by the three crossings of the black dot line and the three 

FP bands in Figure 6b. The peaks in the measured spectra were broaden because of the 

unevenness of the assembled substrate and the cap, which results in an average of the 

measured transmission at different h1. In addition, in the case of air in the microfluidic 

channel, the measured transmission spectrum in Figure 6e is also very similar to the 

simulation. The good match between the experiment and simulation confirms that our design 

and the simulation results are convincible. However, the narrowband transmission peak is not 

observed. As we can see, h1 in the fitting spectra in Figure 6d,e are 50 and 38μm respectively, 

which are much larger than what we expected in the optimized design. Because the high Q 

GMR can be only seen in a small range of h1 as shown in Figure 6b,e, the large fabrication 

and assembling errors may be a main reason why we did not observe the high Q transmission 

peak. In the experiment, the cap sample has a flat top surface and the substrate sample has a 

square-ring shape SU8 resist seal on the top surface. When these two samples are packaged 

face to face, the channel is formed between the two surface and its height is determined by the 

thickness of SU8 resist. The missing of the GMR and the broadening of the FP resonances in 

the measured spectra are attributed to the error of h1 in the actual experiment, which caused 

by the SU8 resist thickness error, the uneven assembling due to the uneven sample and the 

SU8 rim. Besids, currrent substrate quartz with a relatively high refractive index is not 

optimized as shown in Figure S5d, Supporting Information, where the high Q resonance 

becomes degenerate for the substrate refractive index over 2. Although these issues appear in 

current experiments, it could be solved in principle by optimizing the process and the uesd 

materials. For example, the microfluidic channel can be formed by dry etching the substrate 

accurately instead of using SU8 square ring, and the quartz substrate can be replaced by 

HDPE.  
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Figure 6 a) Schematic of the fabricated GSWIM sensor. b) The calculated transmission 

spectra versus the channel height h1 in the case of glucose in the channel for a device as 

shown in (a). c) The calculated transmission spectra of a similar structure to the one in (a) but 

the metallic microstructure array is replaced by a flat metal film with a thickness of 10nm. d) 

The measured transmission spectrum of the device with glucose inside and the simulation 

result at h1=50μm. e) The calculated transmission spectra versus the channel height h1 in the 

case of air in the channel. In addition, the measured and its fitting spectra are shown in the 

black dashed and solid lines, respectively. f) The simulated spectra of the device with air in 

the channel at h1=2μm for the incident angle of 0°, 4° and 8° respectively. The silicon layer 

thickness of the cap is h2 = 21μm. The refractive index of quartz and glucose is 2.17 and 1.7, 

respectively. 

Apart from the error of h1, the divergence of the incident terahertz beam also has 

nonnegligible effect. As shown in Figure 6f, the transmission peak splits into two peaks and 

has obvious shifts for a small incident angle. A more than 50GHz shift of the resonant 

frequency was observed for a 4° oblique incidence. As a result, the measured spectra are 

actually the average of the transmission for a range of different incident angle, which may 
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broaden the peak and even kill the peak. The current spectral characterization is on a 

commercial THz-TDS system with a focused output beam. A more careful characterization 

need be done in future in a home-made TDS system with the customized lens-mirror group. 

Finally, the calculated and experimental performances of various THz sensors in previous 

publications are summarized in Figure S8, Supporting information. As seen, the GSWIM 

devices support much higher Q factors than most other devices except the PC ones, and the 

sensitivities of the GSWIM devices are comparable to other devices except the MAIM ones. 

As a result, the GSWIM devices demonstrate a much higher calculated FoM. Although the 

experiments of the GSWIM sensors do not show the expected results so far due to the 

limitations in our experiments, the unity-integrating configuration with simultaneous 

optimizations of the resonance mechanism and the spatial overlap between the sensing field 

and the analytes is in principle able to deliver potential applications in monitoring molecular 

interactions and high-sensitivity matter detection. In addition, the proposed terahertz sensor is 

based on the detection of the resonance shift. Both the properties of high Q and high 

sensitivity are pursued to improve the detection technique of the resonance shift, which is 

similar to short wavelength sensing. As we know, a typical advantage of terahertz sensing is 

that many molecules have terahertz fingerprints which can be used for detection. Although we 

did not optimize our devices to a certain fingerprint wavelength, it could be easily done by 

adjusting the structure parameters as shown in Figure S5a, Supporting information, where the 

resonance frequency is tuned by changing the grating period. Once the high Q resonance with 

a large spatial overlap between the electromagnetic field and the analyte is achieved, the 

spectral fingerprint detection can be greatly improved. Furthermore, by making an array of 

high Q terahertz sensors at different frequencies, we can obtain the capability for 

multiple/parallel detection. 

6. Conclusion 
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To summary, we proposed and experimentally demonstrated the unity integration of grating 

slot waveguide and microfluid for sensing, which is realized by incorporating the microfluidic 

channel as a slot layer into a GSW. As a result, both the amplitude and frequency sensitivities 

increase remarkably due to the greatly concentrated electromagnetic fields in the slot layer. 

Moreover, ultrahigh Q factors were achieved due to the low loss property of the GMR in the 

GSW. The calculated Q factors are two orders of magnitude larger than metamaterial sensors 

and the sensitivities are one order of magnitude larger than grating waveguide sensors. 

Extremely high FoM of 692 was predicted by numerical simulation. The devices were 

fabricated by assembling a silicon membrane and a quartz with metal gratings, showing 

reasonably good match between the experiment and calculation results considering the 

fabrication errors. The error of the microfluidic channel height and the divergence of the 

source beam degenerate the narrowband transmission peaks, which can be improved by 

optimization of fabrication process and measurement. The proposed unity-integrating 

configuration with simultaneous optimizations of the resonance mechanism and the spatial 

overlap between the sensing field and the analytes is a promising technique for high-

sensitivity bio and chemo sensors. 
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