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Introduction

Breast cancer is the most prevalent form of malignancy in 
women.1 Dissemination of breast cancer cells (BCCs) to 
distant sites is believed to be an early event, often occur-
ring before detection of the primary tumour.2 More than 
two-thirds of breast cancers that spread to other parts of 
the body spread to the bone marrow.3 It is now well estab-
lished that breast cancer recurrence is due to prolonged 
dormancy within the bone marrow.4 This phenomenon is 
responsible for much of the cancer-associated mortality as 
metastatic recurrence can occur many years after primary 
tumour treatment, leading to an uncertainty in the progno-
sis for patients.5

Prior to metastasis, BCCs undergo epithelial–mesenchy-
mal transition (EMT), whereby they lose epithelial traits such 
as cell adhesion and gain mesenchymal characteristics, 
becoming migratory.6,7 Upon reaching distant secondary 
sites, such as the bone marrow, a reverse process termed mes-
enchymal–epithelial transition (MET) then occurs, allowing 
the BCCs to colonise their secondary microenvironment.8 

The invading BCCs take advantage of the immune tolerant 
features and chemotactic properties of resident mesenchymal 
stem cells (MSCs) and their niche to both promote and sup-
port BCC dormancy.9,10 In the early stages of metastatic 
spread, disseminated BCCs undergo an extended period of 
cycling quiescence in which they are maintained in G0/G1 
phase of the cell cycle.11 However, there is a current lack of 
knowledge of the mechanistic events that allow BCCs to 
adopt a dormant phenotype in the marrow.12 MSCs are 
thought to interact with invading BCCs during the early stage 
of entry into the marrow; thus, further study of how these two 
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cell types communicate during the onset of dormancy may 
allow a deeper understanding of the cellular events involved.4

The relationship between marrow MSCs and invading 
BCCs has to date focussed on more traditional cell-to-cell 
communication routes, such as paracrine signalling via 
soluble proteins including cytokines.13–15 More recently, 
attention has shifted towards extracellular vesicles (EVs) 
as key mediators in cell–cell communication. EVs are 
small extracellular membrane-enclosed vesicles that con-
tain a variety of molecules including proteins and RNAs.16–

20 Increasing evidence suggests that interactions between 
MSCs and tumour cells involve the exchange of informa-
tion via EVs.20 For example, MSC-derived EVs have been 
reported to contain microRNAs such as miR23b,21 miR21 
and miR34a,22 which have been found to have a tumour-
suppressive effect. These EVs also contained tumour-sup-
portive molecules, such as tissue inhibitor of 
metalloproteases (TIMP)-1 and -2. Within this study, we 
have shown that MSC-derived EVs have a negative influ-
ence on the migration and proliferation of the BCC line 
MCF7, with an increased adhesion. This suggests a poten-
tial role for MSC-EVs in the promotion of BCC MET and 
perhaps subsequent dormancy.

Materials and methods

Expansion cell culture

MCF7 (ATCC) cells were cultured using modified DMEM 
comprising 400 mL Dulbecco’s modified Eagle’s medium, 
100 mL of medium 199, 50 mL of foetal bovine solution, 
10 mL penicillin–streptomycin and 5 mL of sodium pyru-
vate. MCF7 cells were maintained in T75 tissue culture 
flasks and passaged at approximately 90% confluence 
using a HEPES saline wash (ThermoFisher) followed by a 
3% trypsin/versine solution (ThermoFisher) to remove 
cells from culture flask. These cells were then centrifuged 
at 1400 r/min for 4 min and reseeded into new flasks, with 
media exchanged every 3 days. For EV isolation during 
MSC culture, foetal bovine serum was centrifuged for 18 h 
at 120,000g and supernatant was retained to exclude any 
EVs present.

EV isolation

MSCs (Promocell) were grown in culture for 1 week using 
T150 flasks (Corning) to allow the collection of a large 
volume of culture medium. EVs were then isolated using 
the ultracentrifugation method used previously16,17 and 
analysed via dynamic light scattering. Concentration was 
determined via BCA (ThermoFisher) and FluoroCet 
(System Biosciences) assays; generating a protein stand-
ard then adjusting isolates to the same total protein and 
measuring fluorescence of acetylcholinesterase (AChE), a 
known exosomal protein, present within the vesicles. Due 

to limited supply and assessment of other EV-related stud-
ies,23–25 the concentration of approximately 2 × 107/mL 
was used in each experiment.

Transmission electron microscopy

MSC-derived (Lonza) particles were placed onto Carbon 
and Formvar coated copper grids from Agar Scientific. 
Samples were negatively stained with 2% uranyl acetate 
and imaged with a JEOL 1200 Transmission Electron 
Microscope with beam voltage of 80 kV and magnification 
of 200,000×. Images generated were analysed using 
ImageJ to measure particle area and maximum diameter. 
In brief, ImageJ was used to trace the outline of the lipid 
membrane visible on micrographs. Software then calcu-
lated the area and maximum diameter by pixel analysis 
which was then converted to size using the appropriate 
scaling parameters.

Generation of three-dimensional MCF7 
spheroid cultures

Spheroids were generated using a similar methodology 
as described in Lewis et al.25 Cells were initially seeded 
at a density of 1 × 104 into a 24-well plate and incubated 
for 24 h (37°C and 5% CO2). After this initial incubation, 
each well of cells was cultured in a 1 mL suspension of 
200 nm diameter, red fluorescently labelled magnetic 
iron nanoparticles (chemicell – fluidMAG-PEA) in a 
DMEM solution at a concentration of 0.1 mg nanoparti-
cles/mL of media for 30 min at (37°C and 5% CO2) on 
top of a 24-well magnetic array plate (350 mT magnetic 
fields). Subsequently, the nanoparticle/DMEM suspen-
sion was removed and excess iron washed from each 
well using HEPES saline. Cells were then detached from 
the surface using trypsin and resuspended in fresh media 
in two opposing corners of a six-well plate to prevent 
disruption of individual magnetic fields. Once in solu-
tion, a 13 mm diameter magnet (producing a 350 mT 
magnetic field) was placed on the top of each well con-
taining cells and incubated for 24 h while the magnetic 
field draws nanoparticle containing cells together to 
form a multicellular spheroid. Once formed, the sphe-
roids were carefully transferred into to a liquid type I 
collagen gel solution, before being allowed to gel, and 
cultured in 1 mL fresh media.

Collagen gel preparation

The type I collagen gel for maintaining and culturing sphe-
roids was made up by initially premixing 0.5 mL of foetal 
bovine solution, 0.5 mL of modified DMEM culture media 
and 0.5 mL alpha-MEM. Then, 2.5 mL of rat tail collagen 
(2 mg/mL; First Link UK) was mixed with 1 mL of 0.1 M 
NaOH, before combining all together. Additional NaOH 
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was then titrated dropwise until entire solution turned from 
yellow/orange to a stable pink indicating a pH change; 
1 mL of this gel solution is used to culture spheroids within 
a 24-well plate. A setting period of ⩽1 h is permitted prior 
to the addition of fresh culture media.

Two-dimensional MCF7 migration

The kit provided by Ibidi allowed the measurement of cell 
directional movement in response to a chemoattractant. 
Using the set protocol supplied (in the ‘3D Chemotaxis 
Assay Using μ-Slide Chemotaxis – 2.2 2D Chemotaxis 
experiments without Gel’), MCF7s were seeded at a den-
sity of 1 × 106. Once both reservoirs were filled with 65 µL 
chemoattractant-free DMEM, culture medium containing 
MSC-derived EVs was aspirated into the left reservoir to 
begin the chemoattraction for the assay. The plate was 
imaged using a four times objective lens at 120 s intervals 
over 24 h in a 37°C hot room. Results were then analysed 
using the ImageJ plugin ‘manual tracking’ and Ibidi’s own 
‘Chemotaxis and Migration tool’.

Three-dimensional MCF7 migration

To better understand MCF7 migratory processes within a 
bone marrow-like microenvironment, MCF7 (ATCC) 
spheroids were generated using magnetic nanoparticles 
and embedded in collagen gels before being treated over 
5 days with MSC EV-doped culture medium. Images were 
captured using Zeiss Axio Vert A1 fluorescent microscope. 
Diameters were measured using ImageJ.

Immunocytochemistry

Cells were fixed for 15 min in 4% formaldehyde/PBS solu-
tion. Followed by permeabilisation for 5 min at 4°C, block-
ing for 1 h at 37°C with 1% BSA/PBS solution. Primary 
antibodies (Ki67 or ALDH1A1; abcam, anti-rabbit) were 
diluted 1/100 with blocking solution and cells were stained 
over night at room temperature before washing with 0.1% 
tween solution five times for 5 min. Secondary antibody 
was diluted 1/100 with blocking solution with the addition 
of 1/500 CellTag solution and incubated for 1 h at room 
temperature. Cells were then visualised on Licor Odyssey 
SA plate reader and antibody fluorescence normalised to 
CellTag (Supplementary Figure 1).

Live/dead assay

100 µL culture medium containing 4 µM ethidium and 
2 µM calcein AM (Life Technologies) was added to cells 
and incubated at 37°C for 30 min. Cells were then washed 
with 1% PBS before being imaged using Zeiss Axio Vert 
fluorescence microscope at 20× magnification where cells 
containing calcein or ethidium were counted.

Adhesion assay

Monolayers were seeded in a 96-well plate and allowed 
to attach. A dilution series of MSC-derived EVs was 
then applied to these for 24 h. Following this period, 
cells trypsinised and reseeded into a new 96-well plate. 
These cells were allowed to attach for 30 min before the 
culture medium was removed. Remaining cells were 
stained with DAPI for 15 min before being visualised at 
20× magnification. The presence of nuclei in 10 random 
fields was counted across three wells for each MSC EV 
concentration.

Results and discussion

Quantification of MSC-derived EVs isolated 
from conditioned culture medium

EVs isolated from MSC culture medium were quantified 
using dynamic light scattering and Fluorocet assay. 
Dynamic light scattering allows the size of particles to be 
determined (Figure 1(a)) indicating highest peak intensi-
ties at 91.3 and 164 nm, with a weighted average diameter 
of 174.4 nm (Figure 1(b)). This indicates the presence of 
two vesicle populations: exosomes and larger microvesi-
cles. AChE fluorescence was then assayed (Figure 1(c)) 
following protein quantification to determine the number 
of MSC-derived EVs present, found to be 1.6 × 109/mL. 
The presence of MSC-derived EVs using this method of 
isolation is indicated by TEM (Figure 1(b)).

MCF7 cells migrate away from MSC EVs

The effect of MSC-derived EVs on MCF7 cell motility was 
assessed. Within standard two-dimensional culture, MCF7 
cells grown in control culture medium did not migrate pref-
erentially in any direction (Figure 2(b)); however, when 
treated with cell culture medium containing purified MSC-
derived EVs, they become more mobile (Figure 2(a)). 
Interestingly, they do not move towards the MSC-derived 
EVs, but appear to migrate away from them. This phenom-
enon is quite pronounced over 24 h, with no MCF7 cells 
migrating towards the MSC-derived EVs. This observation 
therefore appears to support MCF7 cells in monolayer 
(Figure 2), where the cells are compacting within the sphe-
roids as opposed to migrating out towards the EV stimulus. 
Over 120 h, mean spheroid area decreases in the presence 
of MSC-derived EVs (Figure 3(e)).

Consequently, 3D MCF7 cell spheroids were then cul-
tured within a bone marrow-like environment (type I col-
lagen gel) and challenged with MSC-derived EVs. Through 
measuring the spheroid diameter, it was noted that the 
spheroids become more compacted over time in response 
to the EVs when compared to control culture conditions, 
where instead spheroids increased in diameter by approxi-
mately 10% over a 24-h period (Figure 3(a)–(e)). Using a 
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Figure 1. MSC-derived EVs (a) measured using dynamic light scattering and average intensities plotted (n = 3). (b) Transmission 
electron microscope image of MSC-derived EVs; arrows indicate the presence of vesicles (c) A table detailing key data from 
dynamic light scatter in addition to particle number acquired through measurement of AChE fluorescence using Fluorocet assay.

Figure 2. MCF7 cells cultured over 24 h with (a) culture medium containing MSC-derived EVs or (b) control medium, without EVs 
(10 cells tracked in each condition using ImageJ).
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two-way analysis of variance (ANOVA) the difference in 
spheroid size is significant (p = 0.0011).

MSC EVs cause decreased proliferation and 
increase adhesion of MCF7 cells

It has previously been described that MSCs possess the 
capacity for tumour growth and suppression.26,27 
Therefore, to further study the effect of MSC-derived EVs 
upon MCF7 cells, cell proliferation, stem cell-like pheno-
type and cell adhesion were assessed. ALDH1A1 is a pro-
tein that is present in malignant BCCs which have 
undergone EMT28 and as such is an established cancer 
stem cell marker;29,30 a lower ALDH1A1 expression cor-
relates with a less active, stem cell-like cell. Here, follow-
ing exposure to purified MSC-derived EVs, MCF7 cells 
demonstrated a decrease in ALDH1A1 (Figure 4(a)), indi-
cating that the cells are exhibiting a less active/tumouri-
genic cell phenotype.31,32 Indeed, ALDH1A1 levels 
decreased with increased EV concentration, suggesting an 
inverse correlation.

Confirmation of this lower tumourigenicity was 
achieved via quantification of Ki67 protein levels. Ki67 is 
a protein that is present in all stages of cell cycle except G0 
and is strongly associated with tumour cell proliferation 

and growth; clinically, it has been shown to correlate with 
metastasis and the clinical stage of tumours.33,34 In this 
study, exposure to MSC-derived EVs caused a significant 
decrease (p < 0.005) in Ki67 expression in MCF7 cells 
(Figure 4(b)); again, an inverse correlation was noted. This 
suggests that MCF7 cells have reduced proliferation and 
may have initiated a switch to a dormant state in response 
to the MSC EVs. MCF7 cells cultured with MSC EVs in 
monolayer were assayed for viability over 5 days. No sig-
nificant change in cell viability was seen (supplementary 
Figure 2).

An increased cell adhesion is key to an epithelial cell 
phenotype. Therefore, in addition to probing for intracel-
lular protein markers, MCF7 monolayers were cultured 
with MSC-derived EVs for 24 h and subsequent cell adhe-
sion potential was assessed. A reciprocal relationship was 
observed, with a significant increase in MCF7 adhesion 
alongside increasing MSC-derived EV concentration 
(Figure 4(c)). Collectively, this correlates with a decrease 
in ALDH1A1 and proliferation, with the MSC-derived 
EVs reinforcing an epithelial cell phenotype. Expression 
of EMT marker genes was analysed in MCF7 spheroids 
cultured in the presence or absence of MSC spheroids to 
establish the effect of MSC paracrine signalling, including 
EVs, on MCF7 EMT. Results indicated that MCF7 

Figure 3. MCF7 spheroid cultured with MSC-derived EVs for (a) 0 h, (b) 24 h and (c) 120 h; note the apparent decrease 
in diameter; (d) 24-h time lapse of spheroid treated with MSC-derived EVs spheroid diameter normalised to 0 h, n = 3; (e) 
measurements of further MCF7 spheroids at hours 0, 24 and 120 normalised to 0-h average (n ⩾ 4; scale bar = 10 µm; images 
recorded using Zeiss Axio Vert A1 microscope).



6 Journal of Tissue Engineering  

spheroids co-cultured with MSC spheroids had an increase 
in the EMT markers e-cadherin and keratin19, with a 
reduction in mesenchymal markers vimentin and JUP. This 
suggests that MSCs encouraged a transition to the epithe-
lial state (Supplementary Figure 3).

Conclusion

BCC metastasis into the bone marrow niche involves a com-
plex series of paracrine signalling and cell-cell interactions. 
However, here we show that treating MCF7 cells with just 
MSC-derived EVs appears to initiate an epithelial cell phe-
notype with potential dormancy. This suggests that MSC-
derived EVs contribute to the net loss in tumourigenicity of 
invading BCCs, allowing them to engraft within the marrow 
in a cycling quiescent state, ultimately resulting in anti-can-
cer drug resistance. The two peaks seen in Figure 1 indicate 
a mixed population of both exosomes and larger microvesi-
cles; these are trafficked out of the cell in different ways and 
as such their contents may also be different. While there is 
some evidence in support of the role of microRNAs in 

initiating dormancy,4,21 further research into the cargo of 
both populations of EVs is necessary, namely which pro-
teins and small molecules/metabolites may be involved in 
BCC dormancy.
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