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Abstract

In a typical Internet of Things (IoT) deployment such as smart cities and Indus-

try 4.0, the amount of sensory data collected from physical world is significant

and wide-ranging. Processing large amount of real-time data from the diverse

IoT devices is challenging. For example, in IoT environment, wireless sensor

networks (WSN) are typically used for the monitoring and collecting of data in

some geographic area. Spatial range queries with location constraints to facili-

tate data indexing are traditionally employed in such applications, which allows

the querying and managing the data based on SQL structure. One particular

challenge is to minimize communication cost and storage requirements in multi-

dimensional data indexing approaches. In this paper, we present an energy- and

time-efficient multidimensional data indexing scheme, which is designed to an-

swer range query. Specifically, we propose data indexing methods which utilize

hierarchical indexing structures, using binary space partitioning (BSP), such as

kd-tree, quad-tree, k-means clustering, and Voronoi-based methods to provide
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more efficient routing with less latency. Simulation results demonstrate that

the Voronoi Diagram-based algorithm minimizes the average energy consump-

tion and query response time.

Keywords: Range query processing, multi-dimensional data indexing, Voronoi

diagram, IoT energy efficiency

1. Introduction

Internet of Things (IoT) has many applications in our society, which is not

surprising given the capability to facilitate the collection and analysis of a broad

range of information in our physical environment (e.g. smart cities, smart vehi-

cles, and smart factories). For example, multi-attribute sensors collaboratively5

and periodically collect data from their respective environment, and such data

are generally multi-dimensional. However, the diversity and ever-increasing vol-

ume of data from IoT applications compound the challenge in processing and

making sense of such multi-dimensional data. For example, how do we design

an energy-efficient spatial index structure to search the multi-attribute sensors10

in our constantly evolving technological landscape? Range query is a viable so-

lution, which has been used in a number of topics, such as area locations, sizes

and aggregated data of areas (min, max, average,...), particularly in mobile

applications.

Range queries represent a typical database operation by which one can re-15

trieve stored data that satisfies a specific set of interval-based constraints, such

as temperature (e.g. between t1 and t2), humidity (e.g. between h1 and h2)

and light condition (e.g. between l1 and l2). These constraints may refer specif-

ically to data-values of some particular tuples of interest, or in the context of

spatial-query processing, the locality-bounds of the data.20

Spatial-query processing is particularly relevant in a large wireless sensor

network (WSN) environment, as the region of interest may not span the en-

tire WSN geographic coverage. As an example, a typical range query can be

stated follows: “retrieve the locations of the nodes, where the temperature is
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between 90F and 110F”. More formally, a range query bears the following type25

of formulation: “retrieve all the records for which a subset of their attribute

values satisfy a set of interval-based constraints c”. When the range query has

a small life-span or is about simple instantaneous events, constructing routing

structures in existing approaches is achievable [1]. However, in many real-world

scenarios, the queries are continuous in nature, (i.e. monitoring of some phe-30

nomena over a long period). These types of queries are generally referred to

as range-monitoring queries, where the answer can change over time and such

changes (and not the actual values) need to be reported to the query initiator.

There are, however, a number of challenges in designing a range monitoring

query mechanism for a resource constrained WSNs. For example, continuous35

sampling of the environment for prolonged periods of time in an attempt to

capture the changes in state can be extremely energy consuming. In addition,

when the environment being monitored is highly dynamic, the transmission of

an excessive number of updates, either directly or through intermediary aggre-

gations nodes, has several adverse effects, such as increased delay/latency of40

the response and increased energy consumption. Clearly, inefficient range query

approaches can affect the network lifetime (NL) of the underpinning WSN en-

vironment, where NL is defined as the maximum total time period from the

initial deployment until the network connectivity or coverage is lost. Real-time

query/message routing in WSN considering power/energy consumption and NL45

issues is an active research topic [2, 3].

We have presented prediction techniques and aggregation trees with or with-

out synopsis in our previous work [4, 5, 6]. However, most of existing approaches

focus on only one or two particular characteristics, such as how fast the phe-

nomena changes over time and spatial-variability, as well as assuming that these50

characteristics do not change over time. In practice, one may need an additional

flexibility, in the sense that a range monitoring query should be able to adapt to

changing network or phenomena conditions, by means of workload-balancing,

reconfigurable routes [7, 8], etc. This is the focus of our proposal in this paper

(see Section 3).55
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We also observe that the issue of minimizing energy and bandwidth con-

sumption resources by lowering the minimum required coefficient levels has not

been formalized and addressed in the literature. Therefore, in this paper, we

approach this issue from a scalability perspective and devise solutions for large-

sized WSN. In addition, for mobile object identification and tracking, we will60

investigate the extent in which the size of the moving targets can influence the

results in a practical setting. Firstly, to obtain the dimensionality information

of the objects that are detected is a problem on its own. Thus, we will employ

a mix of existing techniques, such as triangulation and dead-reckoning. We

believe that estimating the size of the targets can lead to more effective solu-65

tions for the tracking, counting and identification problem of moving objects.

Secondly, we will develop efficient distributed data indexing algorithms for the

widely used spatial-temporal range monitoring queries, considering the context

of each syntactic variation. Each syntactic construct will be incorporated as

extensions of the TinySQL, and the corresponding processing algorithms will70

be integrated with the query processing engine of the TinyDB (see Figure 1).

Also, we will adapt our centralized approach for the processing of dynamical

topological predicates in WSN settings, by providing an alternative, scalable,

distributed implementation.

Figure 1: Query processing mechanism with the introduction of TinyOS.
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Specifically in this paper, in order to efficiently optimize the use of the net-75

work resources and improve the performance of energy consumption and query

response time in WSN, we propose a novel range data aggregation approach by

exploiting spatial structures of sensory data. The contributions of this paper

are summarized as follows:

• We propose effective multidimensional data indexing structures to help80

process spatial queries efficiently. This results in a high-dimensional data

indexing architecture for addressing existing problems and enables us to

present approaches which are more suited in mobility and spatial continu-

ous range queries, than those proposed in previous works. In this scheme,

the indexing scheme equally handles both types of information, and ag-85

gregates them in an energy efficient manner. Our approach also includes

a hierarchical in-network storage that is capable of responding to differ-

ent queries in a timely fashion, with immediate answers to approximate

queries and some types of exact queries.

• In order to determine whether the proposed data indexing algorithms are90

sufficiently generic for commonly used spatial query processing, we evalu-

ate on four data structures, namely: kd-tree, quad-tree, k-means cluster-

ing and Voronoi diagram (VD). VD data indexing model is suitable for

general queries operations, which can, for example, be applied to process

location-based service in the cells in O(log n) time.95

In the next two sections, we present related literature, and relevant materials

on spatial query and key factors that may affect query processing. Section 4

presents our proposed architecture for spatial query processing. In the section,

we also evaluate the applicability of the indexing algorithm on four data struc-

tures. Section 5 presents the findings from our experimental simulation analysis100

and its’ performance analysis. Finally, we conclude the paper in Section 6.
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2. Related work

The quality of a query answer, which we represent by its confidence level,

can be improved in a naive manner by committing more resources towards query

processing (e.g., increasing the number of nodes involved in query’s answer and105

the frequency these nodes participate). In other words, we can increase the

confidence level of the answer of a query if we are willing to devote more energy

and bandwidth resources. However, focusing on the quality of an answer for

a particular query should also take into consideration the Quality of Service

(QoS) provided by the underpinning network. QoS can be expressed using the110

average, median and standard deviation of the confidence levels of the answers

of all possible queries and the lifetime of the sensor networks. Clearly, it is

desirable to have a sensor network that is able to provide “adequate” results for

a prolonged period of time, rather than minimum-error results for a very short

time. In other words, we should be able to accept a slightly lower confidence115

level in order to benefit from a longer sensor infrastructure’s shelf life.

In the literature, there are a number of definitions for the lifetime of a WSN,

such as the time the first node in the network dies, the time when a preset

percentage of the nodes die, and the time the network loses connectivity [9].

These definitions are, in fact, instances of a general criteria by which the life-120

time of a network is considered expired (i.e. QoS degradation of a WSN below

some acceptable threshold). The degradation in QoS can also be expressed ei-

ther in terms of lowered network resolution or by not being able to route query

answer to query initiator, in a timely manner, due to dis-connectivity or rout-

ing holes issues. Either way, various choices of the admissible QoS thresholds125

can be mapped to one of the former definitions of lifetime. Unfortunately, QoS

thresholds are application specific and their relevance can only be discussed in

the context of their application. Arguably, a slightly more generic definition of

the lifetime, which is not explicitly bound to the specifics of the covered phe-

nomenon is the following: the time interval during which the confidence levels130

of the query answers that the network can provide are above some predefined
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thresholds. Our work will rely on the confidence-level criteria, since it provides

a clearer connection between the query answer’s accuracy and the lifetime.

These ideas are not necessarily new as they have been expressed differently

in various contexts, albeit not by means of confidence levels. For example, the135

authors in [10, 11, 12] proposed optimal transmission scheduling for point-to-

point routing with end-to-end delay constraints that relies on delay margins

to extend the NL. In a sense, it fits the definition of the lifetime that we pro-

pose, in terms of confidence levels, since they are leveraging delay margins for

lifetime purposes. This translates into trading (lowering) the confidence levels140

requirements, within admissible bounds, for the same purpose. A separate class

of algorithms concerning the balancing of workload by leveraging end-to-end

delay margins [13, 14, 15] is similar to our proposed approach. Other lifetime

extension techniques rely on various data reductions (e.g. data aggregation and

filtering), in order to reduce the most energy-expensive function of the sensor145

nodes communication [16, 17, 18]. Some of these techniques are lossy, with con-

trolled error bound, which leverage the data filtering principle. Lifetime extend-

ing techniques have been proposed for all networking layers in WSN, namely:

application, network, link and physical. These , in essence, perform the same

task: trade answering precision (confidence levels) for energy efficiency.150

The importance of augmenting query responses with confidence levels has

also been studied. For example, authors of [12, 19, 20] explore how confi-

dence levels can affect data management decisions, and their approaches rely

on the static and dynamic adjustment of the transmission parameters in order

to achieve the highest confidence level when some specific application request.155

Another related work is the QUASAR project [21], which highlights the need to

leverage application’s imprecision to minimize resource consumption and to rep-

resent and handle the flow of data of varying quality. The authors acknowledged

the difficulty of interpreting the results of complex queries by relying solely on

absolute error margins, tied to the application environment specifics. However,160

significant energy and bandwidth resources can be further minimized by low-

ering the minimum required coefficient levels, which has not been addressed in
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the existing literature.

Most existing approaches are designed for small-sized, personal wireless sen-

sor network of sensors. In addition, existing lifetime extending algorithms gen-165

erally rely on the assumption that the level of admissible ”imprecision” is known

apriori, by being hardcoded, pre-configured in the devices, or by being explicitly

declared in the query statement. The first method is less flexible, but never-

theless it should be adopted at all times and used as the default imprecision

margins when users do not specify their own. The second method provides170

the most flexibility in specifying the tolerance margins, but its performance is

limited by the subjective imprecision margins the user tolerates and specifies.

Also, it requires the users to have domain expert knowledge about the intrinsic

parameters of the phenomena that is being monitored in order to choose these

parameters efficiently. This method should be employed only when absolute175

precision is required. For this, it is much easier for the user to be able to alter

(increase or decrease) the default minimum confidence level of the expected an-

swer of a prospective query, which is simpler to understand, normalized value.

Under these considerations, we intend to investigate how to prolong the net-

work’s lifetime without compromising on trade the accuracy of the answer.180

Another important aspect pertaining to the tracking of mobile objects queries

is the choice of an adequate mobility model (e.g. periodical, such as location,

time, and velocity, updates generated by mobile units [22, 23], and fully-known

future trajectories [24, 25, 26]). The main reasons are: (1) limited sensing cov-

erage, memory and power budgets of the nodes in the sensor networks; (2) the185

objects that are tracked need not be cooperative in the sense of communicating

their (location, time) information. Some existing works for spatial-temporal

data for mobile objects in WSN may be readily adapted for processing a NN-

query. For example, the processing of the following query: Q-NN1:“retrieve

Nearest Neighbor of object o1 between 2:30 and 3:00” can be achieved with190

minor modification of some of the results in [27] by enforcing a detection of the

objects within the proximity of the tracked-object (o1) and properly updating

the answer when needed. The local changes of the answer can subsequently be
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transmitted to the (static and or mobile) sink. However, scalability becomes a

problem when processing the K-NN variant or, for that matter, the all-pairs-195

NN [28]. In general, the approaches proposed in the in the Moving Object

Database (MOD) literature [29, 30, 31] cannot be directly ”translated” into

sensor networks settings.

3. Range Queries

There are a number of known challenges when processing spatial-temporal200

range queries in WSN settings, such as those illustrated in Figure 1. Let us

assume that the following query is posted in a dense network: Q-R1:”retrieve

the number of distinct objects inside the region R between 12:00 and 12:30”.

One observation is that some objects, like o1, will need to be tracked for the

purpose of correct maintenance of the query like Q-R1 even when they exit the205

region of interest for the query. Namely, unless o1 is tracked and its identity

maintained by the sensors outside R, it may (leave or) re-enter the region more

than once during the time-interval of interest [12:00, 12:30] and result in an

incorrect update to the answer-set. Another important observation is that,

although Q-R1 seems to be clearly stated, its syntax is, in a sense, not quite210

complete. Note that one of the features offered by TinySQL is that users can

specify certain constructs that influence the processing, such as the sampling

frequency and the duration of a given query.

In the case of Q-R1, although its nature is continuous, distinct syntactic

variations will impose different processing vs. communication trade-offs. For215

example, (1) report the full answer at the end of the time-interval of interest;

(2) report the initial answer and present cumulative updates every 5 minutes; or

(3) report the initial answer and present updates whenever the answer changes.

There have been attempts [29, 30, 31] to design efficient reactive manage-

ment of topological predicates. In such solutions, it is necessary to manage220

the continuous and persistent conditions in order to measure the satisfiability

of such estimation in mobile and dynamic environments. In spatial settings,
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the alongness property has also been investigated both from topological (the

9-intersection model in [32]) and spatial database [33] perspectives. When it

comes to the ”alongness” in mobile environments, in reality one cannot expect225

that a mobile object can move exactly along a particular topological curve (e.g.

a river). Thus, a distance threshold d has been introduced (i.e. for as long

as the object is within distance from a given 2D polyline P, the object will be

assumed to be moving along). Also, one needs to check whether a predicate is

satisfied within a portion t of a time-interval [t1, t2]. As a particular example,230

consider the following request which is important in scenarios like adversarial

environment such as battlefields: Q-R2: “Notify me when the object obj1 is

moving along the polyline P and within distance d less than 90% of the time

between 5:00 and 5:30”.

Figure 2 shows an example scenario, where each circle indicates some update235

sent to the MOD server (e.g. location or time update). In this example, we

assume that they are sent every two minutes. A blank circle denotes (location,

time) pair of no interest for processing Q-R2 because the value of their time

component is outside the time-interval of interest for Q-R2 ([5:00, 5:30]).

The moving towards predication is concerned with detecting if a particular240

mobile object is continuously moving towards a given static entity, like a point-

object, region or a polyline. To illustrate the aspects of the reactive behavior

that are of interest regarding this predicate, let us consider the following query:

Q-R3 ”notify me when the object obj2 is moving towards the landmark LM

continuously for 5 minutes between 5:00 and 5:30”. As observed, Q-R3 is satis-245

fied at 5:18 because between 5:12 and 5:18 the object was continuously moving

towards LM for 6 minutes.

Current solutions for the evaluation of these topological predicates, however,

assume that the location information are sent to a central server before being

processed. Such centralized approaches are not suited in a distributed WSN,250

particularly in dealing with spatial-temporal tracking queries. Specifically, we

require an approach that provideds primitives for implementing the moving

along and moving towards dynamical topological predicates in WSN. Hence, we
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implement a dead-reckoning algorithm for the purpose of estimating the future

locations of the mobile objects. This is necessary to decide when and which node255

should transmit location updates to the sink nodes for processing, and push the

decision processing logic for these topological predicates towards the nodes that

are currently active in the process of tracking a particular moving object, in

order to achieve scalability and de-centralization of the original algorithms.

One main task of a WSN is to respond to the triggered spatial queries. The260

queries may inquire values of the sensed phenomena, either in the entire field

or in a specific region. They may also inquire the location from which a value,

or a range of values, were reported. Spatial queries are more likely to inquire

information about the overall behavior rather than specifics. Also, the reported

values of sensor nodes are generally not accurate due to imperfection and other265

physical aspects. Hence, approximate queries are more suited for WSN, where

the query contains a field to specify an acceptable accuracy level. Hence, queries

are considered as predicates with attributes, as follows: Q(P, L, R, T), where:

P means the sensory phenomenon (e.g., Temperature, Light)

L means a sensor location.270

R means the query within the sensed geometric range (R), and/or, either value

range within the sensed values or an extreme (M, where M = min or M

= max ).

T T means the required time for the query response.

An query example with range constraint would be straightforwardly translated275

to an SQL-like syntax:

SELECTMAX(Sensor.Temerature) FROM Sensor WHERE Sensor.Location

INSIDE RECTANGLE [0, 0], [100, 100] AND Sensor.Time BETWEEN 12/21/2017

and /12/22/2017.
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4. Proposed Spatial Range Query Processing Approach280

Firstly, we intend to investigate the benefits of adopting a modified version of

the probabilistic uncertainty model which will support singleton query results

but augmented with a simple confidence coefficient, rather than a confidence

interval. To support out intentions, let’s consider the following example: in a

military application, a user submits the following informal query: ”retrieve the285

number of enemy vehicles that have been moving towards base station B1 in the

last M minutes and are less than D miles away.” The user, which can be a field

combatant, knows that if, say, n or more enemy vehicles are moving towards,

then he needs to trigger an alarm. Under a point uncertainty model, the an-

swer could be, for example, ”n”, which may, or may not be correct. Adopting290

the interval uncertainty model, the answer of the query may be, for example,

represented as a numerical interval I=[n1, n2], n1 < n < n2, which, considering

the particularities of this query, will not provide sufficient information for the

combatant to trigger the alarm. The implications of such lack of information

can be even deeper: let’s imagine that a meta-trigger is placed in the network295

monitoring the number of enemy vehicles that are moving towards, and the

specification of the trigger indicates that an alarm should be triggered when n

such vehicles are detected. Only a probabilistic uncertainty model may provide

insight onto the likelihood of each possible value in the given answer interval,

but, as we have already mentioned, it can be difficult reason in real time and300

time critical applications, especially when the answer is not as trivial as the

one we considered. We argue that an answer on the form ”n enemy vehicles”

with confidence level l (0 ≤ c ≤ l) represents a better representation on the

answer for most applications and we intend to develop a methodology for query

processing with confidence coefficients, with a specific focus on spatial-temporal305

range monitoring queries. As a justifiable argument is that we can configure the

meta-triggering mechanism with a singleton threshold lt for the answer is l ≥ lt

the alarm should be fired. Moreover, this threshold can be unanimously be set

as default value for all the mete-triggering mechanism that are dispatched in
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the network, regardless of the specifics of the queries.310

We will analyze spatial queries in stages for a better understanding of them.

As is known to all, different numbers of stages can be defined for spatial query

processing in WSN. However, as we have previously stated, these stages can be

further broken down into simpler ones. In this paper, we would specifically ana-

lyze spatial queries from the following six steps: 1) pre-processing 2) forwarding;315

3) dissemination; 4) sensing; 5) aggregation; and 6) return (see Figure 2). In the

step of pre-processing, queries are formatted so that they can be diffused via the

intermediate nodes. Such procedure is usually done in user’s computer, as there

are more resources on this computer than sensor nodes. Also, in the stage of

pre-processing, it is a necessity and a must to perform application-independent320

task, for example, representing the information with max appropriateness and

suitability, so that the queries can be more efficient and less packets will be taken

up. Then comes to the forwarding and dissemination stages, where queries are

forwarded and spread to the region of interest(RoI) from the Originator (the

first node that the query can be received in the network). It is noteworthy that325

these queries are only forwarded and propagated to nodes within the RoI. This

is different from traditional query processing, which requires the dissemination

of queries to all nodes in the WSN through Flooding. Specifically, the purposes

to forward and disseminate queries to all nodes within the RoI are to ensure

the best energy consumption and minimized the number of packets that are330

transferred in the WSN. Then moves on to the sensing stage in which the data

required by the query are collected by the nodes within the RoI and are then

transmitted to the sink node to calculate the query result.

Figure 2: Data aggregation of spatial query processing.
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4.1. Kd-tree Query Processing Routing

The distributed index structure drives efficient processing of queries and335

imposes restrictions on the number of sensor nodes involved. The query problem,

in effect, is finding the data within a specified query range or interval. Usually,

we will regard numerical fields of objects as coordinates (where a point set is

stored in higher dimensions). A set of n points inside a 1D query range can

then be answered in a fast manner, provided that they are preprocessed on the340

real line. That is to say, these points p1, ..., pn will be known in advance and

the query [x, x0] is known later. To solve the query problem, a data structure,

a query algorithm, and a construction algorithm are often used.

Kd-tree represents d-dimensional trees which are general, simple, and ar-

bitrary dimensional. However, its complexity analysis result may not be very345

good for asymptotic search. Kd-tree has extended 1D tree by alternate use of

xy-coordinates to split and cycled the dimensions in k-dimensions. Specifically,

it splits x-coordinate by a vertical line so that half of the points are right and

the other half are left; it splits y-coordinate by virtue of a horizontal line so that

half of the points are above and the other half are below (see Figure 3). Each350

node within this binary tree has two values: split dimension and split value.

In case it is split along x at the coordinate s, points with x-coordinate ≤ s are

included in the left children and the others are included in the right children.

The same principle applies to the split along y. If O(1) points remain, they will

be put in a leaf node, with the data pointing at leaves only and internal nodes355

for splitting and branching. In order to balance trees, median coordinate is used

since splitting-median itself is accessible in either half. The height of the tree is

guaranteed to be O (log n) by using median to split. Then comes two options:

1) cycling through the splitting dimensions; 2) making data-dependent choices

(such as: selecting dimension with max spread).360
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Figure 3: Kd-tree Query Construction.

Kd-tree has a space subdivision by the way that an x- or y-aligned cut is

introduced for each node, and the points on two sides of the cut will then be

passed to nodes in left and right children. The subdivision is composed by

rectangular regions or cells that may be unbounded. Root corresponds to the

entire space where each child shares one of the half-spaces. Different from that,365

leaves correspond to the terminal cells. A general partition BSP is a special

case. Its structure can be constructed in O(n · logn) time in a recursive way.

Then, points need to be presorted by x and y-coordinates, and such two sorted

lists need to be cross-linked. The way to find the x-median is to scan the x list.

Then it comes to the splitting of the list into two, and the use of cross-links for370

splitting of y-list in O(n) time.

4.2. QUAD-TREE PROCESS ROUTING

In a quad-tree, there are exactly four children inside each internal node. In

such a tree data structure, each node represents a bounding box that has some

part of indexed space covered, and has the entire area covered by root node. In375

the structure of a quad-tree, the depth is set as O(log n) for the uniform sensor

distribution. It is simple to insert data into a quad-tree, with the following

three steps taken: 1) starting at the root and identifying which quadrant your

point stays; 2) finding a leaf node through recursing to that node and repeating;
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Algorithm 1 Kd-TreeQuery

Require:

1: P,R P denots a kd-tree’s root and R denotes a range;

Ensure:

2: All the leaves nodes below P which are within the range;

3: if P is a leaf node then

4: Output the nodes stored at P if it is in R;

5: else if area(lc(P)) is completely located in R then

6: OutputSubtree(lc(P));

7: else if area(lc(P)) crosses R then

8: Kd-TreeQuery(lc(P),R);

9: if area(rc(P)) is completely located in R then

10: OutputSubtree(rc(P));

11: else if area(rc(P)) crosses R then

12: Kd-TreeQuery(rc(P),R);

3) putting your point into the list of points of that node. In case that the list380

exceeds the max number of some elements that are pre-determined, the node

needs to be split and then the points need to be moved into the correct sub-

nodes. To query a quad-tree, the following steps are needed: 1) starting at the

root and examining each child node; 2) checking if child node intersects with

the query area. If it does, what needs to do next is recursing to that child node.385

Whenever a leaf node is found, each entry needs to be examined to make it

clear if it intersects with the area being queried for, then return to it if it does.

Then, we can construct the quad-tree in a recursive way, given a list of particle

positions.

Figure 4 depicts the structure of a quad-tree, where, obviously, all inter390

nodes have four children.
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Figure 4: Quad indexing tree.

4.3. K-MEANS CLUSTERING BASED QUERY PROCESSING ALGORITHM

Among the many different choices of learning algorithms, k-means is the

most popular one being adopted for clustering. Considering the fact that highly

correlated measurements are obtained from sensors that are closely located, we395

purport to cluster nodes in accordance with the locations of those nodes and

the similarity of their physical attributes. In addition, as previously stated, it

is unavoidable that a great amount of redundancy exists with regard to the

readings from each sensor over time. Together those constitute the foundations

for modeling the spatiotemporal correlation in data. Therefore, what we need to400

do is to define a feature vector for each node so that entire behavior of that node

can be well reflected. Employing K-means algorithm is helpful in electing the

cluster head in an efficient manner, and in particular, selecting an appropriate

cluster head can exert great impact on the reduction of energy consumption and

the improvement of NL (see Figure 5). This is because the more demanding the405

accuracy and computational requirements are, the greater energy consumptions

will be. Otherwise, developed systems might be used in replace of K-means

algorithm, and then the learning task is performed by centralized and resource

capable computational units.

It is found that the widely employed clustering algorithms in WSN are good410

for the clustering of sensor nodes so as to meet the objectives of scalability

and energy efficiency as well as the election of the head of each cluster. In

recent years, although an extensive number of clustering routing protocols have

been put forward for WSN [34, 35, 36, 37], little of them have considered the
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use of the data science clustering techniques in a direct way. Instead, those415

data clustering techniques are used for the purpose of finding the similarities or

correlations in data between neighboring nodes, and partition sensor nodes into

clusters accordingly. The following is the application of K-means in wireless

networks. In [34, 35, 36, 37], the sensory data is clustered via the distributed

k-means clustering algorithms, and then is aggregated and transimitted towards420

a sink node. The purpose of such summary of data is to ensure the reduction

of communication transmission and processing time, as well as the reduction of

energy cost of the sensor nodes.

It is inappropriate to adopt a centralized method (collecting data from sen-

sors as predetermined and transmitting the collected data to a server for storage425

and querying) for query processing in WSN. This is because in such conditions,

valuable resources will be occupied for transferring large quantities of raw data

to the cloud system, and in most cases, the transfer can be redundant. In fact,

it is a must to save energy in sensor networks so that the lifetime of sensors

can be extended, as those sensors are usually recharged by batteries with low430

capacity. Considering that data processing is a lot cheaper than wireless com-

munication cost, it is not a necessity of transmitting all data to sink node for

processing. Instead, part of data can be transmitted from the sink to the base

station. Under such conditions, the power dissipation can be reduced.

The purpose of K-means is to partition n observations to k clusters, so that435

observations are respectively grouped to the clusters with the nearest mean,

which serve as the prototypes of the clusters. Assume that within a set of

values (x1, x2, ..., xn), each one of them is a multi-dimensional real vector. Then

a k-means clustering is employed to divide such n values into k (k ≤ n) sets

s=s1, s2, ..., sk, hereby minimizing the sum of squares within the cluster.440

The following three parts composes the query processing algorithm: 1) K-

means clustering algorithm, 2) energy-efficient query transmission and 3) result

collection. Upon the user’s specific request on precision, head nodes are selected

to respond to the user’s query, and results are collected in an energy-efficient way

through the clustering algorithm. Based on the simulation results, it implies that445
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Figure 5: Data aggregation example in a clustered architecture, where the nodes are marked

as first level and second level cluster heads.

Algorithm 2 K-means Clustering

1: Select k cluster heads of the n sensors;

2: Associate each node to the closest cluster head;

3: Calculate the initial cost (sum of the Euclidean distances of each point to

its cluster head);

4: repeat

5: Swap a cluster head with a non-cluster head point;

6: Re-compute the cost (sum of distances of points to their cluster heads);

7: until the total cost of the configuration increased
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with head node selection of K-means clustering, the query processing algorithm

not only can ensure a more precise result but also can reduce more energy

consumption than the other algorithms. Specifically, each node performs the

task of sensing and then each node will send the data to its cluster head. Then

the cluster head reconstructs the data sent from all nodes, before its averaging450

all measurements for the reduction of dimensionality. Finally, the cluster head

will compress those data by performing it on the average, subsequent to which

the data will be sent to the sink node.

4.4. VD-based multi-dimensional data indexing Algorithm

In computational geometry, a Voronoi diagram (VD) is one of the most

significant models, and widely used to divide a plane into regions which relies

on the points in a definite subset of the plane. Assume P = p1, p2, ..., pn to be

a set of nodes in the plane, called sites. The VD divides the two-dimensional

continuous space (or any dimensional space) into closed subspaces by equidistant

partitioning between any two points, which is called Voronoi cell. The Voronoi

cell for pi, V (pi), is defined to be the set of nodes q in the plane whose Euclidean

distances between pi and q are smaller than that to any other site. That is, the

formal representation of the Voronoi cell for pi is:

V (pi) = {q|dist(q, pi) ≤ dist(q, pj),∀pj ∈ P, i ̸= j} (1)

Clustering a set of sensors tries to categorize the nodes into their respective

clusters according to the distance to cluster head. In monitoring applications of

IoT, VD partitioning space into dissimilar regions facilitates the sensing task to

the different regions in a distributing way. Sensors from different clusters sense,

process, and transmit data to the intra-cluster head respectively, and then inter-

clusters efficiently perform data-processing to the higher level. This paper has

explored a distributed clustering and hierarchal algorithm which layers sensors

in a large volume Voronoi cells based WSN for the purpose of reducing the total

energy consumption. The key point of this algorithm is VD’s construction, a

k-clustering of P problem, which is to find k clusters (subsets) by partitioning
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P, C1, C2, ..., Ck (see Figure 6). Let us assume µ(C) denotes an intra-cluster

criterion, and δ(C1, C2, ..., Ck) means the inter-cluster criterion. Theoretically,

δ(Ci, Cj) = max{dist(p, q)|p ∈ Ci, q ∈ Cj , i ̸= j} (2)

Figure 6: Centroidal Voronoi tessellation clustering.

The VD is a great distance-based strategy of space division in computational455

geometry. It divides the space into different non-overlapping polygon regions

according to the number of given non-coincident seed nodes. There is one and

only one seed node in every region, and the seed node is the nearest choice to

all planar points in each single region than any other seed nodes. The ways

to calculate VD are various, such as the grappa tree [37]. It is evolved from460

another data structure called link-cut tree that proposed by Sleator and Tarjan.

It extends the given binary tree so that each original node has three linked

nodes. By inserting an additional node to every node that lack of child and add

a parent node for the root node, all original nodes on a tree have three nodes

connected to it. In the extended tree, the new root node and leaf nodes are all465
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external nodes. It performs well on query operation of VD with a first-order

linear complexity at the algorithm level in O(log n) time.

5. Evaluation and Findings

In order to verify the performance of the proposed data indexing structures

for range query processing in WSN, simulation experiments over real data have470

been implemented and the results shown so far are presented and analyzed in

this section. In the follows, we first describe the experimental environments.

Then, the experiments are quantitatively and qualitatively explored.

5.1. SIMULATION SETUP

A simulation prototype was implemented in Matlab. The experimental pa-475

rameters of the energy model are summarized in Table 1. All simulations doc-

umented here are run on a Intel(R) Core(TM) i5-4210U CPU @ 1.70GHz com-

puter configured with 8 GB RAM and having Windows 10 (64 bits) as operating

system.

Table 1: System Parameters and Setting

Parameter Setting

Number of sensor nodes 500

Message size 8 bytes

Transmission distance 50m

Energy cost for radio transmitting a message 19.2uJ

Energy cost for radio receiving a message 3.2uJ

Energy cost for sensing a light intensity 100nJ

Energy cost in radio sleeping 0.016mW

Initial energy budget at each sensor node 1J

5.2. THEORETICAL PERFORMANCE ANALYSIS480

Since search paths have O(log n) nodes in 1D range tree, these O(log n)

subsets can be found in O(log n) time, which means answering range queries in
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O(log n) time. Storing sizes of the sets at nodes needs O(n) space while kd-tree

also needs to store an O(n) space which responses 2D range query in worst-case

time O(
√
n+ k), where k is the output size. Without loss of generality, the 3D485

range search complexity can try and then be deduced. For d-dim range query,

the space complexity of kd-tree is an O(d · n) space and the worst-case time

complexity is Q(n1−1/d+m). By simplification of fractional cascading methods,

for 2D range search, the final query time complexity is O(log n + k), while

space is O(n · logn). Hence, a set of n points in the plane can be responded in490

O(nlog(d−1) n) time into kd-tree of O(nlog(d−1) n) size so that any d-dimensional

range query takes O(log(d−1) n + k) time, where k is the output size.

The distribution of the particles in the bounding box decides the quad-tree’s

complexity. The quad-tree is one of the tree-like hierarchical structure that is

gradually divided from top to bottom, and every node contains at most four child495

nodes. It is suited to two-dimensional spatial data, because the given range of

space is recursively divided into four equal subspaces until the depth of the tree

reaches a defined threshold or meets a planned requirement. The structure of a

quad-tree is not complicated so that it is easy to search and insert a data node

when the spatial data objects are distributed uniformly. However, there may be500

a much deeper level of the quad-tree and the great waste of storage space if the

distribution of the spatial data is not evenly, which makes low query efficiency.

The complexity of inserting all the nodes is O(n log n)=O(n ·b). (Since the max

value of the distinct particles is 2b, and then logn ≤ b).

Before learning some algorithms solving the point-location queries problem,505

we lay the emphasis on the parameters of the clustering algorithms in which

n is the number of nodes and k is the number of clusters. The first algorithm

is k-means clustering algorithm whose time complexity is O(n · k) because of

the complexity of the mathematical model. The second is more efficient and

superior whose time complexity is O(n · logn). Unfortunately, the algorithms510

are difficult to understand using computational geometry. But later a algorithm

called plane sweep was invented by Steven Fortune, whose time complexity is

similar to the former one but easier to understand. Finally the most efficient
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algorithm called incremental algorithm was invented, the time complexity is

O(log n).515

5.3. IMPLEMENTATION AND PERFORMANCE EVALUATION

To realize a more efficient query processing, a hierarchical index structure

is constructed. The distributed index tress then drives efficient processing of

queries and imposes restrictions on the number of sensor points involved. For

queries whose results have already been stored in the index structure, the results520

can be acquired by accessing one or some index nodes rather than numerous sen-

sor nodes. VD data indexing algorithm has proven to perform well with regard

to the latency and communication cost of a great variety of queries. The selec-

tion criterions may cover the following several metrics, such as query responding

delay, energy consumption, as well as average network traffic. Specifically, the525

network traffic refers to the average number of messages forwarded and sent by

all sensors, and it can greatly affect energy efficiency, which is the reason it is

taken as the criterion for performance evaluation. The query responding delay

refers to the time for query responding from the issuing of the query till the

user’s receiving of results. However, in our simulation, we have not taken the530

computation delay of sensor nodes into consideration, and the query responding

delay is evaluated by the number of hops that lead to the longest path to trigger

a query and receive the feedback.

The aggregated data (max, minimum, and average) needs to be calculated by

each attribute of each sensor node on a periodical basis. And an update interval535

is specified by the administrator as much larger than the sensing interval. After

each update interval ends, the aggregation including min, max, and average

values of that interval, is sent by one node to its parent node within the index

structure. If the sensing interval, for example, is set as 10 minutes, and the

update interval of the index is set as 2 hours. Given different number of cluster540

levels in WSN, we can demonstrate how the increase in cluster levels lead to

the reduction of energy cost in WSN. The following Figure 7 has illustrated the

decrease of energy consumption goes along with the increase of number of levels
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in the hierarchy.

Image the case to process 1000 queries during 72 hours, as has shown in545

Figure 7. The location condition in a query determines such parameter. It is

clear to witness an obvious huge increase in network traffic of flood, along with

the increase of involved node percentage. This is because all the involved nodes

are supposed to report results. We then have made a comparison between the

four data indexing methods, and under the circumstance that the query region is550

flooded by query node, and corresponding data are sent back to the query node

by all sensor nodes that have query conditions satisfied. In order to evaluate the

proposed multi data indexing methods, 1000 queries have been performed. As

presented in Figure 8, the accumulative total network traffic is less for the VD

with data indexing scheme than the other three schemes, due to the fact that555

query optimization has avoided the repeated access to the same data that are

shared by multi queries. Moreover, the more the queries are, the more energy

the multi query optimization can decrease, since index structure have already

saved more results.

As presented in Figure 9, it is implied that the larger the network size is,560

the longer the query responding delay will be. This is attributed to the fact

which the length of paths increases along with the WSN size when it comes

to the sending of queries and receiving of results. Compared to the other data

indexing methods, VD manages to realize a shorter delay. The main cause

is the index structure can help it acquire partial or all results and it has no565

requirements to search all satisfied sensor nodes. To conclude, VD data indexing

structure is suitable to be applied for large-scale networks, given its quick and

energy-efficient processing of spatial range data query.

6. Concluding Remarks

IoT application will increasing as our society becomes more digitalized, for570

example in industry 4.0 and beyond. Hence, we need approaches that allow us to

achieve low cost data sensing, collecting and processing, as well as aggregation.
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Figure 7: Total Energy consumption vs. number of levels in the layer hierarchy.

Figure 8: Accumulative network traffic of data indexing structures with multi query optimiza-

tion strategy.
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Figure 9: Query responding delay of variant sensor nodes in WSN.

In this paper, we proposed an architecture for distributed data indexing and

evaluated its utility using simulations. There are, however, limitations in using

simulations in the evaluation. Hence, one possible extension of this work is to575

implement a prototype of the proposed architecture, in collaboration with a real-

world service provider. This will allow us to evaluate its utility in a real-world

environment.
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In this paper, in order to efficiently optimize the use of the network resources and improve 

the performance of energy consumption and query response time in WSNs, we propose a novel 

range data aggregation approach by exploiting spatial structures of sensory data. The contributions 

of this paper are summarized as follows: 

We propose effective multidimensional data indexing structures to help process spatial 

queries efficiently, which provides a high-dimensional data indexing architecture for tackling the 

problems and enables us to present approaches which have much more applicable to mobility and 

spatial continuous range query than those proposed in previous works. In this scheme, the 

indexing scheme equally handles both types of information, and aggregates them in an energy 

efficient manner, providing a hierarchical in-network storage that is capable of timely responding 

to different queries,and further able to provide immediate answers to approximate queries and 

some types of exact queries. 

In order to prove that the data indexing algorithms are generic enough to fit a wide variety of 

the commonly used spatial query processing,we present the applicability of the algorithm on four 

data structures:kd-tree, quad-tree, k-means clustering and Voronoi diagram (VD).  VD data 

indexing model is suitable to general queries operations, which can, for example, be applied to 

process location-based service in the cells in O(log n) time. 

Robust performance analysis is performed for the effect of each data structure in the data 

indexing. Our simulation results show the efficiency of the presented algorithm, in respect of 

query response time, and maintenance energy cost. 
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