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Abstract: Remote-sensing technology is widely used in environmental monitor-
ing. The coverage and resolution of satellite based data provide scientists with
great opportunities to study and understand environmental change. However, the
large volume and the missing observations in the remote-sensing data present
challenges to statistical analysis. This paper investigates two approaches to the
spatio-temporal modelling of remote-sensing lake surface water temperature data.
Both methods use the state space framework, but with different parameteriza-
tions to reflect different aspects of the problem. The appropriateness of the meth-
ods for identifying spatial/temporal patterns in the data is discussed.
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1 Introduction

The remote-sensing lake surface water temperature (LSWT) data are mea-
sured by the Advanced Along-Track Scanning Radiometer (AATSR), on
board the European Space Agency’s Envisat platform. The retrieved LSWT
data can be accessed from the ARC-Lake v3.0 database (http://www.ed.
ac.uk/arclake/data.html). The observation period is from June 1995 to
April 2012 and the spatial resolution is 0.05◦ × 0.05◦. Ecologists are in-
terested in the spatial/temporal patterns in the data to better understand
the dynamics of the environmental system, for example, as part of the
GloboLakes project (www.globolakes.ac.uk).
The specific data set investigated here is the monthly LSWT of Lake Vic-
toria. The data are stored in an array of dimension 65 × 66 × 203 (lon-
gitude by latitude by time). Although the number of observations cannot
be regarded as ‘large’ in the sense of ‘big data’, this 3-dimensional dataset
can still be challenging for statistical analysis. Therefore, spatio-temporal
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models exploiting dimension reduction are investigated. Specifically, a func-
tional data representation is used to reduce the data dimensionality and
hierarchical dynamic spatio-temporal models (DSTM) constructed under
the state space framework (Cressie & Wikle, 2011) are used to describe
the spatio-temporal features of the data. Due to technical and atmospheric
issues, remote-sensing data can have a substantial amount of missing data
(see the data panels of Figure 1). Therefore, modifications are proposed
here in the estimation algorithms to account for missing data.

2 The modelling framework

Consider a hierarchical DSTM in state space form with, (1) a data model
relating the observation Z(s; t) to a ‘true’ spatio-temporal process Y (s; t)
and (2) a process model describing the dynamics of the latent process
through lagged dependence,

Z(s; t) = Y (s; t) + ε(s; t) = Φ(s)βt + ζ(s; t) + ε(s; t) , (1)

βt =
∑
q

Mqβt−τq + ut . (2)

Dimension reduction comes from the representation of Y (s; t) as Φ(s)βt +
ζ(s; t), where Φ(s) is a basis matrix and ζ(s; t) is a non-dynamic com-
ponent. If matrix Φ(s) is of a lower rank K than the dimension of the
data vector Z(�; t), being N , then the dimension of the process model (2)
would be reduced to K. Substantial computational gains may be achieved
if K � N , which is often the case for remote-sensing data. The process
dynamic follows a vector auto-regressive (VAR) model of order q, reflecting
the temporal dependence of the spatial process Y (s; t). To ensure identifia-
bility, a parameter model putting constraints on model components may be
included. Two parameterizations of this framework are proposed and inves-
tigated here. Both methods offer opportunities for dimension reduction, but
with different emphases, where one focuses on the general spatio-temporal
pattern and the other focuses on the spatio-temporal prediction.

2.1 The FPC parameterization

The functional principal component (FPC) parameterization is based on
the empirical orthogonal function (EOF) parameterization in Xu & Wikle
(2007). It maps the data to the leading EOFs extracted from the data,

Z(s, t) =

a∑
p=1

ξp(s)αpt + ε(s, t) = Ξ(s)αt + ε(s, t) , (3)

and parameterizes the covariance matrix of the vector of residuals εt as
σ2I +

∑P
p=a+1 λpξpξ

>
p , where ξp is the vectorized EOF ξp(s) evaluated at
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all locations s and λp is the corresponding eigenvalue. The process model
is specified as a first order VAR, which is αt = Mαt−1 + ut. Exploratory
analysis suggests that first order dependence is appropriate for the LSWT
data after removing the trend and seasonality. The component ζ(s; t) is not
considered here. In the case of the remote-sensing LSWT data, functional
representation is applied and functional PCs are extracted as the analogous
of the EOFs for dimension reduction. Model estimation uses the EM algo-
rithm with the Kalman filter/smoother. Model results provide information
on spatial patterns through the functional PCs and temporal evolutions
through the estimated process model.

2.2 The STRE model

The spatio-temporal random effect (STRE) model of Cressie et al., (2010)
can be written in the same way as formulae (1) and (2). In particular,
Φ(s) is usually taken to be a spatial basis and the component ζ(s; t) repre-
sents the non-dynamic random effect unique to each spatial image Z(s; t),
which cannot be captured by the dynamic of Y (s; t). Again, dimension
reduction can be achieved through a basis representation Φ(s)βt. Model
estimation uses the EM algorithm, along with the fixed rank filter (FRF)
and smoother (FRS) (Cressie et al., 2010; Katzfuss & Cressie, 2011). This
method estimates the time-varying βt using the Kalman filter/smoother
and the random effect ζt through a second filter based on the conditional
distribution of (ζt,βt) |Z1:t (FRF) and (ζt,βt) |Z1:T (FRS), where Z1:t

represents observed data {Z1, · · · ,Zt}. In particular, it is assumed that
the non-dynamic component ζt only depends on the information of time
point t. Temporal patterns can be extracted from the estimated process
model. Spatial patterns may be modelled by assigning a correlation struc-
ture to the residual covariance matrix.

2.3 Implementation and results

The FPC parameterized model and the STRE models are then applied to
a subset of the Lake Victoria LSWT data (dimension 36× 47× 202). The
subset is taken to minimize the influence of land pixels and lake border
pixels, which tend to have larger uncertainties. As the data are stored on a
regular grid and that shape is not critical to this analysis, a tensor spline
basis is specified for the spatial basis Φ(s). A basis accounting for the shape
of the lake may be used, but the implementation would require a lot more
computational cost. The smoothness (degrees of freedom) of the basis is
controlled directly by the number of knots of the tensor splines. This is out
of the concern for the computational cost of tunning a smoothing param-
eter. Information criteria AIC and BIC are used to select the degrees of
freedom. The variance proportion criterion is applied to select the number
of FPCs in model (3). In this case, an 80% threshold gives 11 FPCs in
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the dynamic component of the model; a 95% threshold selects a further
11 eigenfunctions to form the residual covariance matrix. A random walk
model is used for modelling the process dynamic, i.e. αt = αt−1+ut for the
FPC parameterized model and βt = βt−1 + ut for the STRE model. This
is appropriate considering the feature of the LSWT data after removing a
seasonal mean.
The R code for implementing the two methods has been developed as part
of this work. To accommodate missing data, the approach similar to the
Kalman filter for sparse data (Shumway & Stoffer, 2006) is adopted. The
implementation of FRF and FRS follows the procedure described in Katz-
fuss & Cressie (2011). In extreme circumstances where there are only a few
observations available for a spatial image, a filtering threshold may also be
applied to avoid over-interpolation.
The fitted LSWT images constructed using the smoothed αt or βt and
MLEs from the converged EM algorithms of the two models are shown in
Figure 1. Both methods provide a good fit to the data. The residual sum
of squares (RSS) from the FPC parameterized model is 0.1021; that of
the STRE model is 0.0810. The fitted images from the FPC parameterized
model are smoother, as the model is designed to capture the general pat-
terns. The results from the STRE model show more detail, as the model
is designed for interpolation and prediction. The contrast in the fitted im-
ages of the FPC parameterized model appears to be larger than that of
the STRE model. In terms of very sparse images, imputation with smaller
contrast maybe preferred to avoid over-interpolating the unobserved areas.
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FIGURE 1. Examples of the Lake Victoria LSWT data and their fitted versions
using the FPC parameterized model (upper) and the STRE model (lower).
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An investigation can also be carried out on the smoothed process state to
understand the patterns of the process dynamics. For the FPC parame-
terized model, the smoothed states reflect the temporal evolution of the
corresponding FPCs. An example of the smoothed α1t and α2t time series
from model (3) is given in Figure 2. In this case, α1t seems to be showing
certain seasonal fluctuations not covered by the seasonal mean; whereas
α2t displays mainly random fluctuation with a few spikes. The dynamics
of βt in the STRE model (2) might be less straightforward to interpret, as
they are spatial basis coefficients that do not always have a clear meaning
in practice. Nonetheless, the time series of βt may still be useful to aid with
the understanding of spatio-temporal patterns in the data.

1995 2000 2005 2010

−
20

−
10

0
5

10

Time

al
ph

a 
1

1995 2000 2005 2010

−
10

0
10

20
30

Time

al
ph

a 
2

FIGURE 2. Examples of the dynamics of the FPCs from model (3).

Finally, the model residuals are investigated. The images in Figure 3 present
the pixel-wise RSS from the two models, reflecting the regional fit of the
models as opposed to the overall fit. The pixels towards the northwest cor-
ner appear to have larger RSS values. However, there is not any big discrep-
ancies between the RSS of different pixels, suggesting that the two methods
are appropriate for providing missing data imputations despite the varying
data availability in different areas of the lake. Katzfuss & Cressie (2011)
also derived the formula of the mean squared prediction errors (MSPE)
for the STRE model (1), which are defined as the diagonal elements of
E
[
(Yt − Yt|T )(Yt − Yt|T )>

]
, where Yt is the vectorized Y (s; t) and Yt|T

is the FRS version of Yt. In this case, the spatial pattern of the MSPEs
corresponds to that of the missing percentages, but again, the values are
at a similar scale.

3 Discussion

The FPC parametrized model and the STRE model provide two efficient
approaches to the spatio-temporal modelling of the sparse high-dimensional
remote-sensing data. Missing data imputation can be carried out while the
spatial and temporal patterns are extracted. One criticism on the EOF (i.e.
FPC in this case) based method is that the leading principal components
may not be adequate in explaining the dominant system dynamics, despite
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FIGURE 3. The pixel-wise RSS from the Lake Victoria LSWT data fitted using
the FPC parameterized model (left) and the STRE model (right).

their power in describing the variation in the data. For the STRE model,
the random component ζt, while accounting for the individual effect unique
to each spatial image, cannot provide a conclusive summary of the spatial
variation. Unless the residual spatial structure is modelled, which could
be computationally expensive, it is difficult to use the STRE model to
identify the spatial variation patterns. Potential developments may be to
parameterize the random effect ζt to reflect certain spatial patterns in a
flexible manner. This will be investigated in the future to improve the
modelling of the remote-sensing environmental data.
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