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ONE SENTENCE SUMMARY: A Tribbles 2 pseudokinase small molecule screen led to the 

identification of EGFR/HER2 inhibitors that alter the stability of TRIB2 in vitro and induce rapid ‘on-

target’ degradation of TRIB2 in human cancer cells. 

ABSTRACT:  

A major challenge associated with biochemical and cellular analysis of pseudokinases is a lack of 

target-validated small molecule ligands with which to probe function. Human Tribbles 2 (TRIB2) is a 

cancer-associated pseudokinase with a diverse interactome, including the canonical AKT signaling 

module. There is substantial evidence that human TRIB2 is a therapeutic target in both solid tumors 

and blood cancers. The unusual TRIB2 pseudokinase domain contains a unique cysteine-rich C-helix 

and interacts with a conserved peptide motif in its own C-terminal tail, which also supports interaction 

with cellular E3 ubiquitin ligases. In this study, we demonstrate that TRIB2 is a target for previously 

described small molecule protein kinase inhibitors, which were originally designed to inhibit the 

canonical catalytic domain of the epidermal growth factor receptor/human epidermal growth factor 

receptor 2 (EGFR/HER2) tyrosine kinases. Using a thermal-shift assay (TSA), we discovered TRIB2 
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ligands within the Published Kinase Inhibitor Set (PKIS), and employed a drug repurposing approach 

to classify compounds that either stabilize or destabilize TRIB2 in vitro. Remarkably, TRIB2 

destabilizing agents, including the covalent drug afatinib, lead to rapid TRIB2 degradation in human 

cells, eliciting tractable effects on signaling and survival. Our data reveal the first drug-leads for 

development of TRIB2-degrading ligands, which will also be invaluable for unravelling the cellular 

mechanisms of TRIB2-based signaling. Our study highlights that small molecule-induced protein 

downregulation through drug ‘off-targets’ might be relevant for other inhibitors that serendipitously 

target pseudokinases. 

KEYWORDS: allosteric, inhibitor, Tribbles 2, ligand, pseudokinase, pseudoenzyme, kinase  
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INTRODUCTION:  

The human protein kinome encodes ~60 protein pseudokinases, which lack at-least one conventional 

catalytic residue, but often control rate-limiting signaling outputs within cellular networks [1]. Like 

canonical kinases, pseudokinases drive conformation-dependent signaling associated with both 

physiology and disease [2, 3]. The human ‘pseudokinome’ includes cancer-associated signaling 

proteins such as HER3, JAK2 (JH2 domain) and TRIB2, which have historically received much less 

attention compared to their conventional, catalytically-active, counterparts even though pseudokinase 

domains represent rational targets for drug discovery [4]. Discovering or repurposing biologically 

and/or clinically-active ligands that target atypical-conformations of canonical kinases or 

pseudokinases, is an area of active research [2, 3, 5-9]. Moreover, the burgeoning pseudokinase field 

is strongly placed to benefit from the decades of research undertaken on canonical protein kinases, 

which has seen the approval of over 40 kinase inhibitors for human cancer and inflammatory diseases 

[10, 11].  This includes understanding how ATP-competitive, allosteric or covalent inhibitors might 

influence pseudokinase-based signaling mechanisms that are relevant to health and disease [3, 12]. 

The three human Tribbles (TRIB) pseudokinases, and the related pseudokinase STK40/Sgk495, are 

homologues of the Drosophila melanogaster pseudokinase termed Tribbles, which controls ovarian 

border cell and neuronal stem cell physiology [13, 14]. Tribbles, TRIB1, 2 and 3 and STK40 proteins, 

all contain a catalytically-impaired pseudokinase domain. Adaptions in the pseudokinase fold, 

including a highly unusual C-helix, are thought to support a competitive regulatory interaction in cis 

with a unique C-terminal tail DQLVP motif [15-17]. Through a still obscure mechanism, TRIB and 

STK40 function as adaptor proteins that recruit ubiquitin E3 ligases, such as COP1, through 

interaction with the conserved C-tail peptide [15, 17], which is also required for signaling and cellular 

transformation [18]. Mechanistically, Tribbles signaling outputs are controlled through the 

ubiquitylation and subsequent proteasomal destruction of Tribbles ‘pseudosubstrates’, such as 

vertebrate C/EBP, CDC25C and Acetyl CoA carboxylase [19-21]. 

A longstanding goal in cancer research is drug-induced degradation of oncogenic proteins. Progress 

towards this objective has been transformed by the synthesis of proteolysis-targeting chimeras 

(PROTACs), which induce proteasome-dependent degradation of their targets. Multifunctional small 

molecule PROTACS often possess ligand-binding regions derived from kinase inhibitors [22, 23], and 

multiple classes of non-PROTAC kinase inhibitor also induce kinase target degradation, although 

typically at higher (micromolar) concentrations than those required for enzymatic inhibition [7]. 

Recent reports also disclose classes of covalent ligands that bind and disable cysteine (Cys)-

containing small G-proteins such as mutant human RAS, permitting covalent inactivation of this 

previously ‘undruggable’ oncoprotein [24, 25]. Cys residues are widespread and highly conserved in 

kinases [26] and the conservation of Cys residues both inside and outside the catalytic domain 

provides kinome-wide opportunities for exploitation using chemical biology [27]. In this context, 
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covalent targeting methodologies involving compound-accessible Cys residues in kinases [8, 28-31] 

and pseudokinases [3], have attracted significant attention for small molecule design, due to the 

potential for gains in target specificity and durability of responses, combined with tractability in 

experimental systems.  

Tribbles pseudokinases are implicated in a huge variety of physiological signaling pathways, often in 

the context of protein stability, but also through regulation of key modules, such as the canonical 

AKT pathway [32]. TRIB2 is also implicated in the aetiology of human cancers, including leukemias, 

melanoma, lung and liver cancer [33]. In particular, TRIB2 is a potential drug target in subsets of 

acute myeloid and lymphoid leukemia (AML and ALL), which are in urgent need of targeted 

therapeutics to help treat untargeted or drug-resistant patient populations [34]. TRIB2 protein levels 

have also been linked to drug-resistance mechanisms, where an ability to modulate the pro-survival 

AKT signaling module underlies a central regulatory role in cell proliferation, differentiation, 

metabolism and apoptosis [32, 35-39].  

In this paper, we report that the low-affinity TRIB2 ATP-binding site [40] is druggable with small 

molecules previously described as ATP-competitive pan-EGFR/HER2 kinase inhibitors. Biochemical 

analysis confirms the existence of distinct ligand-induced TRIB2 conformations and a compound 

screen identifies known EGFR/HER2 inhibitors that stabilize or destabilize TRIB2 in vitro. TRIB2 

ligands include the clinical breast cancer therapeutic lapatinib/Tykerb [41] and the approved 

irreversible electrophilic covalent inhibitors afatinib/Giotrif [42, 43] and neratinib/Nerlynx [44, 45]. 

In the case of these two destabilizing agents, binding leads to uncoupling of the pseudokinase domain 

from its own C-terminal tail. Consistently, afatinib exposure leads to rapid TRIB2 degradation in 

cells, driven by an interaction with the Cys-rich pseudokinase domain, which interferes with AKT 

signaling and decreases cell survival in a TRIB2-expressing leukemia model. The availability of 

target-validated ligands that act as rapid TRIB2 pseudokinase down-regulators via a direct effect on 

the pseudokinase, represents a new way to evaluate TRIB2 physiology and cell signaling. It might 

also have a broader impact on the rapidly developing pseudoenzyme field [46], where the concept of 

pseudokinase destabilization or elimination by targeted kinase ‘inhibitors’ [7] has a number of 

potentially useful applications.  
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RESULTS: 

Analysis of human TRIB2 using a thermal stability assay 

Human TRIB2 differs from TRIB1, TRIB3 and STK40 in the pseudokinase domain due to a Cys-rich 

region at the end of the 3 Lys-containing motif leading into the truncated C-helix in the N-lobe 

(Fig. 1A, top).  We developed a differential scanning fluorimetry (DSF) assay [47-49] to examine 

thermal stability of full-length (1-343) His-tagged TRIB2 proteins, and compared it either to full-

length cAMP-dependent protein kinase (PKAc) catalytic subunit, which is a model for canonical 

kinases, or full-length C104Y TRIB2, in which Cys104 was replaced with the Tyr residue conserved in 

human TRIB1 and TRIB3 (Fig. 1A). Proteins were purified to homogeneity (Fig. 1A, bottom) and 

thermal stability based on unfolding profiles were determined for each protein (reported as a Tm value, 

Fig. 1B). As previously demonstrated [40], TRIB2 (Tm = ~39 °C) was much less thermostable than 

the canonical protein kinase (PKA, Tm = 46.3 °C). Remarkably, the C104Y single substitution 

induced stabilization of TRIB2, with the Tm value increasing to ~49 °C, comparable to that of human 

TRIB1 [15], suggesting an important structural role for this unique Cys residue in TRIB2 (un)folding 

dynamics. To confirm that recombinant TRIB2 binds to a known physiological target, we 

demonstrated that GST-tagged TRIB2 interacted preferentially with catalytically inactive (non Thr308-

phosphorylated) AKT1 in vitro (Fig. 1C). Consistent with a functional regulatory interaction between 

TRIB2 and AKT in cells [50], transient overexpression of TET-inducible FLAG-tagged TRIB2 in 

HeLa cells led to a large increase in endogenous AKT phosphorylation at the hydrophobic motif 

(Ser473, Fig. 1D), an established marker for AKT catalytic activity and generation of a downstream 

cellular anti-apoptotic signal [51].  

A DSF screen for TRIB2 ligands using a kinase inhibitor library 

The ability of full-length recombinant human TRIB2 to bind to adenosine triphosphate (ATP) in the 

presence of EDTA [40, 48] confirms that a vestigial nucleotide-binding site is present within the 

pseudokinase domain. Moreover, our previous work established that an analogue-sensitive (F190G) 

TRIB2 variant could be stabilized by bulky pyrimidine analogues in vitro [40].  To discover drug-like 

ligands for WT (full-length) TRIB2, we screened the Published Kinase Inhibitor Set (PKIS), a 

collection of high-quality class-annotated kinase inhibitors [52]. We enforced cut off values of ~Tm 

= < -2 °C and > +3.5 °C (therefore eliminating ~97% of the library) to define ‘hit’ compounds that 

possessed the ability to destabilize or stabilize TRIB2 in a thermal stability assay (TSA) at a 1:4 

TRIB2:compound molar ratio (Fig. 1E and table S1). The top ‘stabilizing’ compound identified was 

GW693881A, a dual EGFR/HER2 thienopyrimdine inhibitor with a Tm of +4.7 °C. The top 

‘destabilizing’ compound was GW804482X, a thiophene polo-like kinase (PLK) inhibitor that 

induced a Tm of - 3.4 °C (Fig. 1E, red symbols). Most of the top stabilizing and destabilizing 
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compounds belonged to well-known ATP-competitive pyrimidine or quinazoline EGFR/HER2 

chemotypes (fig. S1) [53-55], suggesting broad structural cross-reactivity between TRIB2 and a 

ligand-binding EGFR/HER2 conformation. To build upon these findings, we screened a larger panel 

of known dual EGFR/HER2 inhibitors (fig. S2), and established that the clinical type I EGFR/HER2 

inhibitors TAK-285 and lapatinib also stabilized TRIB2 in vitro (Fig. 1F). The ATP-competitive 

covalent EGFR/HER2 inhibitors afatinib, neratinib and osimertinib (but not the unrelated covalent 

Bruton’s Tyrosine Kinase (BTK) inhibitor ibrutinib or the Type I EGFR-specific inhibitors erlotinib 

or gefitinib) destabilized TRIB2, similar to the PLK inhibitor GW804482X (Fig. 1F) and the dual 

EGFR/HER2 inhibitor GW569530A (fig. S1). As expected [15], purified TRIB1 (fig. S3A) was more 

thermostable than TRIB2 in the absence of kinase inhibitors (fig. S3B). However, it was not 

destabilised by afatinib, neratinib or osimertinib, although like TRIB2, destabilisation was evident in 

the presence of GW804482X (fig. S3C), in agreement with independent findings [56]. Compound 

effects were caused through pseudokinase targeting in the TSA, because no shift was elicited when 

the canonical kinase PKAc was compared in a side-by-side counter-screen, with dasatinib as a 

positive control (fig. S3D). The preclinical PLK inhibitors BI2536 and BI6727 (volasertib) had no 

discernible effects on TRIB2 stability in this assay, in contrast to the chemically distinct thiophene 

PLK inhibitor GW804482X (Fig. 1F).  

Afatinib, neratinib and osimertinib are covalent (type IV) inhibitors of EGFR/HER2 tyrosine kinases, 

interacting irreversibly with a conserved Cys residue in the canonical ATP-binding site [57]. The 

stabilization of TRIB2 by lapatinib, and the destabilization of TRIB2 by all three covalent 

EGFR/HER2 inhibitors, occurred in a dose-dependent manner (Fig. 1G and fig. S4). A C104Y TRIB2 

mutant was no longer destabilized by either afatinib or neratinib, but remained ‘sensitive’ to lapatinib 

TAK-285 and GW804482X based on thermal-protection (Fig. 1H and fig. S5A). Importantly, none of 

these latter compounds contain the electrophilic ‘warhead’ required for covalent interactions (fig.S2). 

Elution profiles from Superdex 200 were identical for WT and C104Y TRIB2 (fig. S5B), confirming 

that both proteins were monomeric species in solution, with estimated Mr of 45.3 kDa. C104Y TRIB2 

was also insensitive to thermal shift in the presence of ATP and EDTA (Fig. 1H and fig. S5C). These 

data suggest that the amino acid identity at TRIB2 position 104 is likely important both for ATP 

binding and interaction with covalent kinase inhibitors that induce TRIB2 destabilization in vitro.   

Mechanistic analysis of TRIB2 structural stability and TRIB2 ligand binding 

Structural analysis of TRIB1 by X-ray crystallography and small angle X-ray scattering led to the 

proposal of an in cis self-assembly model, whereby the unique C-terminal tail region, which contains 

the conserved ‘DQLVP’ motif, binds directly to the pseudokinase domain adjacent to the short C-

helix of TRIB1 [15, 16, 56]. To investigate whether this mechanism is also relevant in TRIB2, we 

generated a series of truncated proteins. These lacked either the N-terminal extension, which was 
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predicted to be disordered by both I-TASSER [58] and VSL2 [59], the C-terminal tail, or both N and 

C-terminal regions. We also generated a triple point mutant in which the ‘DQLVP’ tail motif, which 

is required for TRIB1 and TRIB2 cellular transformation in vivo [18], was mutated to a non-

functional ‘AQLAA’ sequence (Fig. 2A). Full-length (1-343) TRIB2, and TRIB2 lacking the N-

terminal domain (TRIB2 54-343), both exhibited similar Tm values of 39-40 °C (Fig. 2B). In contrast, 

deletion of the C-tail (TRIB2 1-318) changed TRIB2 stability, with Tm values falling to ~37°C, 

diagnostic of a destabilized TRIB2 conformation (Fig. 2B). Mutation of DQLVP to AQLAA further 

destabilized TRIB2, leading to a Tm value of ~36 °C (Fig. 2B). Using this panel of recombinant 

TRIB2 proteins, we measured the relative effects of kinase inhibitors on TRIB2 stability. Consistent 

with a lack of effect on compound interactions, deletion of the TRIB2 N-terminal region had no effect 

on Tm values induced by any compound. However, removal of the C-tail region (54-318 and 1-318 

mutants) abolished afatinib and neratinib-induced TRIB2 destabilization, but had a negligible effect 

on GW804482X binding (Fig. 2C). Consistently, destabilization by afatinib was also completely 

abolished in the AQLAA triple mutant, whereas neratinib effects were reduced by >50%. Notably, 

neither the destabilizing effect of GW804482X, nor the stabilizing effects of lapatinib or TAK-285 

differed between any of the TRIB2 proteins evaluated. These results suggest a very similar 

destabilizing mechanism induced by covalent EGFR/HER2 ligands via displacement of the TRIB2 C-

tail, which is a unique feature of Tribbles pseudokinases [13, 15].  

To evaluate whether the EGFR/HER2 ligand afatinib targeted unique Cys residues in the TRIB2 

pseudokinase domain (Fig. 1A), we performed mass spectrometry (MS) analysis to evaluate protein 

modification. As detailed in fig. S6A, incubation of TRIB2 with a 5-fold molar excess of afatinib led 

to covalent interaction with Cys 96 in TRIB2. A doubly charged chymotryptic product ion 

representing the TRIB2-derived DISC96Y:afatinib peptide adduct at m/z 543.2 (fig. S6A) and the 

isotopic ratios of the 35Cl or 37Cl-containing peptide ions unequivocally confirmed Cys96 as a site of 

TRIB2 binding (fig. S6B). Having confirmed an intact mass for recombinant full-length TRIB2 of 

43,587.09 Da, very similar to the predicted mass of 43,587.22 Da (fig. S6C), we were also able to 

ascertain that pre-incubation with afatinib generated covalent adducts containing predominantly either 

1 or 2 molecules of afatinib. There was also some evidence for tri and tetra-modified TRIB2 adducts 

(fig. S6D). We next examined afatinib interaction with TRIB2 by Microscale Thermophoresis (MST), 

a biophysical technique for quantification of reversible biomolecular interactions [60]. This revealed 

an interaction between fluorescent NTA-coupled His-TRIB2 and two compounds, which could be 

fitted to reversible binding with Kd values of ~16 M for afatinib and ~20 M for TAK-285 (figs. 

S7A, B). A sub-micromolar interaction between MCL-1 and A1210477 served as a positive control 

[61]. In agreement with MS data (fig. S6), we therefore propose initial (reversible) binding of the 

ATP-competitive afatinib ligand [62, 63], prior to subsequent formation of a covalent adduct(s) with 

the TRIB2 pseudokinase domain. We also evaluated the potential interaction of afatinib and neratinib 
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using TRIB2 modelled on the C/EBP-bound ‘SLE-in’ conformation from TRIB1 [13, 56] and 

compared it to the known afatinib target EGFR (in a ‘DFG-in’ conformation) using AutoDock Vina 

[64]. Docking of covalent inhibitors revealed a putative binding pocket formed by residues from the 

vestigial TRIB2 C-helix, including Cys96, and the 3 strand (fig S8A). Afatnib and neratinib dock in a 

structurally similar pose in which the enamine beta carbon orients towards the sulfhydryl group of 

Cys96. This docking pose, however, is distinct from afatinib bound crystal structure of EGFR, where  

Cys797 is located in the D-helix. We performed molecular dynamics simulations (fig. S8B) on the 

docked complexes to assess the feasibility of the binding poses. Both afatinib and neratinib remained 

stably bound to TRIB2 for nearly 17 ns, suggesting that the binding poses are favorable and feasible. 

[65]. The enamine beta carbon remained within 3-5 Å of the Cys96 sulfur atom for the majority of the 

simulation. Given the rapid nature of the thiol-ene reaction coupled with the proximity of reactants, 

we believe that this time frame offers sufficient time for the formation of a covalent bond [66], which 

we confirmed by MS analysis. 

To validate the biochemical importance of Cys residues for afatinib binding, we next examined 

interaction with TRIB2 in which two Cys amino acids were mutated to non-thiol containing Ser 

residues. Individual or combined mutation of Cys96 and Cys104 to a Ser residue had no effect on the 

thermal stability (Tm) of the purified TRIB2 proteins (Fig. 2D), in contrast to the highly stabilizing 

effect of a Tyr at position 104 (Fig. 1B and fig. S5C). However, individual or joint mutation of 

Cys96and Cys104 to Ser severely blunted the destabilizing effect of afatinib and neratinib on TRIB2, in 

contrast to the non-covalent TRIB2 ligand GW804482X or the EGFR/HER2 stabilizing compounds 

lapatinib and TAK-285 (Fig. 2E). Taken together, these findings confirm that covalent EGFR/HER2 

compounds elicit effects on TRIB2 through Cys96 and/or Cys104. 

Evaluation of TRIB2 interactors in human cells 

To evaluate TRIB2 targeting by compounds in living cells, we generated a polyclonal TRIB2 

antibody and an isogenic stable HeLa cell line expressing TET-inducible FLAG-tagged human 

TRIB2. Polyclonal TRIB2 antibodies were equally efficient at recognising recombinant His-FLAG-

TRIB2 and cellular FLAG-TRIB2 as a commercial monoclonal FLAG antibody (fig. S9A). We also 

constructed a stable HeLa cell line expressing low levels of inducible FLAG-TRIB2 (fig. S9B). We 

estimated that ~1 ng of TRIB2 was expressed in 40 g of whole cell lysate in the presence of TET, by 

comparing known amounts of recombinant His-FLAG-TRIB2 protein (fig. S9B).  

To quantify effects of TRIB2 expression on canonical signaling in model cells, we evaluated AKT 

phosphorylation. AKT became phosphorylated in stable HeLa cells after serum stimulation in the 

absence of TET (Fig. 3A). TRIB2 expression led to the appearance of a TRIB2 doublet 

(phosphorylation confirmed in the upper band by lambda phosphatase treatment, fig. S10), and a 
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marked increase in the extent and duration of AKT phosphorylation at Ser473. Using this HeLa cell 

model, we next evaluated the effects of small molecule inhibitors on TRIB2 signaling, by comparing a 

panel of in vitro TRIB2 destabilizing ligands discovered by DSF (afatinib, neratinib and osimertinib) 

with a series of control compounds. Brief (4h) exposure of TRIB2-expressing cells to afatinib led to a 

specific decrease in TRIB2 protein expression. All of the compounds evaluated are EGFR or 

EGFR/HER2 signaling pathway inhibitors, and consistently they all blocked ERK phosphorylation at 

these concentrations (Fig. 3B); any unique effects of drugs amongst this panel are therefore likely to 

be ‘off-target’ to EGFR/HER2. We next incubated cells for increasing lengths of time with afatinib. A 

rapid, time-dependent, elimination of TRIB2 protein was evident when cells were exposed to this 

drug, in contrast to DMSO controls in which TRIB2 protein remained relatively stable during the 

experiment (Fig. 3C), as expected [19]. To evaluate intracellular interaction between TRIB2 and 

kinase inhibitors, we exposed HeLa cells expressing TET-inducible FLAG-TRIB2 to each compound, 

and quantified TRIB2 thermal stability in the cell extracts using a cellular TSA (fig. S11) [67]. 

Consistently, FLAG-TRIB2 was destabilized more rapidly than DMSO and erlotinib-treated controls 

in the presence of afatinib, becoming undetectable in extracts heated to 45 °C (fig. S11). This was 

distinct from lapatinib, which partially stabilized TRIB2 in cell extracts, consistent with our in vitro 

analysis (Fig. 1F).  

Afatinib interacts with TRIB2 through a biochemical Cys-based mechanism, so we generated isogenic 

TET-inducible C96S or C96/104S TRIB2 mutant stable cell lines (fig. S12) and evaluated the effects 

of afatinib on exogenous TRIB2 stability. Afatinib (but not lapatinib or TAK-285) induced dose-

dependent loss of TRIB2 in WT-TRIB2 cells, which was partially prevented for C96S, and 

completely abolished in C96/104S TRIB2-expressing cells (quantified in Fig. 4A, right panels), 

demonstrating unequivocally that afatinib binds to TRIB2 in cells. Furthermore, afatinib (but not 

TAK-285 or erlotinib) treated WT-TRB2 cells exhibited a marked decrease in AKT Ser473 

phosphorylation, and this effect was abrogated in C96/104S TRIB2-expressing cells (Fig. 4B). 

Importantly, afatinib, TAK-285 and erlotinib all blocked ERK phosphorylation in WT and C96/104S-

TRIB2 isogenic cell lines, consistent with ‘on-target’ inhibition of their shared EGFR target (Fig. 4B).  

To investigate the mechanism of TRIB2 destabilization by afatinib, we added the drug to WT-TRIB2 

expressing HeLa cells in the presence of the proteasome inhibitor MG132, which partially rescued 

TRIB2 degradation after both rapid and prolonged exposure to afatinib (Fig. 4C). This finding is 

consistent with previously reported proteasome-dependent TRIB2 turnover [68]. We further evaluated 

this mechanism using a range of MG132 concentrations and the clinical proteasome inhibitor 

bortezomib (Fig. 4D) [21]; under both conditions, afatinib-mediated destabilization of TRIB2 was 

decreased. This effect was in contrast to afatinib-induced TRIB2 destabilization, which was still 

observed in the presence of non-specific inhibitors of autophagy (AICAR) and lysosomal degradation 

(chloroquine) (Fig. 4D). Our observations are in line with published findings, which suggest that 
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TRIB2 fate is dependent upon turnover by the ubiquitin proteasome system (UPS) in human cancer 

cells [19, 69]. However, the (non-covalent) TRIB1 and TRIB2-destabilizing ligand GW804482X did 

not induce TRIB2 degradation in cells after a 4-hour incubation period, in contrast to proteasome-

dependent degradation induced by the same concentration of afatinib (fig. S13). 

High levels of TRIB2 expression drive AML in vivo by inhibiting myeloid differentiation and 

promoting proliferation [18, 35]. However, endogenous TRIB2 expression has only previously been 

analysed in a few cell types, in large part due to a lack of reliable TRIB2 reagents. Using our TRIB2 

antibody, we evaluated endogenous expression of TRIB2 in the clinically-relevant U937 AML cell 

model (Fig. 5A), and established that acute (4 h) exposure to afatinib, but not lapatinib or erlotinib, 

decreased TRIB2 protein levels in a dose-dependent manner (Fig. 5A). Consistent with their ability to 

inhibit EGFR signaling, all three compounds completely blocked ERK phosphorylation. We next 

established dose-dependent effects on both TRIB2 expression and AKT Ser473 phosphorylation in 

afatinib-treated U937 cells (Fig. 5B). Importantly, these effects were tightly correlated with apoptotic 

induction of caspase 3 cleavage, but only at afatinib concentrations that also induced TRIB2 

degradation and concomitant loss of AKT Ser473 phosphorylation (Fig. 5B). To determine the impact 

of afatinib treatment on U937 cell viability we quantified cellular cytotoxicity after 72 h exposure 

(Fig. 5C). Afatinib (and neratinib) reduced cell viability with sub-micromolar IC50 values, whereas 

EGFR inhibitors erlotinib and gefitinib and the dual EGFR/HER2 inhibitor TAK-285, were 10-20 

fold less effective when compared side-by-side (Fig. 5C). As these compounds do not induce cellular 

TRIB2 destabilization, AKT activation or caspase 3 activation, our data suggest that the TRIB2-

destabilizing ligands afatinib and neratinib possess an enhanced ability to kill AML-derived cells [50].  
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DISCUSSION: 

A ligand-targetable regulatory mechanism for human TRIB2 

It is now accepted that signaling outputs can be controlled by non-enzymatic components, 

exemplified by mechanistically-related families of pseudoenzymes such as pseudokinases [46]. In the 

present study, we sought to target the cancer-associated pseudokinaseTRIB2 with a small molecule; 

initially the intention was to establish the validity of this approach for this class of pseudokinase, but 

subsequently we were also able to evaluate the effects of TRIB2 compound engagement in intact 

human cells. To discover TRIB2 ligands, we exploited an unbiased TRIB2 and TRIB1 thermal shift 

assay [40, 48], and identified multiple chemical classes of dual EGFR/HER2 (but not monovalent 

EGFR) inhibitors. One group of (ATP-competitive) kinase inhibitor induced stereotypical (positive) 

thermal shifts in TRIB2, consistent with binding in the atypical TRIB2 nucleotide-binding site [48]. A 

second group of chemical ligands induced TRIB2 (but not TRIB1) destabilization, and although 

initially unexpected, this could be explained mechanistically by a compound-induced, Cys-directed, 

covalent effect in which the TRIB2 pseudokinase domain became uncoupled from its own C-tail. A 

similar mechanism has been proposed to explain thermally-distinct conformers that exist in TRIB1, 

which shares ~70% identity with TRIB2 in the pseudokinase domain and a very similar C-tail motif 

[16]. Deletion of the TRIB1 C-tail also leads to the destabilization of the TRIB1 pseudokinase domain 

[15], similar to destabilizing effects observed for TRIB2 1-318 and 54-318 deletion mutants and an 

AQLAA mutant. These data allow us to propose that pseudokinase-domain docking to the C-terminal 

tail generates a thermally-stable conformation in both TRIB1 and TRIB2, and in the case of TRIB2, 

that this dynamic interaction can be targeted with covalent ATP-competitive covalent kinase 

inhibitors, which induce a structural pseudokinase conformation associated with decreased stability in 

vitro.  

How do covalent EGFR/HER2 inhibitors target TRIB2? 

We focused our studies on electrophilic type IV kinase inhibitors, since they were likely to bind to 

TRIB2 via a covalent mechanism, which is amenable to comparative chemical and mutational 

analysis [31, 70]. Using a combination of techniques, we confirmed that at-least two highly conserved 

TRIB2 Cys residues are targets of the ATP-dependent tyrosine kinase inhibitor afatinib [71] in vitro. 

Both TRIB2 Cys-residues are uniquely located within the distorted C-helix (Fig. 1A). In most 

canonical kinases, including EGFR family members, positioning of this helix is critical for catalysis 

and switching between inactive and active enzyme conformations, both of which can be targeted with 

small molecules [72]. Dynamic helix positioning is known to be generally important for interactions 

with kinase inhibitors, some of which recognise ‘inactive’ conformations in kinases in which the C 

helix adapts to permit compound binding, as established for HER2 [73]. The conformation of the 
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flexible C-helix relative to the ATP binding P-loop also creates an allosteric binding pocket in 

canonical kinases such as ERK1/2 that can be targeted with selective non ATP-competitive inhibitors 

such as SCH772984, which possesses slow off-rate kinetics [74]. In TRIB2, a unique disposition of 

Cys residues (Fig. 1A) makes it vulnerable to destabilization by the EGFR/HER2 covalent inhibitors 

afatinib, neratininb and osimertinib in vitro, which all undergo Michael addition to a conserved Cys 

residue in the ATP-binding site of EGFR-related tyrosine kinases (Cys797 in EGFR, Cys805 in HER2 

and Cys803 in HER4) [61]. Afatinib also demonstrates low, but detectable, affinity for the ATP-

binding pseudokinase domain of HER3 [75, 76], which possesses a non-modifiable Ser residue 

(Ser794) at the equivalent position as Cys797 of EGFR, and assumes a pseudo ‘active’ catalytic 

conformation, despite possessing exceptionally low, or zero, kinase activity [76, 77]. At nanomolar 

cellular concentrations, afatinib appears relatively specific for EGFR and HER2 in cells, although at 

low micromolar concentrations other canonical kinases also appear to be targeted [9]. Moreover, 

osimertinib possesses cross-reactivity with both kinase [9] and non-kinase targets [78], including the 

lysosomal cathepsin proteases. In the absence of a high-resolution TRIB2 pseudokinase crystal 

structure, we do not yet know the conformation(s) relevant for small molecule interaction, although 

the TRIB2 N-lobe has both shared (SLE motif) and distinct (Cys96 and Cys104) features compared to 

TRIB1, TRIB3 and STK40 [15], and TRIB1 can adopt at least two conformations, one of which 

(‘SLE-in’) appears vulnerable to small molecule compounds [56]. This is reflected by subtle 

biochemical differences in the ability of TRIB2 to bind to ATP, which likely predisposes it to C-helix 

targeting by EGFR/HER2 kinase inhibitors (fig. S8). None of the EGFR family members possess a 

Cys residue in the C-helical region conserved in TRIB2, and the overall identity between HER2 and 

TRIB2 in the (pseudo)kinase domain is very low indeed (~22%). We therefore believe that our 

discovery of TRIB2 binding to covalent inhibitors such as afatinib owes as much to the availability of 

reactive Cys residues adjacent to a unique allosteric pocket in the TRIB2 pseudokinase domain as to 

their relatively low affinity for the vestigial ATP-binding site. Our work builds on previous studies in 

which pseudokinase domains have been targeted with small molecule kinase ‘inhibitors’ [3]. 

Examples include the ligand TX1-85-1 [8], which binds covalently to Cys721 in the roof of the ATP 

site (inducing HER3 degradation in cells) and recently described non-covalent JAK2 JH2 

(pseudokinase) domain ligands, whose binding mode has been confirmed through structural analysis 

[79, 80]. 

In the course of compound screening, we discovered that unrelated classes of ATP-competitive dual 

EGFR/HER2 ligands, including thienopyrimidines [55] and thiazolylquinazolines [53] also bound to 

TRIB2 in vitro. In contrast to destabilization (a feature of covalent TRIB2 ligands) these compounds 

stabilize TRIB2 in vitro, similar to lapatinib and the pyrrolo[3,2-d]pyrimidine EGFR/HER compound 

TAK-285, which can bind to HER2 in an active-like conformation [81]. This might be equivalent to 

the thermostable TRIB2 generated by compound binding or after C104Y substitution. Moreover, 
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evidence for a stabilized TRIB2:lapatinib complex was also established in cell extracts using cellular 

thermal stability assay (CETSA, fig. S11). Of relevance, the non-covalent ligands lapatinib and TAK-

285 did not induce TRIB2 degradation in cells. However, previous studies demonstrated that lapatinib 

can deprive HER2 of an interaction with the Hsp90-Cdc37 system, leading to time-dependent HER2 

degradation at micromolar concentrations [82]. Like HER2, the cellular mechanism by which TRIB2 

stability is regulated is proteasome-based (Fig. 4), and we speculate that an afatinib-induced 

conformational change might induce TRIB2 ubiquitination, or negatively regulate interaction with an 

unknown stabilizing factor(s), similar to the effects of Hsp90 inhibitors towards the stability of Cdc37 

kinome clients [83-85]. Consistently, TRIB2 abundance is itself stimulated by ubiquitination [19, 68, 

69], and future work will attempt to correlate TRIB2 small molecule interactions with dynamic 

changes in ubiqutination.  

The future: Targeting TRIB2 in cancer and beyond 

The finding that TRIB2 stabilizing and destabilizing cell permeable ligands can be discovered by 

simple DSF profiling is an important advance for the evaluation of compounds that target this, and 

other, catalytically-deficient pseudokinases. The interaction of TRIB2 with both covalent and non-

covalent clinical ligands confirms our original hypothesis, which stated that the TRIB2 pseudokinase 

represents a bona fide drug target [5]. We found that conserved Cys residues in TRIB2 make it 

vulnerable to known families of small molecule kinase inhibitors that were originally developed as 

nanomolar covalent inhibitors of the tyrosine kinases EGFR and HER2. Such dual-targeting suggests 

shared features between signaling-relevant (‘active’) conformations in the ATP-site of both TRIB2 

and EGFR/HER2, which generates reciprocal compound interactions. Conserved Cys residues in the 

atypical TRIB2 C-helical region most likely represent an additional form of selectivity filter, which 

permits targeting of TRIB2 by covalent classes of EGFR/HER2 inhibitor at micromolar 

concentrations in cells. Based on this mechanism, a lack of equivalent Cys residues in other 

pseudokinases, including the related TRIB1 and TRIB3, likely prevents them from interaction with 

covalent inhibitors such as afatinib in this manner.  

Using a chemical genetic approach, we provide strong evidence that afatinib induces on-target effects 

through TRIB2 stability and AKT signaling in human cancer cells. Importantly, cellular signaling 

modulated by afatinib was prevented by mutation of two unique TRIB2 Cys residues, confirming a 

meaningful TRIB2 drug interaction in cells.  Drug interaction was also validated by DSF, MS, MST 

and by employing in-cell TSA (CETSA) approaches with exogenous TRIB2. Finally, we established 

that afatinib (and neratinib) exhibit sub-micromolar toxicity in the human AML model cell line U937, 

where they are 10-20 fold more effective at cell killing compared to equipotent EGFR/HER2 or 

EGFR inhibitors [72], which do not degrade TRIB2 but still block ERK activation. U937 cells have 

previously been shown to be hypersensitive to TRIB2 siRNA knock-down [68], strengthening the 
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case that the TRIB2 pseudokinase is rate-limiting for cell survival in this context. Experimental ‘on-

target’ effects of covalent TRIB2-destablising agents were confirmed using chemical genetics and a 

Cys-mutant TRIB2 pseudokinase allele, similar to classical ‘drug-resistance’ approaches developed 

for compound target validation in the kinase inhibitor field [86-89].   

CONCLUSION: 

Our work demonstrates that covalent EGFR/HER2 inhibitors such as afatinib possess TRIB2 

degrading-activity in human cells at micromolar concentrations, in a similar range to those reported 

for other destabilizing kinase inhibitors, including the covalent EGFR/HER2 drug neratinib [90]. 

Although we cannot rule out simultaneous dual effects of afatinib on both TRIB2 destabilisation and 

ERK/AKT pathway inhibition contributing to cellular phenotypes, we provide clear evidence that 

TRIB2-binding is required for TRIB2 destabilization and AKT regulation in cells. Should an 

appropriate concentration of drug permit a direct TRIB2 interaction, an ‘off-target’ TRIB2-dependent 

phenotype might be relevant to compound efficacy (or side-effects) in patient groups exposed to high 

concentrations of covalent EGFR/HER2 inhibitors. Many severe side effects of drugs are only 

detected after long-term clinical use, potentially leading to their withdrawal [91], and covalent drugs 

have the potential to accumulate to relatively high concentrations in cells. For example, toxic side-

effects such as diarrhea and vomiting induced by the EGFR/HER2 inhibitors lapatinib [92] and 

afatinib [93] are well-established in clinical patient cohorts. Based on our mechanistic studies, it will 

be interesting to develop ELISA-based procedures to quantify effects of these drugs on TRIB2 protein 

stability in clinical samples obtained from drug-exposed patients, as part of broader proteomics 

approaches to establish all the intracellular targets of these compounds. Our study also provides 

impetus for generating improved (ideally TRIB2-specific) covalent ligands that induce TRIB2 

degradation at much lower (nanomolar) concentrations, ideally by synthesising compounds in which 

the effects of eliminating or preserving EGFR/HER2 inhibition can be compared side-by-side. In the 

latter case, simultaneous elimination of TRIB2 and inhibition of the ERK-signaling pathway could be 

a polypharmacological asset, especially if TRIB2-dependent drug-resistance in tumor cells [39, 50] 

can be modulated by EGFR/HER2 inhibition. Taken together, our data establish a new paradigm for 

the pharmacological evaluation of agents that interfere with TRIB2-based signaling, and raises the 

intriguing possibility that dual EGFR/HER2 inhibitors might be employed as TRIB2-degrading agents 

in research, and possibly clinical, contexts. This information might also be exploited in the future for 

targeting a variety of TRIB2-overexpressing solid [94, 95] and haematological [21, 68] tumors. 
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MATERIALS AND METHODS: 

Chemicals, reagents, antibodies and TRIB2 small molecule screen 

Tetracycline (TET) and doxycycline, MG132, AICAR and chloroquine were purchased from Sigma. 

Afatinib, neratinib, osimertinib, ibrutinib, erlotinib, lapatinib, TAK-285, BI2536, BI6727, gefitinib 

and bortezomib were purchased from LC laboratories or Selleck. Total AKT, pSer 473 AKT, pThr 

308 AKT, total ERK1/2, dual pThr 202/pTyr 204 ERK1/2, cleaved Caspase 3 and -tubulin 

antibodies were purchased from New England Biolabs and employed as previously described [51, 96]. 

6His-HRP and α-FLAG antibodies were purchased from Sigma, GAPDH antibody was purchased 

from Proteintech and a polyclonal rabbit α-TRIB2 antibody was raised towards a unique N-terminal 

human TRIB2 sequence and affinity purified prior to evaluation with recombinant TRIB2 and a 

variety of human cellular extracts.  

The PKIS chemical library (designated as SB, GSK or GW compounds) comprises 367 ATP-

competitive kinase inhibitors, covering ~30 chemotypes (~70% with molecular mass <500 Da and 

clogP values <5) that were originally designated as ATP-competitive inhibitors of 24 distinct protein 

kinase targets, including multiple EGFR and HER2 tyrosine kinase classes [52]. Compounds were 

stored frozen as 10 mM stocks in DMSO. For initial screening, compounds were pre-incubated with 

TRIB2 for 10 minutes and then employed for DSF, which was initiated by the addition of fluorescent 

SYPRO Orange. For dose-dependent thermal-shift assays a compound range was prepared by serial 

dilution in DMSO, and added directly into the assay to the appropriate final concentration, as 

previously described [97] [Add Byrne BJ papers]. All control experiments contained 2% (v/v) DMSO, 

which had essentially no effect on TRIB2 stability.   

Cloning, Site Directed Mutagenesis and recombinant protein production  

pET30 6His-TRIB2 (and various deletion or amino acid substitution constructs, including an N-

terminal FLAG-tagged TRIB2, termed His-FLAG-TRIB2), and pET30a 6His-PKAc, which encodes 

catalytically-active cAMP-dependent protein kinase domain, have been described previously [40, 49]. 

Full length TRIB2 was also cloned into pOPINJ to generate a His-GST-TRIB2 encoding construct for 

Glutathione-S-transferase (GST) pull-down assays. MCL-1 and A-1210477 were prepared as 

described [61]. TRIB1 (84-372) was a kind gift from Dr. Peter Mace, and was purified as described 

previously for TRIB2 [40]. Briefly, protein expression was induced in BL21(DE3) pLysS bacteria 

with 0.4 mM IPTG, and after overnight culture at 18°C, proteins were purified to near homogeneity 

using an initial affinity step (immobilised metal affinity chromatography (IMAC) or glutathione-

sepharose chromatography) followed by size exclusion chromatography (16/600 Superdex 200) in 

appropriate buffers. S473D 6His-AKT1 (DU1850, amino acids 118-470), either active (PDK1-

phosphorylated to a specific activity of 489 U/mg) or inactive, were purchased from the DSTT 
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(University of Dundee), and stored at -80°C prior to analysis. Site directed mutagenesis was 

performed as previously described [98], using KOD Hot Start DNA polymerase (Millipore) and 

appropriate mutagenic primer pairs (sourced from IDT). All plasmids were Sanger-sequenced across 

the entire coding regions to confirm expected codon usage. 

Differential Scanning Fluorimetry (DSF) 

Thermal-shift assays were performed using an Applied Biosystems StepOnePlus Real-Time PCR 

instrument using a standard DSF procedure previously developed and validated for the analysis of 

kinases [47, 49] and pseudokinases [48]. All proteins were diluted in 20 mM Tris/HCl (pH 7.4), 100 

mM NaCl and 1 mM DTT to a concentration of 5 μM and then incubated with the indicated 

concentration of compound in a total reaction volume of 25 μL, with final concentration of 2% (v/v) 

DMSO. SYPRO Orange (Invitrogen) was used as a fluoresecence probe. The temperature was raised 

in regular 0.3 °C intervals from 25°C to 95°C. Compound binding experiments were assessed in 

duplicate and then reported relative to DMSO controls. 

Mass Spectrometry analysis of TRIB2 afatinib binding 

To evaluate TRIB2 binding in vitro, afatinib was incubated for 15 min with purified 6His-TRIB2 at a 

1:10 molar ratio, then denatured with 0.05 % (w/v) RapiGest SF (Waters, UK) and digested with 

chymotrypsin (1:20 protease:protein (w/w) ratio) for 16 h at 25 °C. RapiGest hydrolysis was induced 

by the addition of triflouroacetic acid (TFA) to 1 % (v/v), incubated at 37 °C for 1h. Insoluble product 

was removed by centrifugation (13, 000 x g, 20 min).  Reversed-phase HPLC separation was 

performed using an UltiMate 3000 nano system (Dionex) coupled in-line with a Thermo Orbitrap 

Fusion Tribrid mass spectrometer (Thermo Scientific, Bremen, Germany). 500 fmol digested peptides 

were loaded onto the trapping column (PepMap100, C18, 300 μm × 5 mm), using partial loop 

injection, for 7 min at a flow rate of 9 μL/min with 2% (v/v) MeCN, 0.1% (v/v) TFA and then 

resolved on an analytical column (Easy-Spray C18 75 μm × 500 mm, 2 μm bead diameter column) 

using a gradient of 96.2% A (0.1% (v/v) formic acid (FA)): 3.8% B (80% (v/v) MeCN, 0.1% (v/v) 

FA) to 50% B over 35 min at a flow rate of 300 nL/min. MS1 spectra were acquired over m/z 400 – 

1500 in the orbitrap (60 K resolution at 200 m/z). Data-dependent MS2 analysis was performed using 

a top speed approach (cycle time of 3 s), using higher-energy collisional dissociation (HCD) and 

electron-transfer and higher-energy collision dissociation (EThcD) for fragmentation, with product 

ions being detected in the ion trap (rapid mode). Data were processed using Thermo Proteome 

Discoverer (v. 1.4) and spectra were searched in MASCOT against the E. coli IPI database with the 

added sequence of full-length 6His-TRIB2 (1-343). Parameters were set as follows: MS1 tolerance of 

10 ppm, MS/MS mass tolerance of 0.6 Da, oxidation of methionine and afatanib binding at cysteine as 

variable modifications. MS2 spectra were interrogated manually.  
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To evaluate the interaction between afatinib and intact TRIB2 protein, TRIB2 was incubated with 

afatinib as above, and then desalted using a C4 desalting trap (Waters MassPREP™ Micro desalting 

column, 2.1 × 5 mm, 20 μ m particle size, 1000 Å pore size). TRIB2 was eluted with 50 % (v/v) 

MeCN, 0.1 % (v/v) formic acid. Intact TRIB2 mass analysis was performed using a Waters nano 

ACQUITY Ultra Performance liquid chromatography (UPLC) system coupled to a Waters SYNAPT 

G2. Samples were eluted from a C4 trap column at a flow rate of 10 µL/min using three repeated 0-

100 % acetonitrile gradients. Data was collected between 400 and 3500 m/z and processed using 

MaxEnt1 (maximum entropy software, Waters Corporation).  

 

TRIB2 modeling and compound docking 

The structure model of human TRIB2 pseudokinase domain [13]  (UniProt ID: Q92519) (residues 58-

308) was built with MODELLER [99] using a crystal structure of TRIB1 pseudokinase in the open 

‘SLE-in’ conformation [56] as a template. The homology model was subjected to energy 

minimization using the Rosetta Relax protocol [100]. The chemical structures of afatinib (CID 

10184653) and neratinib (CID 9915743) were retrieved from PubChem. Afatanib and neratinib were 

docked to our TRIB2 model using AutoDock Vina [62] with an exhaustiveness of 100, rigid body, 

and a search space centered on Cys96. Top poses where identified where the enamide group localizes 

near the Cys96 sulfhydryl moiety. For comparison, we employed a crystal structure of EGFR in 

complex with afatinib (PDB: 4g5j). Structural gaps were closed using RosettaRemodel [101] using 

with settings. The covalently-bound afatinib was removed from the structure and allowed to re-dock 

with AutoDock Vina using the same parameters from TRIB2, with the exception of search space 

being centered on EGFR Cys797. Top poses were identified where the enamide group localized near 

the Cys797 sulfhydryl moeity. For molecular dynamics simulations, TRIB2 and EGFR binding modes 

were parameterized with GROMACS 5.1.3. Afatinib and neratinib were parameterized using 

ACPYPE [102].  Protein was fixed with amber99sb-ildn force field and solvated with TIP3P water 

model in a dodecahedron box at least 1 nm larger than the protein in all directions. Sodium and 

chloride ions were added to neutralize the system. Neighbor lists for non-bonded interactions were 

maintained by the Verlet cutoff scheme and long-range electrostatics were calculated by the Particle 

Mesh Ewald method. Energy minimization was performed with steepest descent followed by 

conjugate gradient until the total energy was under 100 kJ/mol/nm. The system was heated from 0 to 

310 K, then pressurized to 1 bar. Position restraint was applied to non-hydrogen atoms during 

equilibration. The production run was performed in 2 fs time-steps. Data visualization was performed 

in VMD and PyMOL. 

 
MicroScale Thermophoresis  

A Monolith NT.115 instrument (NanoTemper Technologies GmbH) was employed for MST analysis. 
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His-TRIB2 was initially labelled with a NanoTemper labelling kit; the fluorescent red dye NT-647 

was coupled via NHS chemistry to the N-terminal His-tag, placing the fluorophore away from the 

pseudokinase domain. For MST, the reaction was performed in 20 mM Bicine pH 9.0, 100 mM NaCl, 

5% glycerol, 0.05% Tween-20 and 2 % (v/v) DMSO. Fluorescent TRIB2 (~5 M) was kept constant 

in the assay, while final afatinib and TAK-285 concentration was titrated over a 3 nM and 50-100 M 

range. Near-saturation binding was achieved, allowing for an affinity to be estimated for the 

reversible interaction between afatinib, TAK-285 and fluorescent TRIB2. NT-647-linked MCL-1 and 

A-1210477 was employed as a positive control. 

Cell lines and reagents 

Flp-In T-REx parental HeLa cells (Invitrogen) were cultured in DMEM with 4 mM L-glutamine, 10 

% (v/v) Foetal Bovine Serum (FBS), Penicillin and Streptomycin (Gibco) as described [86]. To 

engineer Tetracycline (TET)-controlled expression of FLAG-tagged full length TRIB2 in human Flp-

In T-REx cell lines, the host plasmid pcDNA5/FRT/TO, encoding full length TRIB2 sequences (or 

appropriate amino acid substitution(s)), with a single N-terminal FLAG tag (1 g DNA per well in a 6 

well plate of cells) were co-transfected with 9 µg of pOG44 Flp-Recombinase Expression Vector 

using lipofectamine. Cells that had successfully integrated the FLAG-tagged TRIB2 sequence were 

stably selected with 200 μg/mL Hygromycin B, according to the manufacturer’s instructions. TET 

was added at a final concentration of 1 g/ml to medium in order to induce FLAG-TRIB2 expression. 

For transient transfection, 50% confluent HeLa cells were transfected with 40 g DNA per 10 cm dish 

for 48 h prior to lysis.  

For serum starvation, stable HeLa cells were grown until ~60% confluent in complete medium 

(+FBS), washed with PBS, and replaced with serum-free DMEM for 16 h. Cells were then incubated 

with DMEM containing 10% (v/v) FBS ± 1 g/ml TET for 16 h, followed by addition of appropriate 

inhibitor for 4h. All whole cell lysates were generated with modified RIPA buffer (see below). Non-

adherent AML-derived human U937 cells (which express high levels of endogenous TRIB2 protein) 

were supplied by Dr Karen Keeshan, University of Glasgow and were cultured as previously 

described [21].    

MTT cytotoxicity assay 

U937 cells were seeded in a 96 well plate at a concentration of 0.2 x 106 cells/mL, 18 hours prior to 

compound addition, which was performed in triplicate, with all experiments including a final 

concentration of 0.1% DMSO (v/v). To quantify U937 cell viability, metabolic activity was assessed 

72 h after compound exposure using an MTT assay (Abcam), as described previously [103]. Briefly, 

Thiazolyl blue tetrazolium bromide was dissolved in PBS and added to cells at a final concentration 

of 0.25 mg/mL and incubated at 37 °C for 3 hours. The reaction was stopped by the addition of 50 μL 
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of acidified 10% SDS, followed by reading of absorbance at 570 nm. Viability was defined relative to 

DMSO-containing controls incubated for the same period of time. 

Immunoblotting and CETSA 

HeLa and U937 whole cell lysates were generated using a modified RIPA buffer (50 mM Tris–HCl 

pH 7.4, 1 % (v/v) NP-40, 1 % (v/v) SDS, 100 mM NaCl, 100 nM Okadaic acid) supplemented with 

protease and phosphatase inhibitors (Roche), and brief sonication. For western blotting, samples were 

boiled for 5 min in sample buffer (50 mM Tris pH 6.8, 1% SDS, 10% glycerol, 0.01% Bromophenol 

Blue, 10 mM DTT). Subsequently, and between 40 and 120 g of total protein was resolved by SDS–

PAGE followed by transfer onto nitrocellulose membrane (BioRad). After blocking in pH TBS-T + 

5% milk, pH 7.4), primary and secondary antibodies were incubated in the same condition, and 

proteins were detected using HRP-conjugated antibodies and ECL reagent. Immunoblots were 

quantified using ImageJ software, as previously described [96]. For lambda phosphatase treatment, 40 

g FLAG-TRIB2 expressing stable cell extracts in lysis buffer without SDS and phosphatase 

inhibitors were incubated with 10 ng of purified -phosphatase for 30 min at 37°C prior to processing 

for western blotting. 

For in-cell CETSA we employed a previously published procedure [104]. Briefly, stable HeLa cells 

were incubated with TET for 16h to induce expression of FLAG-TRIB2, and at ~90% confluency, 

were incubated with 0.1% (v/v) DMSO or 100 M of the indicated compound for 1h. Intact cells were 

isolated by trypsinization (1 min) and resuspended in PBS, and then aliquoted into individual PCR 

tubes prior to heating at the indicated temperature in a PCR thermal cycler for 3 min. Cells were then 

placed on ice for 2 min and lysed by sonication, prior to centrifugation at 16,000 x g for 20 minutes at 

4°C. The soluble lysate was analysed for the presence of FLAG-TRIB2 and -tubulin by 

immunoblotting. 

Statistical analysis 

All experimental procedures were repeated in at least 3 separate experiments with matched positive 

and negative controls (unless stated otherwise). Results are expressed as mean ± SD for all in vitro 

experiments and data are expressed as the mean ± standard deviation. When applied, statistical 

significance of differences (*P ≤0.05) was assessed using a Students t-test for normally-distributed 

data. All statistical tests were performed using Prism 7 (GraphPad Software) 

SUPPLEMENTARY MATERIALS: 

Fig. S1. Discovery of multiple PKIS compounds as TRIB2 ligands. 

Fig. S2. Chemical structure of pre-clinical and clinical compounds evaluated in this study. 
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Fig. S3. Validation of DSF assay using TRIB1 and a PKAc counter-screen.  

Fig. S4. Thermal melting profiles of TRIB2 using DSF. 

Fig. S5. Analysis of C104Y mutation in TRIB2. 

Fig. S6. MS-based analysis of the covalent TRIB2:afatinib complex. 

Fig. S7. Microscale Thermophoresis (MST) assay. 

Fig. S8. Molecular docking analysis. 

Fig. S9. A new TRIB2 antibody for quantitative analysis of TRIB2 expression levels and 

stability. 

Fig. S10. Analysis of TRIB2 dephosphorylation in cell extracts. 

Fig. S11. TRIB2-binding to afatinib induces destabilization relative to DMSO in a whole cell 

thermal shift assay (CETSA). 

Fig. S12. Comparative protein expression analysis of stable HeLa FLAG-TRIB2 cell lines. 

Fig. S13. Lack of effect of the non-covalent TRIB1 and TRIB2 destabilizing ligand GW804482X 

on TRIB2 stability in TRIB2-expressing HeLa cells. 

Table S1. PKIS compound screening data for full-length TRIB2 
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FIGURE LEGENDS: 

Fig. 1. Full-length TRIB2 is a target for protein kinase inhibitors in vitro 

(A) (Top) Sequence alignment of human TRIB2, TRIB1, TRIB3 and STK40 highlighting Cys-rich 

residues (numbered in red) in the TRIB2 pseudokinase domain.  (Bottom) Recombinant proteins 

employed for in vitro analysis. 5 μg of the indicated purified proteins were resolved by SDS-PAGE. 

(B) Thermal denaturation profiles of recombinant proteins. A representative unfolding profile is 

shown.  Tm values (±SD) were obtained from 3 separate fluorescence profiling expereiments, each 

point assayed in duplicate. (C) The ability of GST-TRIB2 to interact with active (PDK1-

phosphorylated) or inactive (non PDK1-phosphorylated) S473D AKT1 was assessed by GSH-

sepharose pull-down followed by immunoblotting. PDK1 phosphorylated S473D AKT is 

phosphorylated on Thr308 (right panel), but binds much more weakly to TRIB2. ‘Master-mix’ input is 

shown in the left panel. (D) Transient transfection of TET-inducible FLAG-TRIB2 leads to increased 

AKT phosphorylation on Ser473. (E) TRIB2 DSF screen using PKIS. 5 µM His-TRIB2 was employed 

for all DSF analysis. ΔTm values were calculated for each compound (N=2). Scattergraph of data 

highlights a wide variety of compounds that either stabilize or destabilize TRIB2 in vitro. Cut off 

values of > + 3.5 °C and < - 2°C were used to designate ‘hits’. (F) Comparative DSF analysis of 

clinical and preclinical kinase inhibitors as potential TRIB2 ligands. LAP=lapatinib, TAK=TAK-285, 

AFA=afatinib, NER=neratinib, OSI=osimertinib, IBR=ibrutinib, ERL=erlotinib, GEF=gefitinib. (G) 

Dose-dependent analysis of thermal shifts induced by clinical TRIB2 ligands. Compounds were tested 

at 5, 10, 20, 40, 80 and 160 µM. (H) Profiling of TRIB2 and C104Y with selected inhibitors by DSF.  

Fig. 2. TRIB2 thermal stability is modulated through Cys binding to covalent inhibitors  

(A) (Top) Schematic cartoon of TRIB2 with domain boundaries numbered and cysteine residues 

highlighted (red). (Bottom) SDS-PAGE of 5 μg recombinant TRIB2 proteins. (B) Thermal 

denaturation profiles of 5 μM WT-TRIB2 (amino acids 1-343), three truncated variants and an 

AQLAA triple-point mutant. Representative curves for each protein and average Tm values (±SD) are 

shown calculated from N=3 experiments. (C) Thermal shift analysis of TRIB2 deletion and AQLAA 

proteins measured in the presence of a panel of compounds (20 M). The change in Tm value (Tm) is 

reported from N=3 experiments, each performed in triplicate, and the chemical structures of each 

compound are shown for comparison. AFA=afatinib, NER=neratinib, LAP= lapatinib, ERL=erlotinib. 

(D) Thermal denaturation profiles for purified TRIB2 and C96S, C104S and C96/104S proteins. (E) 

Thermal shift analysis of TRIB2 Cys-mutated proteins measured in the presence of a panel of 

compounds (20 µM). The change in Tm value (Tm) is reported from N=3 experiments.  
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Fig. 3: Afatinib promotes rapid degradation of FLAG-TRIB2 in an inducible HeLa model 

(A) Uninduced (-TET) or Tetracycline-induced (+TET) HeLa cells containing a stably integrated 

FLAG-TRIB2 transgene were serum starved for 16h prior to the addition of serum, and lysed at the 

indicated times. Whole cell extracts were blotted with FLAG antibody to detect FLAG-TRIB2, pSer 

473 AKT. Total AKT and total GAPDH served as loading controls. (B) A selection of clinically 

approved kinase inhibitors, including dual EGFR/HER2 and EGFR-specific compounds, were added 

to TET-induced cells at a final concentration of 10 μM. Stable cells were induced to express FLAG-

tagged TRIB2 with tetracycline for 16h prior to inhibitor treatment for 4 hours. AFA=afatinib, 

NER=neratinib, OSI=osimertinib, IBR=ibrutinib, LAP=lapatinib, ERL=erlotinib, GEF=gefitinib. 

Whole cell extracts were immunoblotted with FLAG, pERK, ERK or GAPDH antibodies. (C) Stable 

HeLa cells were incubated with TET for 16h, and then incubated with DMSO (top panels) or 10 µM 

afatinib (AFA, bottom panels) prior to lysis at the indicated time. 1h and 16h samples were pre-treated 

with lambda protein-phosphatase (PP) prior to SDS-PAGE. Whole cell extracts were immunoblotted 

with FLAG or GAPDH antibodies.   

Fig. 4. ‘On-target’ degradation of TRIB2 by afatinib: C96/104S TRIB2 double point mutant is 

resistant to degradation  

(A) The indicated concentration of afatinib, 25 M lapatinib or TAK-285 was incubated for 4 h with 

isogenic stable HeLa cells expressing FLAG-tagged WT-TRIB2, C96S or C96/104S TRIB2 (induced 

by TET exposure for 16h). After lysis, whole cell extracts were immunblotted with the indicated 

antibodies. FLAG-TRIB2 levels were quantified after exposure to 10, 15 and 20 µM afatinib relative 

to DMSO controls using ImageJ densitometry software (data amalgamated from N=3 independent 

biological replicates). (B) WT and C96/104S stable HeLa cell lines were subjected to serum block-

and-release protocol in the presence (+TET) or absence (-TET) of tetracycline. Subsequently, the 

indicated compounds (10 M) were added for 4 h prior to cell lysis and immunoblotting with the 

indicated antibodies. AFA=afatinib, ERL=erlotinib. (C) FLAG-tagged TRIB2 expressing HeLa cells 

were incubated with (0.1% v/v) DMSO or 10 μM afatinib, in the presence or absence of 10 M 

MG132 for 4 hours (left) or at the indicated time points (right) prior to lysis and processing for 

immunoblotting. (D) (Left) FLAG-TRIB2 expressing stable cells were incubated with the indicated 

concentration of MG132 in the presence or absence of 10 μM afatinib (AFA) for 4 h prior to cell lysis 

and immunoblotting. (Right) FLAG-TRIB2 expressing stable cells were incubated for 1h with 10 M 

MG132, 10 M bortezomib (BOR), 1 mM AICAR (AIC) or 50 M Chloroquine (CLQ) prior to the 

addition of 10 M AFA for an additional 4 h followed by lysis and immunoblotting with the indicated 

antibodies.  
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Fig. 5. Afatinib rapidly destabilizes endogenous TRIB2 and specifically induces caspase-3 

cleavage and U937 cytotoxicity 

(A) Endogenous TRIB2 is destabilized in human U937 cells in a dose-dependent manner after a 4 h 

exposure to AFA. Cells were incubated with either 0.1% (v/v) DMSO, the indicated concentrations of 

afatinib, or 10 μM lapatinib (LAP), 10 μM erlotinib (ERL) or 10 μM of the proteasome inhibitor 

bortezomib (BOR) for 4 h prior to lysis and immunoblotting of endogenous TRIB2, pERK or cleaved 

caspase 3. GAPDH served as a loading control. (B) Endogenous TRIB2 is destabilized after exposure 

to afatinib for 24h, concomitant with reduced AKT phosphorylation at Ser473. After cell collection and 

lysis, whole cell extracts were immunoblotted with the indicated antibodies. AKT and GAPDH served 

as loading controls and ERL and BOR were used at 10 μM. (C) The cytotoxicity of a panel of TRIB2-

destabilsing ligands (afatinib, AFA and neratinib, NER) were compared to EGFR inhibitors or the 

TRIB2 stabilizer TAK-285 (TAK). MTT assays were performed after 72 h compound exposure, with 

bortezomib (BOR) employed as a positive control. IC50 values (nM ± SD) are derived from N=3 

independent experiments, each performed in triplicate. Statistical analysis confirmed a significant 

difference in cytotoxicity between AFA and ERL (students t-test p value = 0.0104) BOR and ERL (p 

value = 0.0072) and NER and ERL (p value = 0.0104). 
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