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Abstract

Over the last decade, III-V heterostructure nanowires have attracted a surge of

attention for their application in novel semiconductor devices such as tunneling field-

effect transistors (TFETs). The functionality of such devices critically depends on the

specific atomic arrangement at the semiconductor heterointerfaces. However, most of

the currently available characterization techniques lack sufficient spatial resolution to

provide local information on the atomic structure and composition of these interfaces.

Atomic-resolution spectrum imaging by means of electron energy-loss spectroscopy

(EELS) in the scanning transmission electron microscope (STEM) is a powerful tech-

nique with the potential to resolve structure and chemical composition with sub-Å spa-

tial resolution, and to provide localized information about the physical properties of the
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material at the atomic scale. Here, we demonstrate the use of atomic-resolution EELS

to understand the interface atomic arrangement in three-dimensional heterostructures

in semiconductor nanowires. We observed that the radial interfaces of GaSb-InAs

heterostructure nanowires are atomically abrupt, while the axial interface in contrast

consists of an interfacial region where intermixing of the two compounds occurs over

an extended spatial region. The local atomic configuration affects the band alignment

at the interface and hence the charge transport properties of devices such as GaSb-

InAs nanowire TFETs. STEM-EELS thus represents a very promising technique for

understanding nanowire physical properties, such as differing electrical behavior across

the radial and axial heterointerfaces of GaSb-InAs nanowires for TFET applications.

Keywords

GaSb - InAs, III-V nanowire, heterointerface, aberration-corrected STEM, atomic-resolution

EELS, spectrum imaging

Heterojunctions in semiconductor materials play an increasingly crucial role in a wide

variety of semiconductor devices, from lasers1,2 to photovoltaics3 to many types of transis-

tors4–6 where the potential to control the electronic behavior by tuning band alignments

opens up a wide range of possible uses. Nanostructures such as semiconductor nanowires

have shown particular promise for heterojunction engineering, due to both the increased free-

dom in material design afforded by their small dimensions (as for example in dislocation-free

lateral strain relaxation), and to the dependence of band structures on dimensions (owing to

quantum size effects). The behavior of the resulting semiconductor device depends critically

on the properties of the heterojunction, which in turn is determined by the local atomic

arrangement at the junction. The development of new applications based on nanostructures

such as heterostructured semiconductor nanowires thus demands the availability of charac-

terization methods that can determine the atomic arrangement with high precision on a very
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local, atomically-precise scale.

The realization of the structural and compositional aspects of this paradigm at the atomic

level, however, has been a challenge since most of the characterization techniques are not

able to provide the necessary information with sufficient spatial resolution. Among cur-

rently available methods, scanning probe microscopy (SPM) techniques can reach atomic

resolution, but can only provide information on the surface structure. Nanobeam X-ray

scattering, atom probe microscopy techniques and secondary ion mass spectroscopy (SIMS)

can provide information about the volume; however, their spatial resolution cannot reach

the atomic level. In this context, spectrum imaging by means of electron energy-loss spec-

troscopy (EELS) is known as a powerful method for determination of the atomic structure

of such complex materials. Thanks to recent technological advancements, i.e. aberration

correction and monochromation in scanning transmission electron microscopy (STEM), it

is now possible to obtain sub-0.5-Å-sized electron probes, and hence, the spatial resolution

of EELS has increased dramatically down to the atomic scale. Therefore, individual atomic

columns and even single atoms can be identified.7–9 Atomic-resolution EELS was first shown

in the pioneer works of Batson10 and Browning et al 11 in 1993, and more than a decade

after, it was used by Varela et al for chemical identification of atomic columns in SrTiO3

in 2004.12 Spectrum imaging, however, was first performed in 2007 by Bosman et al on

Bi0.5Sr0.5MnO3
13 and Kimoto et al on La0.8Ba0.2MnO3.

14 Ever since, the technique has been

used for the characterization of several layered material, especially oxides with large lattice

distances such as BaTiO3,
15–18 and recently on tetrahedrally-coordinated semiconductors

such as selenides.19,20

The application of atomic-resolution EELS to complex nanostructures is promising, since

unlike the bulk materials and thin films studied to date, nanostructures generally do not

require complex STEM sample preparation that can damage and change the properties of

the heterojunction. The potential to study complex ’as grown’ nanostructures is thus a

significant advantage. On the other hand, ’as grown’ structures are particularly challenging
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to characterize for several reasons.

On the one hand, the thickness of the nanowires should comply with the thickness require-

ments of atomic-resolution EELS. Thicker samples increase multiple scattering and hence

the background of the spectra, and decrease the signal-to-noise ratio. On the other hand,

small lateral dimensions in nanowires (and in general 1D nanostructures) can lead to less

mechanical stability and consequently sample drift. In comparison with layered samples, es-

pecially when they stick out from the lacey carbon grids (preferred since carbon background

signal is avoided), nanowires are much less stable. They can move or roll on the grid or

oscillate during scanning. This can also be the case with nanoparticles, although, nanopar-

ticles have the advantage of being fully-supported by a thin amorphous grid.21,22 Finally,

as-grown nanostructures most often have complex geometry with non-uniform thickness in

the direction of interest (electron beam direction), and typically also varying composition

along multiple axes, often including the beam direction. Therefore, the suitability of this

technique for complex structures such as heterostructure semiconductor nanowires has not

yet been fully established.

In this study we demonstrate the application of atomic-resolution EELS to determine lo-

cal atomic-scale composition of interfaces in GaSb-InAs heterostructure nanowires containing

both axial and radial heterojunctions. This material system exhibits a broken type-II band

alignment and has proven promising for low-power electronic devices such as tunneling field-

effect transistors (TFETs)23,24 and Esaki tunnel diodes.25 The properties and performance

of this heterostructure system are known to be critically sensitive to the structure of the

heterojunction, including its abruptness or atomic intermixing as well as to the specifics of

the chemical bonding/polarity at the junction. Although the heterointerfaces in GaSb-InAs

nanowires have in principle proven functional in both the axial and radial junctions, full

development of any device based on this structure will require detailed characterization of

the junction properties as a function of fabrication conditions.
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Here we demonstrate that interpretable atomically-resolution compositional information

can indeed be obtained on axial and radial heterojunctions in InAs-GaSb nanowires with

complex geometry, and, varying thickness and composition in the beam direction. The

critical technical parameters include a relatively low electron accelerating voltage (100 kV,

which minimizes sample damage in these relatively beam-sensitive materials), an extremely

low-drift sample stage (below 0.5 Å in a typical 5 min acquisition time). We determine that

for the investigated sample, the vapor-liquid-solid (VLS)-grown axial heterojunction exhibits

atomic intermixing on a few-nanometer scale, making it considerably less abrupt than the

simultaneously-grown radial heterojunction, which appears to be atomically abrupt. This

information is important input for the development of nanowire-based devices, and moreover

definitively demonstrates the applicability of this technique for nanostructure heterojunctions

in general, including those in beam-sensitive, narrow-bandgap, narrower-lattice-parameter

materials.

A schematic of the GaAs-GaSb-InAs heterostructured nanowires is shown in Figure 1a

together with an overview image acquired by scanning electron microscopy (SEM, ZEISS

Leo Gemini 1560 operated at 15 kV). Nanowires are grown on 〈111〉B-oriented GaAs wafers

by metal organic vapor phase epitaxy (MOVPE) in an AIXTRON 3× 2′′ close couple show-

erhead reactor operated at a reactor pressure of 100 mbar and a total hydrogen carrier gas

flow of 8 standard liters per minute (slm). Growth is performed following the VLS growth

mechanism using size-selected Au aerosol particles26 with a nominal diameter of 18 nm as a

catalyst material. After an annealing step in an H2/AsH3 atmosphere for 7 minutes at a set

temperature of 630°C the GaSb-InAs nanowires are grown on GaAs stems (grown at a set

temperature of 510°C) since the growth of Au-seeded antimonide nanowires suffers from nu-

cleation issues.27,28 When the GaSb nanowire is next grown (also at 510°C), it covers a small

segment of GaAs stem, and the diameter increases. Finally, InAs growth is performed at a set

temperature of 450°C with the InAs deposited on GaSb in two ways: (i) as an axial segment

on top of the GaSb nanowire through VLS growth, and (ii) as a thin InAs shell that covers
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the nanowire radially via vapor-solid (VS) growth. The total thickness of the GaSb-InAs

core-shell segment is below 40 nm. Trimethylgallium (TMGa), trimethylindium (TMIn),

arsine (AsH3), and trimethylantimony (TMSb) were used as precursor materials for Ga,

In, As, and Sb respectively. A detailed flow chart for the growth of the GaAs/GaSb/InAs

heterostructured nanowires is given in Figure 1b with the corresponding molar fractions

(χ) being χTMGa = 1.3× 10−5 and χAsH3
= 5.6 × 10−4, respectively for the GaAs stem

growth, χTMGa = 8.9× 10−6/6.4× 10−4 and χTMSb = 4.7× 10−5/2.3× 10−5 , respectively

for the GaSb nucleation and growth, and χTMIn = 1.9× 10−6 and χAsH3
= 4.8× 10−4, re-

spectively for the InAs growth.

EELS maps and high angle annular dark field (HAADF) STEM images were collected

on two dedicated STEM Nion microscopes operating at 100 kV, hereafter denoted US100

and US100MC. The former is a Nion UltraSTEM100, equipped with a third generation Nion

probe corrector, a Gatan UHV Enfina EELS spectrometer, and operated here at 100 kV

acceleration voltage. The latter is a Nion UltraSTEM 100MC ’HERMES’, equipped with a

newly-developed C5 Nion probe corrector (full correction up to 6-fold astigmatism C5,6) and

a UHV Gatan Enfinium ERS spectrometer optimized for high energy resolution with high-

stability electronics.29 Such mid-range voltage is used to minimize beam knock-on damage

while retaining very high spatial resolution, 0.78 Å demonstrated at 100 kV, thus perfectly

suited to the diamond-like structure of these III-V nanowires). Also ultra-high vacuum

(UHV) system is utilized to avoid specimen contamination. Additionally, the specimens are

baked prior to the insertion. On the other hand, remarkable environmental conditions are

considered in order to provide ideal conditions (magnetic fields, sound, and temperature

control) for lengthy analytical experiments without suffering from drift.

EEL spectrum image datasets were dark-subtracted and then de-noised using Principal

Component Analysis (PCA) as implemented in the MSA plugin for Gatan’s Digital Mi-

crograph software (commercially available from HREM Research Inc.).30 EELS maps are

generated by (i) subtracting the decaying background using a power law, by taking a typical
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50-70 eV window before the M4,5 edges of In (443 eV) and Sb (528 eV), and L3 of Ga (1115

eV) and As (1323 eV), then (ii) extracting the signal by placing a 50- to 70-eV-wide win-

dow starting at the mentioned edges. 3D atomic models were created by using the Rhodius

software package.31

Before moving on to the atomic structure of the heterointerfaces, we describe the entire

material system in order to clarify the morphology. In Figure 2 we show the overview EELS

maps of the axial and radial interfaces of a GaAs-GaSb-InAs heterostructure nanowire,

revealing the transition from GaAs to GaSb and then to InAs. The EELS maps taken from

the lower part of the nanowire (Figure 2i-o) reveal how GaSb and InAs cover the GaAs stem.

Apparently, while the GaSb grows axially on the GaAs stem, it also covers a part of the stem

at a much slower rate. This down-growth follows a three-fold symmetry as can be seen in

the EELS maps confirmed by the HAADF-STEM intensity profiles shown in the Supporting

Information (SI) in Figure SI1. Afterwards, InAs also covers a part of the stem in the same

fashion. This three-fold symmetry can be related to the surface polarity (polarity is the

internal electric field of the crystal caused by the asymmetry in the charge distribution of a

cation-anion bond in tetrahedrally coordinated compound semiconductors such as III-V and

II-VI.32 The terminating element at the surface determines the surface polarity). The GaAs

stem forms side facets from the {112} family which are semi-polar planes: three of them are

A-polar while the other three are B-polar. According to the polarity analysis shown in Figure

SI2, Ga-polar surfaces show a higher degree of overgrowth. This is in good agreement with

the higher surface energy of Ga-polar surfaces in comparison with the As-polar ones.33 The

InAs radial overgrowth on the GaSb segment does not show such three-fold symmetry. A

similar InAs thickness on both sides of the nanowire instead indicates rather similar growth

rates on all facets. This is reasonable since VLS-grown GaSb under these conditions typically

exhibits {110} facets,34 which are non-polar.

The upper axial/radial interface between GaSb and InAs is shown in Figure 2b-h. The

EELS maps reveal that the axial interface is not a flat (1̄1̄1̄) surface. This also suggests a
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three-fold symmetry along the nanowire growth axis, similar to the InAs neck of the nanowire

below the Au droplet. The outer morphology of the top part (neck) of the nanowire (outer

InAs surface) indicates three {111} and three {100} facets. The inner morphology (GaSb-

InAs axial interface), according to the EELS maps, is consistent with three {122} and three

{311} facets in the same three-fold-symmetry fashion as the lower part mentioned above.

In the overview maps both the radial and axial interfaces seem to show abrupt compo-

sitional transitions. This is consistent with previous energy-dispersive X-ray spectroscopy

(EDX) analysis on similar structures, which indicated interfaces apparently sharp within

an estimated resolution limit of about 3 nm.34 As mentioned above, such overview maps

as given in Figure 2 provide information about the inner morphology and the facets at the

heterointerfaces. However, for more detailed information about the quality and composition

of the heterointerfaces, we need to resolve the structures at the atomic scale. Therefore, in

the following we focus on atomic-resolution EELS mapping of such interfaces.

Figure 3a shows an overview HAADF-STEM image of the GaSb-InAs radial heterostruc-

ture, with a high-resolution close-up view of the radial heterojunction section indicated by

the white box shown in Figure 3b. Atomic-resolution EELS maps of the interfacial region

indicated in Figure 3b are displayed in Figure 3c-i. They reveal an abrupt transition from

GaSb to InAs at the position of the heterojunction. By overlaying each pair of elemental

maps we create composite color images of Ga-Sb (Figure 3c,e), and In-As (Figure 3d,f). In

these composite maps we clearly visualize the III-V dumbbell units (Figure 3g and Figure 3h,

showing Ga-Sb and In-As dumbbells, respectively) revealing the B-polarity in the growth

direction and A-polarity in this particular radial direction. This conclusion is consistent

with a visual inspection of atomic-resolution HAADF-STEM images, in which the heavier

element in the dumbbell pair is expected to appear brighter (Figure 3b). By overlaying

the EELS maps of all four elements (Figure 3i) we determine that at the interface there

is only one atomic bilayer in which the signals of all four elements are detected. This is

attributed to the 3D morphology of the investigated core-shell structure. As the side facets
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of the nanowire are of the {110} plane family (Figure SI2), the InAs-GaSb interface imaged

from [011̄] zone axis (ZA) is in fact a corner where the two {110}-type facets meet (the

side facets are not parallel to the viewing direction). Moreover, the shell covers the entire

core structure. Therefore, in the region close to the interface the core is rather thin and in

size comparable with the shell, which makes this atomic bilayer appear as a mix of the two

compounds. In addition, weak signals of In and As can also be detected from the region of

GaSb core farther from the border. They originate from the InAs shell covering the entire

structure. This is in contrast to the InAs part where no Ga or Sb signal can be detected since

only the InAs shell is probed. In Figure 3j-m we show the extracted EELS signals of the

four elements from the regions indicated by 3x3 pixel squares. Note that a minimum signal

of In and Sb can be detected away from these atoms which is due to the delocalization effect

of the EELS signals.35 Being aligned to a specific zone axis also adds complexity in that the

propagation of the beam and associated channeling effects would need to be considered to

fully quantify the resulting maps. In addition, delocalization affects low energy edges more

strongly, and is therefore expected to be more pronounced for Sb and In than for Ga and As

in the present material system. The intensity scales are shown in Figure 3 beside the EELS

maps. The minimum Ga signal detected at the right side of the map, the furthest point from

the heterointerface and the core, in only 2% of the maximum counts. For Sb this minimum

increases to 13%. In the case of In and As, the minimum counts, detected from the left side

of the map, are much higher (18% for As and 22% for In), as the thin InAs shell around the

core still contributes to the recorded signal. Due to complex beam propagation and dynam-

ical effect, the precise (and indeed quantitative) interpretation of atomically-resolved EELS

data would normally require a careful comparison to inelastic image simulations36 or the use

of a recently proposed inversion procedure.37 Beam channeling could in particular account

for the observed diffuse nature of the axial interface, at least in part and we are exploring

the use of these numerical techniques to provide further insight into the precise structure of

the heterointerfaces in this system. Nevertheless, our results still highlight clear differences,

9



within the same nanowire and in otherwise identical condition, between the diffuse axial in-

terfaces which retain the cation dumbbell polarity and the sharp radial interfaces for which

we demonstrated a striking compound transition.

After the thorough study of the radial heterointerface between GaSb and InAs, we now

move to the discussion of the axial interfaces. Atomic-resolution EELS analysis of the axial

heterojunction is shown in Figure 4. In contrast to the radial heterointerface, intermixing of

the two compounds occurs along the axial direction, despite this interface appearing sharp at

lower resolution spectrum imaging shown in Figure 2. A part of the axial interface is shown

in the high-resolution HAADF image in Figure 4b, with the interfaces (as determined in

Figure 2) indicated by dashed lines as a guide to the eye. Figure 4c-h show the EELS maps

obtained from the axial GaSb-InAs heterointerface, from the region indicated by the white

rectangle in Figure 4b. Note that the data presented here were systematically recorded near

the lateral facet where the nanowire becomes thinner, in order to provide a better clarity

and reliability of the extracted chemical maps. At this interface, some atomically-localized

Ga and Sb signals can be seen in the EEL spectra above the interface between the GaSb and

InAs, suggesting some strong intermixing of the two compounds at the beginning of InAs

segment. A gradual decay of Ga and Sb signals towards the top can be seen in Figure 4c and

e, respectively. We attribute this to the residual Ga and Sb atoms present in the Au droplet

during the VLS growth of the InAs segment. Although residual Sb in the InAs segment is

consistent with previous reports, the intermixing of Ga/In occurs only in the first few atomic

layers and was thus beyond the resolution limit of previous investigations.34 Nevertheless,

this intermixing in the first layers has significant implications for the band structure and

properties of the heterojunction.

Another point to take into account is the relatively strong signal of As in the GaSb region.

This signal partially originates from the InAs shell that is covering the entire GaSb segment.

However, towards the bottom of the investigated segment the In signal decays faster. This

suggests the possible interdiffusion of the group V element, where some As diffuses backwards
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into the grown GaSb segment. Although the As signal is strong in the first few nanometers

below the axial heterointerface, it decreases considerably just below this interfacial area as

shown in the atomic-resolution EELS maps in Figure SI3. In comparison with the EELS

maps in Figure 3, the signal count minima of the elements are much lower as indicated in

the corresponding intensity scales. This is due to the fact that the investigated area (the

EELS maps) in Figure 4 extends further away from the axial interface and thus EELS signal

delocalization does not play a role. Therefore, the minima of In and As signals (8% and 13%

of the maxima, respectively) detected from the bottom-most part of the map, is due to the

actual presence of the elements. Moreover, it is worth noting that these elemental signals

are highly localized to the atomic columns. Therefore, even with delocalization playing a

role, significant amount of the elemental signals are detected from the corresponding atomic

columns (both Ga and In from group III atomic columns, and Sb and As from group V

atomic columns). The EELS signals of the four elements from the indicated regions are

shown in Figure 4i-l.

Although the axial and radial heterojunctions are formed simultaneously in the growth

reactor, the analysis carried out here indicates that they differ significantly at the atomic

scale. There are several reasons for this. The group III intermixing can most likely be

attributed to a ’reservoir effect’ in the Au droplet, where residual Ga and Sb atoms are

retained slightly past the point of switching. This effect is known to cause intermixing

and significant interfacial grading in many semiconductor heterostructures, including Si-

Ge,38 InAs-InP,39 InAs-GaAs,40 and GaAs-GaP nanowires.41 Previous investigations have

consistently found the Ga-In switch to be significantly sharper than the corresponding In-Ga

switch,42,43 but here we demonstrate that some very local intermixing occurs in the former

case as well. The apparent interchange of group V elements (indicated by the decreasing As

signal downwards from the apparent heterojunction) most probably has a different origin.

The different growth directions of the axial and radial structures might be critical in this

case, with the axial polar direction exhibiting significantly more interdiffusion.
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The results discussed here demonstrate the need for very high spatial resolution and local

compositional information to understand the heterjunctions in complex nanostructures. In

fact, atomic-resolution EEL spectrum imaging is the only available technique that can pro-

vide atomically-resolved information about the chemical signatures at the heterointerfaces

of such structures with complex 3D geometry. It should be noted that recent technical de-

velopments have made chemical mapping using energy-dispersive X-ray spectroscopy (EDX)

possible at atomic resolution.44,45 For relatively heavy elements such as those present in our

system, and for which X-ray spectroscopy is traditionally considered favorable, this technique

would have also been perfectly suited. As with EELS, however, very few real-life example

applications on III-V systems have been reported,46 as the technique is getting more widely

used and its advantages and limitations are being investigated. Arguably, and in spite of

the much higher count rates provided in particular with multi-detector geometries, very high

beam currents are typically recommended for EDX mapping within timeframes comparable

with EELS experiments, which in some cases can be detrimental and lead to sample damage.

In summary, we use atomic-resolution aberration-corrected STEM/EELS spectrum imag-

ing to obtain crucial experimental spectroscopic information about the chemical and struc-

tural aspects of the heterointerfaces in a complex GaSb-InAs nanostructure of interest for

low-power electronics applications. Although the material system is challenging for mapping,

we can maximize information content, by paying great attention to using appropriate ex-

perimental conditions (minimizing knock-on damage, contamination, and drift). We demon-

strate, for the example system of GaSb-InAs axial/radial heterostructure nanowires, that

the interfaces along different axes in the same nanostructure can be analyzed and compared.

In this case, we observe that the radial heterointerface is atomically sharp, while the axial

interface, which is not optimized, exhibits intermixing and complex composition especially

in the first atomic layers. The abruptness of the radial interface and the intermixing of

the axial one have important implications for the band structure and for understanding the

electronic behavior of the junctions. This method, in addition, opens up the possibility
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of direct measurement of the electronic band structure at the atomic scale by means of

monochromated low-loss EELS mapping.47 It has the potential to reveal the differences of the

band gap alignment across the axial and radial heterointerfaces. Moreover, by improving the

tilting features, one can attempt discrete tomography EEL spectrum imaging approaches in

order to reconstruct the 3D heterointerfaces at the atomic scale, although detailed inelastic

images simulations would be necessary to reach a faithful reconstruction - which may be

computationally prohibitive in all but a few cases.

The information provided by this method can facilitate the precise study and understand-

ing of the growth mechanisms, through which we can obtain full control over the chemical

composition of the heterostructured systems. Moreover, detailed analysis should in principle

allow us to couple these growth mechanisms to resulting electronic properties. The results

shown here indicate the methods are applicable not only to this specific material system, but

to a wide variety of nanostructures with varying geometry and composition along multiple

axes.
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Morphology

Figure SI1 confirms the three-fold symmetry of the down-grown GaSb/InAs cover on the

GaAs stem, as shown in Figure 2 and discussed in the paper. The first intensity profile

reveals the symmetric hexagonal cross-section of the GaSb-InAs core-shell structure. The

second and third intensity profiles, however, indicate the three-fold symmetry in which the

GaSb and InAs cover only three of the lateral facets of the GaAs stem.

Figure SI2 shows that the three covered facets of the GaAs stem are Ga-polar.

EELS maps below the axial heterointerface

Figure SI3 shows EELS maps obtained from the area below the axial GaSb-InAs heteroint-

erface. A few nanometers below this interfacial region, the As signal drops significantly. The

In signal already dropped earlier as shown in Figure 4. There is always a minimum amount

of energy-loss electrons related to the In and As edges, which are originated from the thin

InAs shell around the GaSb core.

This material is available free of charge via the Internet at http://pubs.acs.org/.
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Figure 1: (a) SEM micrograph of GaSb-InAs heterostructure nanowires grown on GaAs
stems on a 〈111〉B-oriented GaAs wafer, (b) schematics of the precursor molar fractions and
temperature of the growth process
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Figure 2: Overview EELS maps of a GaAs-GaSb-InAs heterostructure nanowire (a)
schematic illustration of the nanowire showing the inner morphology and the crystallographic
facets, (b) HAADF-STEM image of the upper part of the nanowire associated with (c-h)
the corresponding EELS maps of the four elements: (c) Ga in blue, (d) Sb in yellow, (e)
In in red, (f) As in green, (g) Ga and In, (h) In and Sb; (i) HAADF-STEM image of the
upper part of the nanowire associated with (j-o) the corresponding EELS maps of the four
elements: (j) Ga in blue, (k) As in green (l) In in red, (m) Sb in yellow, (n) Ga and In, (o)
In and Sb.
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Figure 3: Atomic-resolution EEL spectrum imaging of the GaSb-InAs radial heterointer-
face (a) low-magnification HAADF-STEM image showing the overview of the nanowire, (b)
atomic-resolution HAADF-STEM image of the radial heterointerface revealing the nanowire
polarity, (c-i) EELS maps at the radial heterointerface (c) Ga in blue, (d) In in red, (e) Sb in
yellow, (f) As in green, (g) Ga and Sb, (h) In and As, and (i) all four elements, (j-m) EELS
signals corresponding to the indicated 3x3 pixel squares in (c-f).
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Figure 4: Atomic-resolution EEL spectrum imaging of the GaSb-InAs axial heterointer-
face (a) low-magnification HAADF-STEM image showing the overview of the nanowire, (b)
atomic-resolution HAADF-STEM image of the axial heterointerface, (c-h) EELS maps at
the radial heterointerface (c) Ga in blue, (d) In in red, (e) Sb in yellow, (f) As in green,
(g) In and Sb, (h) Ga and As, (i-l) EELS signals corresponding to the indicated 12x12 pixel
squares in (c-f).
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Figure SI1: (a) HAADF-STEM image of a GaAs-GaSb-InAs heterostructure nanowire with
(b-d) the corresponding intensity profiles
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Figure SI2: (a) HAADF-STEM image of a GaAs-GaSb-InAs heterostructure nanowire show-
ing the polarity (inset) and (b) schemes showing the polarity of the lateral facets
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Figure SI3: Atomic-resolution EEL spectrum imaging of the area below the GaSb-InAs
axial heterointerface (a) low-magnification HAADF-STEM image showing the overview of
the nanowire, (b) atomic-resolution HAADF-STEM image of the axial heterointerface, (c-h)
EELS maps at the radial heterointerface (c) Ga in blue, (d) In in red, (e) Sb in yellow, (f)
As in green, (g) In and Sb, (h) Ga and As
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