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ABSTRACT: 6 

A novel three-dimensional (3D) fractional plastic flow rule that is not limited by the coordinate basis 7 

of the differentiable function is proposed based on the fractional derivative and the coordinate 8 

transformation. By introducing the 3D fractional plastic flow rule into the characteristic stress space, 9 

a 3D fractional elastoplastic model for soil is established for the first time. Only five material 10 

parameters with clear physical significance are required in the proposed model. The capability of 11 

the model in capturing the strength and deformation behaviour of soils under true 3D stress 12 

conditions is verified by comparing model predictions with test results. 13 

Keywords: Soils, Constitutive model, Fractional plastic flow rule, True 3D stress condition, Critical 14 

state, Characteristic stress.  15 
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1 Introduction 29 

Fractional derivative can generalise integer derivatives to all real (and even complex) orders, 30 

and thus provides a way to extend the gradient into the fractional gradient. In contrast to the gradient, 31 

the fractional gradient is not orthogonal with the surface of the differentiable function. The ability 32 

of the fractional derivative to adjust gradient direction was utilized by Sumelka (2014) to describe 33 

the direction of the viscoplastic strain increments, and thus the concept of the fractional plastic flow 34 

rule was originally proposed (Sumelka, 2014; Sumelka and Nowak, 2016). The plastic strain 35 

increment direction can be obtained by the fractional partial derivative of the yield function with 36 

respect to the Cauchy’s stress. However, in order to obtain the explicit solutions of the fractional 37 

derivative of the yield function, the yield function has to be directly expressed in terms of the 38 

principal stresses (Sumelka, 2014) or the stress components (Sumelka and Nowak, 2016), because 39 

the chain rule with the same fractional order for the fractional partial derivative does not work. The 40 

performance of the fractional plastic flow rule in modelling mechanical behaviour of granular soils 41 

in triaxial compression condition has been explored by Sun and Xiao (2017). A series of fractional 42 

order plastic models have been established (Sun and Xiao, 2017; Sun et al., 2017) by combining the 43 

fractional plastic flow rule with plastic modulus in existing models (Li and Dafalias, 2000; Xiao et 44 

al., 2004) to describe stress-dilatancy and strain hardening/softening of granular soils. Furthermore, 45 

Sun et al. (2018a; 2018b) originally used the current stress state in the definition of the fractional 46 

derivative to model the state-dependent behaviour of granular soils. However, the fractional plastic 47 

flow rule adopted in these models were all derived by the fractional derivative of the yield function 48 

with respect to two stress invariants, i.e., the mean stress p and the deviatoric stress q under triaxial 49 

compression conditions, rather than the general stress tensor. The existing fractional elastoplastic 50 

models for soils suits only for triaxial compression conditions, and the strength and deformation 51 

behaviour of soils under true 3D stress conditions has not been described. Indeed, the application of 52 

the fractional derivative in elastoplastic constitutive modelling for soils is still at the very beginning. 53 

A 3D yield function and the fractional plastic flow rule, which should be matched, are essential 54 

for establishing a 3D fractional constitutive model for soils. Up to the present, a yield function in 55 

the 3D stress space can be constructed using two methods: (i) Direct method in which the yield 56 

function is explicitly expressed in terms of the stress components (Borja et al., 2003; Khalili and 57 

Liu, 2008; Duriez and Vincens, 2015; Panteghini and Lagioia, 2018); (ii) Indirect method where the 58 
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yield function is constructed under triaxial compression conditions in a transitional space, which 59 

can reflect yield properties of soils under true 3D stress conditions (Chowdhury and Nakai, 1998; 60 

Collins, 2003; Yao et al., 2009; Ma et al., 2017). However, by applying the existing fractional flow 61 

rule (Sumelka, 2014) to the commonly used 3D yield functions constructed by the above methods, 62 

explicit expressions of the fractional derivative with respect to general stress components σij cannot 63 

be obtained. Thus, a 3D fractional plastic flow rule with no limitation of the coordinate basis of the 64 

yield function is eagerly needed for establishing 3D fractional plasticity model. 65 

In this paper, a novel 3D fractional plastic flow rule that can well match the classical plasticity 66 

theory is presented based on the covariant transformation. Furthermore, the characteristic stress (Lu 67 

et al., 2017; Ma et al., 2017) is introduced to describe the mechanical behaviours of soil under true 68 

3D stress conditions. The combination of the new 3D fractional plastic flow rule and the 69 

characteristic stress presents a new approach to establishing a 3D fractional elastoplastic constitutive 70 

model. The strength and deformation behaviour of soils under true 3D stress conditions can thus be 71 

directly described. 72 

2 A novel 3D fractional plastic flow rule 73 

The plastic flow rule in classical plasticity theory is used to determine the direction of the 74 

plastic strain increment. The plastic strain increment direction is usually determined by the 75 

orthogonality with respect to the plastic potential surface. If the plastic potential function is chosen 76 

to be identical to the yield function, the associated flow rule is adopted (Wood, 1990; Sun et al., 77 

2004; Yao et al., 2009; Zhou and Sheng, 2015). However, the associated flow rule does not work 78 

for most geomaterials (Lade et al., 1987; Collins and Houlsby, 1997). Therefore, the non-associated 79 

flow rule is usually used (Lu et al., 2016; Gao and Zhao, 2017). There are two approaches to 80 

obtaining the desired plastic strain increment direction n: (i) constructing a plastic potential function 81 

g to determine n by orthogonality as shown in Fig. 1(a); (ii) determining n based on an existing 82 

yield function f in a non-orthogonal way as shown in Fig. 1(b).  83 

 84 

(a)                                      (b) 85 

Fig. 1 Two approaches to determining the plastic strain increment direction:  86 

(a) orthogonal way; (b) non-orthogonal way.  87 

 88 
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However, the plastic potential function may be difficult to construct in a simple way and 89 

additional parameters could be required. The fractional partial derivative poses the ability to adjust 90 

the gradient direction based on an existing function in a non-orthogonal way. Moreover, the yield 91 

curve is necessary for the plastic theory. Therefore, fractional partial derivatives of the yield function 92 

is a proper option as the non-orthogonal way for determining the plastic strain increment direction 93 

(Sumelka and Nowak, 2016; Sun and Xiao, 2017). 94 

2.1 Fractional derivative 95 

There are three widely used definitions for fractional derivatives, i.e., Grünwald-Letnikov, 96 

Riemann-Liouville, and Caputo definition (Podlubny, 1998; Mashayekhi et al., 2018). Among them, 97 

the Caputo derivative has the weak singularity and the Caputo derivative of a constant is 0, making 98 

it the widely used one (Podlubny, 1998; Meng et al., 2016; Colinas-Armijo et al., 2016;). The 99 

Caputo derivative used in this paper is expressed as: 100 
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where CD μ means the Caputo derivative of order μ. a is the starting point of integral, which is chosen 102 

as 0 in this paper. x is the independent variable, which is used to express the current stress state in 103 

this paper. n is the smallest integer greater than μ, n=[μ]+1, where [·] denotes the floor function. n=1 104 
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   (2) 108 

where the exponent m (>-1) is restricted by the integrability of f(x).  109 

When the fractional derivative is used to get the partial derivatives of a function, the fractional 110 

gradient can be obtained and it is flexible to adjust the flow direction by adjusting the fractional 111 

order μ. This is exactly what is desired for the non-orthogonal way mentioned above to determine 112 

the plastic strain increment direction. 113 
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gradient of the plastic potential function g. The plastic strain increment is expressed as follows: 116 

   (3) 117 

where dλ is the plastic multiplier for general plastic flow rule, and g/σij is the gradient of the 118 

plastic potential function, respectively. The plastic potential function can be constructed using the 119 

principal stresses σi (i=1, 2, 3), which is expressed as g(σi). The gradient direction of g(σi) in the σi 120 

coordinate system is thus expressed by . The plastic potential function of soils can 121 

also be constructed by any set of stress variables Sk (k=1, 2, 3), where Sk is a function of σi, i.e., 122 

Sk(σi). The plastic potential function can be expressed as g(Sk) in the Sk coordinate system, and its 123 

gradient direction is . Here,  and  are components of the gradient vector n 124 

in the Sk and σi coordinate systems, respectively, as shown in Fig. 2. Therefore, a covariant 125 

transformation coefficient li
k is needed to transform the components of the vector n in the Sk 126 

coordinate system into the σi coordinate system. li
k is the partial derivative of Sk with respect to σi, 127 

and is expressed as follows: 128 

   (4) 129 

 130 

Fig. 2 Coordinate transformation of the plastic strain increment direction 131 

Therefore, according to the covariant transformation rule,  in the σi coordinate system can be 132 

expressed in terms of  in the Sk coordinate system. 133 

   (5) 134 

where Sk is an interim coordinate system for specific purposes, like the Cartesian rectangular 135 

coordinate system, the cylindrical coordinate system or the spherical coordinate system etc. The 136 

commonly used stress invariants p, q and θ or other stress invariants, like I1, I2 and I3, are specific 137 

examples of Sk. Generally, the components of the gradient vector of g can be expressed as 138 
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   (6) 142 

For geomaterials, stress invariants p, q and θ are usually adopted to establish constitutive 143 

models (Mortara, 2015). The corresponding strain increment  can be obtained as 144 

follows: 145 

   (7) 146 

where (np, nq, nθ)=(g/p, g/q, g/θ) represents the plastic strain increment direction. Two 147 

orthogonal planes, i.e., the meridian plane and the deviatoric plane, are used to analyse 148 

characteristics of models (Khalili and Liu, 2008; Yao et al., 2009; Lu et al., 2018). The current stress 149 

state point A can thus be represented in the meridian plane with the stress Lode angle θ (θ is 150 

equivalent to the intermediated principal stress coefficient b, namely, ) and 151 

in the deviatoric plane with p=pA, as shown in Fig. 3(a) and (b), respectively. The plastic strain 152 

increment direction of point A can also be divided into two components: the vector nmg=(np, nq) in 153 

the meridian plane and the vector ndg=(nq, nθ) in the deviatoric plane, which are orthogonal to the 154 

plastic potential curves as shown in Fig. 3 (a) and (b), respectively. Further, the obtained plastic 155 

strain increment direction in the (p, q, θ) coordinate system can be transformed into the σij space. 156 

The transformation is accomplished by p/σij, q/σij and θ/σij, which is a common practice in 157 

the classical elastoplastic theory as follows: 158 

   (8) 159 

   160 

(a)                                        (b) 161 

Fig. 3 Plastic strain increment direction in: (a) the meridian plane with θ=θA; (b) the deviatoric plane 162 

with p=pA. 163 

The fractional derivative can thus be a new tool and a proper approach to extending the classical 164 

plastic flow rule. Sumelka (2014) proposed a concept of fractional plastic flow rule and used it as a 165 

new tool to introduce material heterogeneity/multi-scale effects into the constitutive model. 166 
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where Λ is the plastic multiplier for the fractional plastic flow rule.  is fractional plastic 168 

strain increment direction which is represented by the fractional partial derivative of the yield 169 

function f with respective to σij. The flow rule becomes associated when μ=1. However, the explicit 170 

expression of the flow direction in the 3D stress space determined by Eq. (9) can only be derived 171 

by the yield function directly expressed by σij, such as the Huber-Mises-Hencky yield function 172 

(Sumelka, 2014; Sumelka and Nowak, 2016). For geomaterials, the yield function f is usually and 173 

more conveniently expressed in terms of the stress invariants p, q and θ or other stress components 174 

for true 3D stress conditions. That is, the constraint of Eq. (9) on the coordinate basis of the yield 175 

function limits the application of the fractional plastic flow rule in the form of Eq. (9). 176 

A novel fractional plastic flow rule that suitable for the true 3D stress conditions can be 177 

established based on the view of the coordinate transformation rather the chain rule with the same 178 

fractional order for the fractional derivative. The proposed fractional plastic flow rule is not limited 179 

by the coordinate basis of the yield function and can be obtained in two steps: 180 

(i) Determine the plastic strain increment direction   in the Skl space by the fractional 181 

partial derivative of the yield function with respect to Skl. Therefore, the components of the plastic 182 

strain increment can be determined in the Skl space as follows: 183 
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(ii) Transform the determined plastic strain components in the Skl space into the σij space by the 185 

covariant transformation coefficient . Eventually, a novel 3D fractional plastic flow 186 

rule in the σij space is obtained as follows: 187 
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It is crucial to transform the determined plastic strain increment direction into the σij space. 189 

Based on the proposed fractional plastic flow rule Eq. (11), the general form of the plastic strain 190 

increments under the true 3D stress conditions can be expressed by the stress tensor σij, which are 191 

actually essential for soil property analysis and model application. That is, the general form of the 192 

fractional plastic flow rule is essential and make it possible to establish a 3D fractional constitutive 193 

model for geomaterials in the framework of the plastic theory. 194 
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For the yield function constructed by the stress invariants Sk in the Skl space, the 3D fractional 195 

plastic flow rule can be written as: 196 

 pd k
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where  is the determined plastic strain increment direction in the Sk coordinate system, 198 

which can be transformed into the σij space by Sk/σij. When the commonly used stress invariants 199 

p, q and θ are chosen to construct the yield function, the 3D fractional plastic flow rule becomes: 200 
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The plastic strain increment direction is thus first expressed by (mp, mq, mθ)=(  ,202 

, ) in the (p, q, θ) coordinate system, and then transformed into the σij space by 203 

p/σij, q/σij and θ/σij. The plastic strain increment direction represented by (mp, mq, mθ) can be 204 

divided into two components mmμ=(mp, mq) and mdμ=(mq, mθ) in two orthogonal planes, i.e., the 205 

meridian plane and the deviatoric plane. mmμ and mdμ are represented by the red solid arrows, as 206 

shown in Fig. 4. When μ=1, the fractional gradient directions degenerate to the normal direction of 207 

the yield curve, which can be decomposed into nmf and ndf, indicated by the blue solid arrows. The 208 

deviation degree of the fractional gradient direction from the normal of the yield curve can be 209 

adjusted by μ.  210 

In particular, when the yield function is expressed only by q and θ and is independent of p for 211 

the hydrostatic pressure independent materials, the yield curve in the meridian plane is a straight 212 

line that is parallel to the p-axis, as shown in Fig. 4(c). Therefore, the fractional derivative of f with 213 

respect to p is 0 and is independent of μ. The plastic strain increment direction becomes (0, mq, mθ). 214 

mmμ is perpendicular to the yield line in the meridian plane. Nonetheless, mdμ still depends on μ, 215 

which is similar to the effects of μ on mdμ in Fig. 4(b). When the yield function is expressed only 216 

by p and q and is independent of θ, the yield curve in the deviatoric plane is a circle as shown in 217 

Fig. 4(d). Then the fractional derivative of f with respect to θ is 0 and is independent of μ. The plastic 218 

strain increment direction can be represented by (mp, mq, 0). mdμ is perpendicular to the yield circle 219 

in the deviatoric plane. However, mmμ still depends on μ, which is similar to the effects of μ on mmμ 220 

in Fig. 4(a).  221 
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 222 

(a)                 (b)                (c)                 (d) 223 

Fig. 4 Fractional plastic strain increment direction with the yield function constructed:  224 

(a) by p, q and θ in the meridian plane; (b) by p, q and θ in the deviatoric plane;  225 

(c) only by q and θ in the meridian plane; (d) only by p and q in the deviatoric plane. 226 

 227 

The proposed 3D fractional plastic flow rule offers a new approach to determine the plastic 228 

strain increment directions under true 3D stress conditions. Therefore, a new possibility is provided 229 

for establishing true 3D fractional elastoplastic constitutive model for soils.  230 

3 A 3D fractional elastoplastic model in the characteristic stress space 231 

In order to describe soil behaviour under true 3D stress conditions in a simple way, some 232 

specialized stress concepts were proposed, like the tij stress (Chowdhury and Nakai, 1998, Nakai et 233 

al., 2011), the transformed stress (Yao et al., 2004; Sun et al., 2004; Yao et al., 2009) and the 234 

characteristic stress (Lu et al., 2017; Ma et al., 2017) etc. The yield function  can be constructed 235 

using only two common stress invariants  and  in a chosen specialized stress space, which is 236 

able to directly describe soil behaviour under true 3D stress conditions. That is, the 3D constitutive 237 

model can be directly established under triaxial compression conditions in the specialized stress 238 

space. The new proposed fractional plastic flow rule becomes simpler and more powerful by 239 

combining with a specialized stress space, and Eq. (13) becomes: 240 
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The characteristic stress space is a proper choice to describe the soil behaviour especially for 242 

the true 3D stress conditions (Lu et al., 2017; Ma et al., 2017). The combination of the characteristic 243 

stress and the fractional derivative is elaborately attempted and discussed in this paper.  244 

3.1 Characteristic stress 245 

The concept of the characteristic stress, which was originally proposed by Lu et al. (2017) 246 

presents a new approach to describing the soil behaviour under true 3D stress conditions (Ma et al., 247 

2017). The principal values of σij that is denoted by ˆ
mn  (m, n=1, 2, 3) can be obtained by the 248 

coordinate transformation (Chowdhury and Nakai, 1998) in the σij space as follows: 249 

f̂

p̂ q̂
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where Qij is an orthogonal tensor which transforms the general stress tensor to its principal values. 251 

The principal stress tensor of the characteristic stress in this paper can be expressed by the following 252 

equation: 253 
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where pr is the reference stress for dimensionless transformation, and pr=1kPa is usually used. β is 255 

a material parameter and varies from 0 to 1 for different geomaterials. The characteristic principal 256 

stress is coaxial with the general principal stress. Finally, the characteristic stress tensor can be 257 

obtained by the following coordinate transformation in the cij space: 258 
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The comparison of stress variables in the σij space and the cij space is listed in Tab. 1, in which φc is 260 

the internal frictional angel under triaxial compression conditions.  261 
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characteristic stress is used to capture the plastic deformation properties of soils under true 3D stress 267 

conditions. 268 

3.2.1 Yield function  269 

For the sake of simplicity, the yield function established in the characteristic stress space takes 270 

the form of an ellipsoid. It has the same form and convexity with the yield function of the modified 271 

Cam-clay (MCC) model (Roscoe and Burland, 1968). The yield function in this paper can be 272 

expressed as: 273 

   (18) 274 

where N is the ratio of the vertical axis and the horizontal axis of the elliptic yield curve as shown 275 

in Fig. 5, which is the geometrical role of M in the yield function of the MCC model. The failure 276 

stress ratio F is the physical role of M in the MCC model for describing the critical state of soil. N 277 

and F equal to M when β=1. The equivalent consolidation pressure cnx is the intersection coordinate 278 

of the yield curve with the abscissa and can be expressed as Eq. (19). The role of cnx is to connect 279 

the yield curve with the hardening rule, which is described in section 3.2.3. 280 

   (19) 281 

 282 

Fig. 5 Yield surface in the meridian plane 283 

 284 

Only two stress invariants cn and cs are used to construct the yield function. Thus, the yield 285 

surface in the cij space shown in Fig. 6(a) is an axially symmetric ellipsoid with respect to the cn-286 

axis. However, the corresponding yield surface in the σij space is an irregular, smooth and convex 287 

three-axis symmetric surface when 0<β<1 as shown in Fig. 6(b).  288 

 289 

(a)                                       (b) 290 

Fig. 6 Yield surface: (a) in the cij space; (b) in the σij space. 291 

 292 

Fig. 7 shows the yield curves in the meridian plane and the deviatoric plane of the σij space. 293 

All the yield curves pass through the critical state point (p0, M·p0). For a certain value of β (0<β<1), 294 
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yield curve is asymmetric with respect to the p-axis in the meridian plane as shown in Fig. 7(a) and 295 

is a curved triangle in the deviatoric plane as shown in Fig. 7(b). The value of β reflects effects of 296 

Lode angle θ or the intermediate principal stress coefficient b on soil behaviour. The yield curves of 297 

β=0.1 and β=0.01 are almost coincident, thus β=0.1 can be taken as the approximate lower bound 298 

in this paper for saving the computational cost. As q increases to the critical state along the stress 299 

path of constant p0 under the monotonic loading, the yield curve of β=0.1 in the meridian plane 300 

gradually evolves and expands, as shown in Fig. 8(a). The yield curve in the deviatoric plane 301 

changes from an approximate circle to a curved triangle, as shown in Fig. 8(b), which reflects the 302 

stress-induced anisotropy of geomaterials. 303 

   304 

 (a)                                        (b) 305 

Fig. 7 Yield curves in the σij space with the decrease of β:  306 

(a) in the meridian plane; (b) in the deviatoric plane. 307 

   308 

(a)                                        (b) 309 

Fig. 8 Yield curve in the σij space with the increase of q at a constant p:  310 

(a) in the meridian plane; (b) in the deviatoric plane. 311 

 312 

3.2.2 Fractional plastic flow rule  313 

The fractional plastic flow rule and the characteristic stress are independent in definition but 314 

complementary in property description: one for adjusting the plastic strain increment direction, and 315 

the other for describing the soil behaviour under true 3D stress conditions in a simple and unified 316 

way. By introducing the new proposed fractional plastic flow rule into the characteristic stress space, 317 

a novel sight to describe the soil behaviour is proposed. The fractional plastic flow rule in the 318 

characteristic stress space is thus established by referring Eq. (14) as follows:  319 

  p sn

n s
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 (20) 320 

where the fractional partial derivative of the yield function (i.e., Eq. (18)) with respect to cn and cs 321 

are determined as follows: 322 
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   (21) 323 

Introducing cnx expressed by Eq. (19) and the recursive property of gamma function, i.e., 324 

Γ(x+1)=x·Γ(x) into Eq. (21) yields: 325 

   (22) 326 

The covariant transformation coefficient, i.e., the partial differential of cn and cs with respect to cij, 327 

can be derived as follows: 328 

   (23) 329 

By substituting Eqs. (22) and (23) into Eq. (20), the plastic strain increment can be expressed as: 330 
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 (24) 331 

The ratio of the plastic volumetric strain increment   to the plastic deviatoric strain 332 

increment  (i.e., the stress-dilatancy ratio ) can thus be obtained from Eq. (20) 333 

together with Eq. (22). The stress-dilatancy ratio d is the reflection of the plastic strain increment 334 

direction, which can be expressed as follows. 335 
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 (25) 336 

The condition of φc=30° and β=0.4 is taken as a special case for demonstration, and N=0.769 337 

and μ=0.537 can be determined by methods in the following section 3.3.3. When the soil is loaded 338 

from the isotropic compression point A0 to the point A1 along the conventional triaxial compression 339 

path A0Af, the yield curve and the plastic strain increment directions are shown in Fig. 9. As shown 340 

in Fig. 9(a), the yield curve in the meridian plane through the current stress point A1 is indicated by 341 
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the black ellipsoidal curve. The plastic strain increment directions on the yield curve for μ=0.537 342 

are indicated by the red solid arrow. The normal gradient directions when μ=1 are orthogonal to the 343 

yield curve, and is indicated by the blue dash arrow. Since the expression of the yield function is 344 

independent of θ, the yield curve in the deviatoric plane is a circle as shown in Fig. 9(b). Therefore, 345 

the plastic strain increment direction is perpendicular to the yield circle in the deviatoric plane and 346 

independent of μ. The overview of the yield surface and the plastic strain increment directions in 347 

the cij space are shown in Fig. 10. 348 

   349 

(a)                                         (b) 350 

Fig. 9 Plastic strain increment direction in the cij space at the current loading point:  351 

(a) in the meridian plane with θ=θA; (b) in the deviatoric plane with p=pA. 352 

  353 

Fig. 10 Plastic strain increment direction in the cij space. 354 

 355 

For the condition of μ=0.537, the variation rules of the plastic strain increments with increasing 356 

χ are shown in Fig. 11. When χ=0, the plastic strain increment direction is horizontal to the right and 357 

is independent of μ, which means that plastic deviatoric strain does not occur under the isotropic 358 

compression conditions, i.e., . With the increase of χ, the plastic strain increment directions 359 

gradually change from horizontal to vertical, and  . When χ reaches F, the stress state 360 

reaches the critical state, but not the peak of the yield curve. The plastic strain increment direction 361 

is vertically upward, which means that plastic volumetric strain does not occur, i.e., . It 362 

should be noticed that for a fixed value of χ, the plastic strain increment directions on different yield 363 

curves are the same, as shown in Fig. 11. 364 

 365 

Fig. 11 Plastic strain increment direction during the loading process. 366 

 367 

The stress-dilatancy relationship actually reflects the variation rules of the plastic strain 368 

increment direction. The stress-dilatancy relationship d-χ at different values of β is shown in Fig. 369 

12. φc=30° is used for demonstration. The model parameters N and μ correspond to β=0.1, 0.4, 0.7 370 
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and 1.0 are listed in Tab. 2. Once the material parameters φc and β are obtained, the one-to-one 371 

model parameters N and μ can be determined by methods in the following section 3.3.3. For β=1, N 372 

and F equal to M, μ degenerates to 1 and the d-χ relationship is the same with the stress-dilatancy 373 

relationship of MCC model. With the decrease of β, the determined values of N and μ decrease 374 

accordingly as listed in Tab. 2, and the d-χ relationship curves decline with the decreasing β. 375 

Different levels of stress-dilatancy under compression and extension conditions can be reflected as 376 

shown in Fig. 12(b), which benefits from the characteristic stress. The difference degree of the 377 

stress-dilatancy under triaxial compression and extension conditions enlarges with the decreasing β. 378 

Fig. 13 shows the stress-dilatancy curves in the characteristic stress space and the general stress 379 

space for β=0.1. Stress-dilatancy curves at b=0, 0.25, 0.5, 0.75 and 1 in the characteristic stress 380 

space are coincident, as shown in Fig. 13(a). These coincident curves in the cij space correspond to 381 

a series of stress-dilatancy curves in the σij space, as shown in Fig. 13(b). 382 

Tab. 2 Parameters in the characteristic stress spaces 383 

φc β N μ 

30° 

1.0 1.200 1.000 

0.7 1.016 0.807 

0.4 0.769 0.537 

0.1 0.381 0.158 

(a)                                           (b) 384 

Fig. 12 Stress-dilatancy relationship for different β-values: (a) in the cij space; (b) in the σij space. 385 

 (a)                                           (b) 386 

Fig. 13 Stress-dilatancy curves when β=0.1: (a) in the cij space; (b) in the σij space. 387 

 388 

3.2.3 Hardening parameter 389 

Hardening parameter can be used to describe the hardening/softening rule as well as the 390 

evolution of the yield surface. Some valuable studies on hardening parameter have been done to 391 

describe the strain hardening and softening properties (Yao et al., 2009; Wang et al., 2018), the 392 

stress-dilatancy and state-dependency (Li and Dafalias, 2000) and the particle breakage effect (Xiao 393 

and Liu, 2017) et al.. Similar with the MCC model, the plastic volumetric strain is chosen as the 394 

hardening parameter in this paper, which can be derived from the linear relationship between e and 395 
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lnp for normally consolidated clay under isotropic compression conditions (σ1=σ2=σ3). As shown in 396 

Fig. 14, the relationship between the void ratio e and lncn can be easily obtained from the linear 397 

relationship of e~lnp under the isotropic compression conditions. Corresponding to the compression 398 

index λ and the swelling index κ in the general stress space, the compression index and the swelling 399 

index in the characteristic stress space become λ/β and κ/β. 400 

 Fig. 14 e-lncn relationship in the cij space. 401 

 402 

The way to derive the relationship between the plastic volumetric strain p

v  and the equivalent 403 

consolidation pressure cnx in the cij space is listed in Tab. 3. The equivalent consolidation pressure 404 

can be written as follows: 405 

  (26) 406 

where ρp= (λ-κ)/β/(1+e0). e0 is the initial void ratio. cn0 is the initial mean characteristic stress.  407 

 408 

Tab. 3 Rule of the strain hardening for clay in the characteristic stress space 409 
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The stress-strain relationship of the normally consolidated clay can be obtained in the cij space. 411 
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In the elastoplastic theory framework, the total strain increment dεij is divided into the elastic strain 412 

increment  and the plastic strain increment  as follows: 413 

   (27) 414 

3.3.1 Elastic strain increment 415 

The elastic strain increment can be calculated by the Hook’s law.  416 

   (28) 417 

Based on Eq. (28) and Eq. (16), the elastic principal strain can also be expressed by the characteristic 418 

principal stresses as follows: 419 

   (29) 420 

where ν is the Poisson’s ratio. The Young’s elastic modulus E can be expressed as the function of 421 

the mean characteristic stress, as follows: 422 

   (30) 423 

3.3.2 Plastic strain increment 424 

The consistency condition, i.e., the total differential of the yield function Eq. (18), can be 425 

expressed as follows: 426 
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By substituting   derived from Eq. (24) together with Eq. (32) into Eq. (31), the plastic 431 

multiplier Λ can be derived as follows: 432 
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  (33) 433 

The plastic strain increment is derived by substituting the plastic multiplier Λ in Eq. (33) together 434 

with cnx in Eq. (19) into Eq. (24). 435 

   (34) 436 

The stress-strain relationship in Eq. (34) is totally expressed by the characteristic stresses. It 437 

can also degenerate into the MCC model when β=1. The parameters in Eq. (34) can be determined 438 

by the traditional triaxial tests. 439 

3.3.3 Parameters in the proposed model 440 

There are only five independent material parameters included in the proposed fractional 441 

elastoplastic model, including λ, κ, ν, φc and β, each of which has clear physical significance. Among 442 

them, λ, κ, ν and φc are the same as the material parameters included in the MCC model. Only one 443 

material parameter β is added, which can be determined by combining φc for b=0 with an additional 444 

internal friction angle φb for b≠0. According to the critical stress ratio F in the cij space, which is 445 

independent of the b-value, the equation F|b=0=F|b can be used to determine β. 446 

   (35) 447 

where Rc=(1+sinφc)/(1-sinφc) and Rb=(1+sinφb)/(1-sinφb). Especially, β can be determined with the 448 

internal friction angle φe for b=1 by the following equation (Lu et al., 2017). 449 

   (36) 450 

Thus, β actually reflects the proportional relation of φc and φe. 451 

In addition, two model parameters, i.e., N and μ, are include in the proposed model, which can 452 

be determined by material parameters without the need for additional tests. The determined methods 453 

of the model parameters are given as follows: 454 

Under the triaxial compression condition with p=constant, . Therefore, 
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calculated by the following equation: 458 
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 (37) 459 

Therefore, cnx can be derived by substituting Eq. (37) into Eq. (26): 460 

   (38) 461 

The critical principal stress σ1z=p0(1+2M/3) and σ3z=p0(1-M/3). The critical mean characteristic 462 

stress cnz= (σ1z
β+2σ3z

β)/3 is thus obtained. By substituting the critical stress state (cnz, csz)= (cnz, F·cnz) 463 

into Eq. (19), the equivalent consolidation pressure is: 464 

   (39) 465 

Combining Eq. (38) with (39), one can get N as follows: 466 

   (40) 467 

where F can be calculated by φc and β, and M is the function of φc, as listed in Tab. 1. Therefore, N 468 

is actually determined only by φc and β.  469 

When the critical state condition is reached, χ reaches F, and d in Eq. (25) equals 0. The 470 

fractional order μ can thus be determined by Eq. (25) as follows: 471 

   (41) 472 

The fractional order μ is also determined by two material parameters, φc and β.  473 

3.4 Critical state 474 

The ultimate condition that plastic shearing continues indefinitely without changes in volume 475 

and effective stresses has been known as the critical state (Muir Wood, 1990). It has been testified 476 

that the critical state is closely related to the true 3D stress conditions and should be reflected in 477 

constitutive models (Zhao and Guo, 2013; Xiao and Liu, 2017; Zhou et al., 2017), which can be 478 

reflected by the characteristic stress in the proposed fractional elastoplastic model. 479 

The soil parameters for Fujinomori clay, which are stated in section 4.1, are used to exhibit the 480 

critical state properties that reflected by the proposed model. The stress paths of b=0, b=0.5 and b=1 481 

when p=constant under the drained condition and the undrained condition (εv=0) are shown in the 482 
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b=1 in the cij space are different but reach to a unique critical state line, which correspond to different 484 

stress paths and different CSLs in the σij space. That is, the critical state is reached when χ equals to 485 

F. At the same time, η reaches the critical stress ratio Mb for a certain value of b in the σij space. The 486 

critical state behaviour of soils under true 3D stress conditions is thus reflected by the unique critical 487 

state line in the cij space. 488 

  489 

(a)                                       (b) 490 

Fig. 15 Stress paths and critical state lines: (a) in the cij space; (b) in the σij space. 491 

 492 

4 Experimental verification 493 

The existing fractional models for soil cannot describe the deformation properties of soils under 494 

the true 3D stress conditions. The capability of the proposed fractional elastoplastic model in 495 

capturing the deformation properties of soil is thus examined by predicting test results and 496 

comparing with the predictions of the MCC model. The true triaxial test results of the new 497 

Fujinomori (NF) clay under the drained conditions (Chowdhury and Nakai, 1998) and the Grundite 498 

clay under the undrained conditions (Lade and Musante, 1978) are used in this paper. 499 

4.1 Fujinomori clay 500 

Drained true triaxial tests were performed on the normally consolidated NF clay at a constant 501 

mean stress p=196kPa. The values of the intermediate principal stress coefficient b were set as 0, 502 

0.268, 0.5 and 0.732, corresponding to different stress Lode angles θ=0°, 15°, 30°, 45°, respectively. 503 

The values of material parameters for the NF clay used in the models are φc=33.7°, λ/(1+e0)=0.0508, 504 

κ/(1+e0)=0.0112 and ν=0.3. The characteristic material parameter β=0.1 is used for predictions. 505 

Accordingly, the model parameters N=0.4248 and μ=0.1654 are determined by Eqs. (40) and (41).  506 

The experimental data from Chowdhury and Nakai (1998) are arranged in terms of the relation 507 

among principal stress ratio σ1/σ3, volumetric strain εv and principal strains (ε1, ε2 and ε3), as 508 

indicated by the open circles in Fig. 16. These true triaxial test data at different b-values are predicted 509 

by the proposed 3D fractional elastoplastic model and the MCC model, which are indicated by the 510 

red solid line and the black dash line, respectively. Both the proposed model and the MCC model 511 

can well predict the stress-strain behaviour under triaxial compressions conditions, i.e., b=0, as 512 

shown in Fig. 16(a). However, for b=0.268, 0.5 and 0.732, the experimental stress-strain behaviour 513 
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is predicted by the proposed fractional model better than the MCC model, as shown in Fig. 16(b)~(d). 514 

That is, the proposed fractional elastoplastic model can well capture the strength property and the 515 

deformation behaviour of the normally consolidated NF clay under the drained triaxial conditions. 516 

  517 

(a)                 (b)                (c)                 (d) 518 

Fig. 16 Comparison between test results (data from Chowdhury and Nakai, 1998) and predicted results 519 

under true 3D stress conditions at p=196kPa with: (a) b=0; (b) b=0.268; (c) b=0.5; (d) b=0.732.  520 

 521 

The relationship between the strains under true 3D stress conditions is actually a reflection of 522 

the deformation flow direction of soil. Test results with different b-values are arranged in terms of 523 

the relation between ε2 and ε1 and the relation between ε3 and ε1, as shown by dots in Fig. 17. Test 524 

results shown in Fig. 17(a) indicate that ε2 is negative, i.e., extensive, when b=0 and b=0.268, and 525 

is positive, i.e., compressive, when b=0.5 and b=0.732. Fig. 17(b) shows that ε3 is extensive in all 526 

the cases, and the extent of extensive gradually decreases for higher b-values. The experimental 527 

relation between ε2 and ε1 and between ε3 and ε1 for a constant b-value, as well as the variation rule 528 

for different b-values, are all reasonably captured by the proposed fractional model better than the 529 

MCC model.  530 

  531 

(a)                                       (b) 532 

Fig. 17 Comparisons between test results (data from Chowdhury and Nakai, 1998) and predicted 533 

results between principal stains: (a)ε2-ε1; (a) ε3-ε1. 534 

 535 

4.2 Grundite clay 536 

Undrained true triaxial experimental study was performed by Lade and Musante (1978) to 537 

study the influence of b on the stress-strain behaviour, pore pressure and strength properties of 538 

normally consolidated Grundite clay. Cubical specimens of the remolded Grundite clay were tested 539 

at a consolidation pressure of σc=147kPa and all three principal stresses are independently controlled. 540 

b was maintained constant in each test, and b=0.00, 0.21, 0.40, 0.70 and 0.95, separately. Soil 541 

parameters for predictions are from Yao et al. (2004) and listed as: φc=28.2°, λ/(1+e0)=0.0846, 542 

κ/(1+e0)=0.0169 and ν=0.27. φe=31.18° from the test with b=0.95 is used to determine β=0.303. 543 
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Correspondingly, the model parameters N=0.6289 and μ=0.4222 are determined from Eqs. (40) and 544 

(41). 545 

Fig. 18 shows the comparison between test data and predicted lines presented in terms of 546 

relations among the principal stress ratio σ1/σ3, the pore pressure ratio u/σc and the principal strain 547 

ε1, separately. When b=0, the predicted lines of the proposed fractional elastoplastic model are 548 

almost the same with the predicted lines of the MCC model, and they both capture the experimental 549 

stress-strain behaviour well, as shown in Fig. 18(a). The shear strengths of the Grundite clay with 550 

b=0.21, 0.40, 0.70 and 0.95 are well captured by the proposed model, but obviously overpredicted 551 

by the MCC model, as shown in Fig. 18(b)-(d). In addition, the proposed fractional elastoplastic 552 

model better predicts the relationship between u/σc and ε1 for b≠0 than the MCC model.  553 

 554 

(a)           (b)          (c)           (d)          (e) 555 

Fig. 18 Comparisons between test results (data from Lade and Musante, 1978) and predicted results 556 

with σc=147 kPa and: (a) b=0; (b) b=0.21; (b) b=0.40; (d) b=0.70; (e) b=0.95. 557 

 558 

The test data between principal strains under undrained conditions are compared with the 559 

predicted lines of the proposed fractional elastoplastic model and the MCC model. Test results are 560 

represented by dots. The predictions of the proposed model and the MCC model are represented by 561 

the red solid lines and the black dash lines, respectively. The test results and the predictions of ε2 562 

and ε3 are plotted versus ε1 for different b-values, as shown in Fig. 19. As shown in Fig. 19(a), ε2 563 

changes from extension to compression as b increases. ε3 is under extension for all b-values, and the 564 

extent of extension gradually decreases with a larger b-value, as shown in Fig. 19(b). By comparison, 565 

the ability of the proposed model to capture the relationship between the principal strains under true 566 

3D stress conditions is demonstrated to be better than the MCC model. 567 

  568 

(a)                                       (b) 569 

Fig. 19 Comparisons between test results (data from Lade and Musante, 1978) and predicted results 570 

between principal stains: (a) ε2-ε1; (b) ε3-ε1. 571 

 572 

5 Conclusions 573 
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In the present study, a novel 3D fractional plastic flow rule without limiting the coordinate 574 

basis of the differentiable function was proposed, which is in coordination with the framework of 575 

the elastoplastic theory. The plastic strain increment direction for soil under the true 3D stress 576 

conditions can be determined in two steps: firstly, determine the direction in an interim coordinate 577 

system, and then transform it into general stress space. The 3D fractional plastic flow rule offers a 578 

possibility to develop a fractional elastoplastic model for geomaterials, like soils, concretes and 579 

rocks, even for the hydrostatic pressure independent materials, like metallic materials. 580 

In the characteristic stress space, by combining the proposed fractional plastic flow rule with 581 

the ellipsoidal yield function, and further taking the plastic volumetric strain as the hardening 582 

parameter, a 3D fractional elastoplastic constitutive model for soil was proposed for the first time. 583 

The proposed model has only one more material parameter, i.e. β, than the MCC model. It can well 584 

reflect the variation rule of the plastic strain increment direction under complex loading conditions 585 

and the properties of the critical state for soil. The comparison between the model predictions and 586 

the test results indicates that the proposed model can properly capture the strength and deformation 587 

behaviour of soils under true 3D stress conditions.  588 
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List of notations 599 

E Young’s elastic modulus 

F critical characteristic stress ratio 

M failure stress ratio 
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N ratio of the vertical axis and the horizontal axis of the yield curve  

Qij orthogonal tensor for transformation 

Rb principal stress ratio under constant b  

Rc principal stress ratio under triaxial compression conditions 

Skl, Sk interim stress tensor and its eigenvalue 

I1, I2, I3 first, second and third stress invariants 

b intermediate principal stress coefficient 

cij characteristic stress tensor 

ci characteristic principal stress 

cn, cs mean characteristic stress and characteristic deviatoric stress 

cn0 initial mean characteristic stress 

d stress-dilatancy ratio 

e, e0 void ratio and its initial value 

j

il   covariant transformation coefficient 

p, q, θ mean stress, deviatoric stress and stress Lode angle 

p0 initial mean stress 

pr reference stress for dimensionless transformation 

   
,

S

ij klm m


 components of the fractional gradient vector of f in the σij space and in the Skl space 

   
,

S

ij kln n


 components of the gradient vector of g in the σij space and in the Skl space 

mmμ, mdμ components of the fractional gradient vector of f 

nmg, ndg components of the gradient vector of g 

Γ(·) Euler Gamma function 

Λ plastic multiplier for fractional plastic flow rule 

dλ plastic multiplier for classical plastic flow rule 
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β characteristic stress index 

δij Kronker delta tensor 

e p, ,ij ij ij     strain tensor, elastic strain tensor and plastic strain tensor 

e p

v v v, ,    volumetric strain, elastic volumetric strain and plastic volumetric strain 

p

s  deviatoric plastic strain related to q 

p

  deviatoric plastic strain related to θ 

η stress ratio 

κ swelling index 

λ compression index 

μ fractional order 

ν Poisson’s ratio 

σi principal stress 

σij stress tensor 

φ internal friction angle 

χ characteristic stress ratio 

 600 

 601 

 602 

 603 

 604 

 605 

Figures 606 

 607 
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 608 

(a) 609 

 610 

(b) 611 

Fig. 1 Two ways to determine the plastic flow direction: 612 

(a) orthogonal way; (b) non-orthogonal way.   613 

A

n

i

j

O

f

g

A

n

i

j

O

f



27 

 614 

Fig. 2 Coordinate transformation of the plastic flow direction.   615 
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 616 

(a) 617 

 618 

(b) 619 

Fig. 3 Plastic flow direction in: (a) the meridian plane with θ=θA; (b) the deviatoric plane with p=pA.   620 

A

p

q

O

g

,g

g g

p q

  
  

  
mn

pn

qn

Ap p

A 

A

*

1

*

2 *

3

O

qn

2

3
Aq

Ap p

θn

gdn

g


,g

g g

q 

  
  

  
dn



29 

621 

 622 

(a)                                        (b) 623 
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 625 

(c)                                        (d) 626 

Fig. 4 Fractional plastic flow direction with the yield function constructed:  627 

(a) by p, q and θ in the meridian plane; (b) by p, q and θ in the deviatoric plane;  628 

(c) only by q and θ in the meridian plane; (d) only by p and q in the deviatoric plane.   629 
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 630 

Fig. 5 Yield surface in the meridian plane   631 
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 632 

(a) 633 

 634 

(b) 635 

Fig. 6 Yield surface: (a) in the cij space; (b) in the σij space.   636 
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(b) 640 

Fig. 7 Yield curves in the σij space with the decrease of β: 641 

(a) in the meridian plane; (b) in the deviatoric plane.   642 
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(b) 646 

Fig. 8 Yield curve in the σij space with the increase of q at a constant p: 647 

(a) in the meridian plane; (b) in the deviatoric plane.   648 
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(b) 652 

Fig. 9 Plastic flow direction in the cij space at the current loading point: 653 

(a) in the meridian plane with θ=θA; (b) in the deviatoric plane with p=pA.   654 
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 655 

Fig. 10 Plastic flow direction in the cij space.   656 
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 657 

Fig. 11 Plastic flow direction during the loading process.   658 
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 659 

(a) 660 

 661 

(b) 662 

Fig. 12 Stress-dilatancy relationship for different β-values: (a) in the cij space; (b) in the σij space.   663 
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  664 

(a) 665 

 666 

(b) 667 

Fig. 13 Stress-dilatancy curves when β=0.1: (a) in the cij space; (b) in the σij space.   668 
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 669 

 670 

Fig. 14 e-lncn relationship in the cij space.   671 
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 672 

(a) 673 

 674 

(b) 675 

Fig. 15 Stress paths and critical state lines: (a) in the cij space; (b) in the σij space.   676 
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 677 

(a)                                       (b) 678 

 679 

(c)                                       (d) 680 

Fig. 16 Comparison between test results (data from Chowdhury & Nakai, 1998) and predicted results 681 

under true 3D stress conditions at p=196kPa with: (a) b=0; (b) b=0.268; (c) b=0.5; (d) b=0.732.   682 
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 683 

(a) 684 

 685 

(b) 686 

Fig. 17 Comparisons between test results (data from Chowdhury & Nakai, 1998) and predicted results 687 

between principal stains: (a)ε2-ε1; (a) ε3-ε1.   688 
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  689 

(a)                                       (b) 690 

  691 

(c)                                       (d) 692 

 693 

(e) 694 

Fig. 18 Comparisons between test results (data from Lade & Musante, 1978) and predicted results with 695 

σc=147 kPa and: (a) b=0; (b) b=0.21; (b) b=0.40; (d) b=0.70; (e) b=0.95.   696 
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  697 

(a) 698 

 699 

(b) 700 

Fig. 19 Comparisons between test results (data from Lade & Musante, 1978) and predicted results 701 

between principal stains: (a) ε2-ε1; (b) ε3-ε1.  702 

 703 

REFERENCES 704 

Borja, R. I., Sama, K. M., and Sanz, P. F., 2003. On the numerical integration of three-invariant 705 

elastoplastic constitutive models. Comput. Methods Appl. Mech. Eng. 192 (9-10), 1227-1258. 706 

Chowdhury, E. Q., and Nakai, T., 1998. Consequences of the tij-concept and a new modeling approach. 707 

Comput. Geotech. 23 (3), 131-164. 708 

Colinas-Armijo, N., Paola, M. D., and Pinnola, F. P., 2016. Fractional characteristic times and dissipated 709 

energy in fractional linear viscoelasticity. Commun. Nonlinear Sci. 37, 14-30. 710 

Collins, I. F., 2003. A systematic procedure for constructing critical state models in three dimensions. 711 

b=0.7

3 6 9 12
-6

-4

-2

0

2

4

6

b=0.21

b=0

b=0.4

b=0.95


c
=147 kPa

  MCC model

  Proposed model

ε
1
 /%

ε 2
 /

%

b=0.40b=0.70

2 4 6 8 10 12
-12

-10

-8

-6

-4

-2

0


c
=147 kPa

  MCC model

  Proposed model

b=0.21

b=0

b=0.95

ε
1
 /%

ε 3
 /

%



46 

Int. J. Solids Struct. 40 (17), 4379-4397. 712 

Collins, I. F., and Houlsby, G. T., 1997. Application of thermomechanical principles to the modelling of 713 

geotechnical materials. Proceedings of the Royal Society a: Mathematical, Physical and Engineering 714 

Sciences. 453 (1964), 1975-2001. 715 

Duriez, J., and Vincens, É., 2015. Constitutive modelling of cohesionless soils and interfaces with 716 

various internal states: an elasto-plastic approach. Comput. Geotech. 63, 33-45. 717 

Gao, Z. W., and Zhao, J. D., 2017. A non-coaxial critical-state model for sand accounting for fabric 718 

anisotropy and fabric evolution. Int. J. Solids Struct. 106-107, 200-212. 719 

Khalili, N., and Liu, M. D., 2008. On generalization of constitutive models from two dimensions to three 720 

dimensions. Int. J. Numer. Anal. Met. 32 (17), 2045-2065. 721 

Lade, P. V., and Musante, H. M., 1978. Three-dimensional behavior of remolded clay. Journal of the 722 

Geotechnical Engineering Division, ASCE. 104 (2), 193-209. 723 

Lade, P. V., Nelson, R. B., and Ito, Y. M., 1987. Nonassociated flow and stability of granular materials. 724 

J. Eng. Mech, ASCE. 113 (9), 1302-1318. 725 

Li, X. S., and Dafalias, Y. F., 2000. Dilatancy for cohesionless soils. Géotechnique. 50 (4), 449-460. 726 

Lu, D. C., Liang, J. Y., Du, X. L., Wang, G. S., and Shire, T., 2018. A novel transversely isotropic 727 

strength criterion for soils based on a mobilised plane approach. Géotechnique, 728 

https://doi.org/10.1680/jgeot.17.P.191. 729 

Lu, D. C., Ma, C., Du, X. L., Jin, L., and Gong, Q. M., 2017. Development of a new nonlinear unified 730 

strength theory for geomaterials based on the characteristic stress concept. International Journal of 731 

Geomechanics, ASCE. 17 (2), 4016058. 732 

Lu, D. C., Du, X. L., Wang, G. S., Zhou, A. N., and Li, A. K., 2016. A three-dimensional elastoplastic 733 

constitutive model for concrete. Computers and Structures. 163, 41-55. 734 

Ma, C., Lu, D. C., Du, X. L., and Zhou, A. N., 2017. Developing a 3D elastoplastic constitutive model 735 

for soils: a new approach based on characteristic stress. Comput. Geotech. 86, 129-140. 736 

Mashayekhi, S., Miles, P., Hussaini, M. Y., and Oates, W. S., 2018. Fractional viscoelasticity in fractal 737 

and non-fractal media: theory, experimental validation, and uncertainty analysis. J. Mech. Phys. Solids. 738 

111, 134-156. 739 

Meng, R., Yin, D., Zhou, C., and Wu, H., 2016. Fractional description of time-dependent mechanical 740 

property evolution in materials with strain softening behavior. Appl. Math. Model. 40 (1), 398-406. 741 

Mortara, G., 2015. A constitutive framework for the elastoplastic modelling of geomaterials. Int. J. Solids 742 

Struct. 63 (6), 139-152. 743 

Muir Wood, D. M., 1990. Soil behaviour and critical state soil mechanics. Cambridge University Press. 744 

Nakai, T., Shahin, H. M., Kikumoto, M., Kyokawa, H., Zhang, F., and Farias, M. M., 2011. A simple 745 

and unified three-dimensional model to describe various characteristics of soils. Soils Found. 51 (6), 746 



47 

1149-1168. 747 

Panteghini, A., and Lagioia, R., 2018. An extended modified Cam-clay yield surface for arbitrary 748 

meridional and deviatoric shapes retaining full convexity and double homothety. Géotechnique. 68 749 

(7), 590-601. 750 

Podlubny, I., 1998. Fractional differential equations: an introduction to fractional derivatives fractional 751 

differential equations to methods of their solution and some of their applications. Academic Press. 752 

Roscoe, K. H., and Burland, J. B. On the generalised stress-strain behaviour of 'wet' clay. In: Heyman, 753 

J., and Leckie, F. A., eidtors. Engineering Plasticity. Cambridge at the University Press; 1968, pp. 754 

535-609. 755 

Sumelka, W., 2014. Fractional viscoplasticity. Mech. Res. Commun. 56, 31-36. 756 

Sumelka, W., and Nowak, M., 2016. Non-normality and induced plastic anisotropy under fractional 757 

plastic flow rule: a numerical study. Int. J. Numer. Anal. Met. 40 (5), 651-675. 758 

Sun, D. A., Matsuoka, H., Yao, Y. P., and Ishii, H., 2004. An anisotropic hardening elastoplastic model 759 

for clays and sands and its application to FE analysis. Comput. Geotech. 31 (1), 37-46. 760 

Sun, Y. F., Indraratna, B., Carter, J. P., Marchant, T., and Nimbalkar, S., 2017. Application of fractional 761 

calculus in modelling ballast deformation under cyclic loading. Comput. Geotech. 82, 16-30. 762 

Sun, Y. F., and Xiao, Y., 2017. Fractional order plasticity model for granular soils subjected to monotonic 763 

triaxial compression. Int. J. Solids Struct. 118-119, 224-234. 764 

Sun, Y. F., Gao, Y. F., and Shen, Y., 2018a. Mathematical aspect of the state-dependent stress-dilatancy 765 

of granular soil under triaxial loading. Géotechnique., https://doi.org/10.1680/jgeot.17.T.029. 766 

Sun, Y. F., Gao, Y. F., and Zhu, Q. Z., 2018b. Fractional order plasticity modelling of state-dependent 767 

behaviour of granular soils without using plastic potential. Int. J. Plasticity. 102 (3), 53-69. 768 

Wang, G. S., Lu, D. C., Du, X. L., Zhou, X., and Cao, S. T., 2018. A true 3d frictional hardening 769 

elastoplastic constitutive model of concrete based on a unified hardening/softening function. J. Mech. 770 

Phys. Solids. 119, 250-273. 771 

Xiao, Y., and Liu, H. L., 2017. Elastoplastic constitutive model for rockfill materials considering particle 772 

breakage. Int. J. Geomech. 17 (1), 4016041. 773 

Xiao, Y., Liu, H. L., Chen, Y. M., and Jiang, J. S., 2004. Bounding surface plasticity model incorporating 774 

the state pressure index for rockfill materials. J. Eng. Mech, ASCE. 141 (11), 4014087. 775 

Yao, Y. P., Hou, W., and Zhou, A. N., 2009. UH model: three-dimensional unified hardening model for 776 

overconsolidated clays. Géotechnique. 59 (5), 451-469. 777 

Yao, Y. P., Lu, D. C., Zhou, A. N., and Zou, B., 2004. Generalized non-linear strength theory and 778 

transformed stress space. Science in China Ser. E. 47 (6), 691-709. 779 

Yu, H. S., 1998. CASM: a unified state parameter model for clay and sand. Int. J. Numer. Anal. Met. 22 780 

(8), 621-653. 781 



48 

Zhao, J. D., and Guo, N., 2013. Unique critical state characteristics in granular media considering fabric 782 

anisotropy. Géotechnique. 63 (8), 695-704. 783 

Zhou, A. N., and Sheng, D. C., 2015. An advanced hydro-mechanical constitutive model for unsaturated 784 

soils with different initial densities. Comput. Geotech. 63, 46-66. 785 

Zhou, W., Liu, J. Y., Ma, G., and Chang, X. L., 2017. Three-dimensional DEM investigation of critical 786 

state and dilatancy behaviors of granular materials. Acta Geotech. 12 (3), 527-540. 787 


