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ABSTRACT 

Reaction and deformation microfabrics provide key information to understand the 

thermodynamic and kinetic controls of tectono-metamorphic processes, however they are 

usually analysed in two dimensions, omitting important information regarding the third 

spatial dimension. We applied synchrotron-based X-ray microtomography to document the 

evolution of a pristine olivine gabbro into a deformed omphacite-garnet eclogite in four 

dimensions, where the 4
th

 dimension is represented by the degree of strain. In the investigated 

samples, which cover a strain gradient into a shear zone from the Western Gneiss Region 

(Norway), we focused on the spatial transformation of garnet coronas into elongated clusters 

of garnets with increasing strain. Our microtomographic data allowed quantification of garnet 

volume, shape and spatial arrangement evolution with increasing strain. We combined 

microtomographic observations with light microscope- and backscatter electron images as 

well as electron microprobe- (EMPA) and electron backscatter diffraction (EBSD) analysis to 

correlate mineral composition and orientation data with the X-ray absorption signal of the 

same mineral grains.  

With increasing deformation, the garnet volume almost triples.  In the low strain domain, 

garnets form a well interconnected large garnet aggregate that develops throughout the entire 
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sample.  We also observed that garnet coronas in the gabbros never completely encapsulate 

olivine grains. In the most highly deformed eclogites, the oblate shapes of garnet clusters 

reflect a deformational origin of the microfabrics. We interpret the aligned garnet aggregates 

to direct synkinematic fluid flow and consequently influence the transport of dissolved 

chemical components.  EBSD analyses reveal that garnet show a near-random crystal 

preferred orientation that testifies no evidence for crystal plasticity. There is, however 

evidence for minor fracturing, neo-nucleation and overgrowth. Microprobe chemical analysis 

revealed that garnet compositions progressively equilibrate to eclogite facies, becoming more 

almandine-rich. We interpret these observations as pointing to a mechanical disintegration of 

the garnet coronas during strain localisation, and their rearrangement into individual garnet 

clusters through a combination of garnet coalescence and overgrowth while the rock was 

deforming. 

 

Key words:  

Synchrotron X-ray microtomography; garnet; high-pressure shear zone; Western Gneiss 

Region; strain localisation; 

 

INTRODUCTION 

Synkinematic reaction microfabrics carry important information on the kinetics, timing, and 

mechanics of tectono-metamorphic processes. The spatial arrangement of reaction products 

reflects directions and magnitudes of mass and element transport. An assessment of the 

geometry of reaction microfabrics is therefore a critical component in reconstructing the 

tectono-metamorphic evolution of a rock. Despite being routinely interpreted in 

metamorphic and structural studies, reaction and deformation microfabrics are usually 

described in two dimensions, which could lead to incorrect petrographic and structural 

interpretations. In this study, we use garnet to explore the significance of a 3-dimensional 

(3D) approach to the description of synkinematic reactions and deformation microfabrics. 

In nature, garnet represents an extremely versatile recorder of metamorphism (Baxter & 

Scherer, 2013) and in particular garnet coronas capture metamorphic processes "in flagranti” 

(Carlson & Johnson, 1991; Carlson, 2011; Ague & Carlson, 2013). Consequently, garnet 

coronas and their metamorphic significance have been intensely studied over the past 

decades (Mørk, 1985; Johnson & Carlson, 1990; Johnson, 1993; Spiess et al., 2001; Prior et 

al., 2002; Konrad-Schmolke et al., 2005; Massey et al., 2011; Goergen & Whitney, 2012). 

Garnet porphyroblasts often hold the key to unravel the synkinematic PTtd conditions. The 
origin of these garnet porphyroblasts has been controversially discussed as either being 

evidence of rotational strains ("Snowball garnets", Johnson, 1993; Jiang & Williams, 2004), 

as documenting strain partitioning (Bell & Johnson, 1989; Aerden, 2005) or, where 

polycrystalline, as forming from the coalescence of nuclei (Spear & Daniel 2000, Spiess et 

al., 2001, Dobbs et al. 2003, Hirsch et al. 2003, Whitney et al. 2008, Whitney et al. 2010). 

Garnet also readily partakes in mylonitic deformation: crystal plastic deformation of garnets 
at lower crustal conditions was documented by, e.g., Ji & Martignole (1994), Ji  & 

Martignole (1996), Prior et al., (2002), Storey & Prior (2005), Bestmann et al. (2008) 

Massey et al.(2011), Martelat et al., (2012). Garnets in mylonitic eclogites from SW 

Norway were shown to have deformed by grain-boundary diffusion creep and by pressure-

solution (Smit et al., 2011). However, garnet in eclogitic mylonitized micaschists was also 
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shown to have deformed by cataclasis and frictional sliding (Trepmann & Stöckhert, 2002). 

Conclusions derived in these studies often invoke an extrapolation from the second to the 
third spatial dimension, which is naturally speculative. With the advent of X-ray 

microtomography, garnet became the focus of a number of microstructural studies that 

explored the third spatial dimension (Denison & Carlson, 1997; Ketcham, 2005a; Whitney 

et al., 2008; Goergen & Whitney, 2012).  

These pioneering 3-dimensional studies outlined the possibilities that the combination of X-

ray microtomographic data with other microanalytical techniques holds in regards to the 

interrogation of tectono-metamorphic processes. In this present contribution, we apply this 

approach to analyse the distribution of garnet in rock samples from Kråkeneset, a tectonic 

domain within the well-studied Western Gneiss Region (Norway) (Mørk, 1985; Mørk, 1986; 

Austrheim, 1987; Boundy et al., 1992; Austrheim et al., 1997; Krabbendam &Dewey, 1998; 

Cuthbert et al., 2000; Engvik et al., 2000; Krabbendam et al., 2000; Engvik et al., 2001; 

Wain et al., 2001; Labrousse et al., 2004; Terry & Heidelbach, 2006; John et al., 2009; 

Hacker & Andersen, 2010; Labrousse et al., 2010).  There, fluid infiltration along precursor 

fractures led to the eclogitization and coeval mylonitic overprint of gabbroic rocks (Mørk, 

1985; Austrheim et al., 1997; Krabbendam et al., 2000; Engvik et al., 2001; Lund & 

Austrheim, 2003; John et al., 2009; Müller, 2013).  Our field location is a gabbroic body in 

which hydrous eclogite-facies shear zones cross cut the almost pristine magmatic rock. There, 

reaction textures indicate that the eclogite-facies overprint is caused by the ingress of reactive 

fluids that helped to overcome sluggish reaction kinetics (Austrheim, 1987; Krabbendam et 

al., 2000; Lund & Austrheim, 2003; John et al., 2009; Müller, 2013). The rock samples cover 

a strain gradient (which we consider the 4
th

 dimension) into a dm-scale mylonitic shear zone 

and document the metamorphic overprint. The strain gradient across the shear zones is ideally 

suited for such a study, in that it shows progressive deformation localization under well 

constrained P-T-fluids conditions. Based on the assumption that the strain gradient can be 

regarded as a proxy for time, which is a common assumption where strain softening leads to 

progressive strain localisation (Means, 1995; Fusseis, et al., 2006; Fusseis & Handy, 2008), 

the samples allow us to characterize the spatiotemporal evolution of a gabbro into a deformed 

eclogite. In our samples, this transition is reflected by the evolving 3-dimensional distribution 

of garnets in the microfabric. We determine how the garnet evolved from its arrangement in a 

primary coronitic texture to forming a key component of the tectonic microfabric. To do this, 

we developed a methodological workflow that combined classical electron-beam techniques 

with synchrotron X-ray microtomography. In combination, these data allow us to speculate 

on the mechanisms that accomplished the transformation of garnet microfabrics. 

 

GEOLOGICAL SETTING 

The studied rock samples come from Kråkeneset in the Western Gneiss Region (WGR) of the 

Norwegian Caledonides. As in many other parts of this lowest tectonic unit in the 

Scandinavian terrains, the outcrops in Kråkeneset preserve evidence for Caledonian high-

pressure metamorphism (P=2.0-2.4 GPa, T=710 °C- 800 °C) in association with the 

subduction of Baltica underneath Laurentia after the Silurian closure of the Iapetus ocean 

(Engvik, et al., 2000; Krabbendam et al., 2000; Wain et al., 2001; Lund & Austrheim, 2003; 

Labrousse et al., 2004; John et al., 2009; Müller, 2013). It is commonly accepted that even 

though some of the rocks in the WGR were subducted to depths beyond 100 km, large parts 
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of the complex remained metastable until fluid infiltration along brittle fractures and cleavage 

planes overcame sluggish reaction kinetics and initiated large-scale eclogitisation (Austrheim, 

1987; Krabbendam et al., 2000; Wain et al., 2001; Labrousse et al., 2010). In Kråkeneset, the 

high-pressure metamorphic overprint takes the form of hydrous eclogites (P=2.8-3.0 GPa, 

T=790° C-850° C) that occur within shear zones cutting dry grabbroic host rocks 

(Krabbendam, et al., 2000; Lund & Austrheim, 2003; John et al., 2009). The pristine 

gabbroic mineral assemblage is preserved in the less deformed areas, and is characterized by 

an ophitic texture. However, olivine cores are surrounded by garnet and orthopyroxene 

coronas. The eclogite-facies mineral assemblages occur within narrow shear zones where, 

across their margin, a gradient from a “dry” gabbroic mineral assemblage (Ol + Cpx + Grt + 

Pl + Ilm + Bt + Am ± Rt), to a synkinematic mostly “wet” eclogitic mineral assemblage is 

preserved. The latter consists of Grt + Opx + Am + Ab-Czo symplectites + Bt + Opaque 

phases (e. g Ilm) ± phengite, as well as omphacite + garnet (Fig. 4), where the reaction 

advanced further or local chemical domains supported this assemblage (Austrheim, 1987; 

Lund & Austrheim, 2003; John et al., 2009; Putnis & Austrheim, 2010; Müller, 2013). The 

replacement of magmatic plagioclase by Ab-Czo symplectites (e.g., Wayte et al., 1989), 

along with the widespread formation of amphiboles and of Grt-Omp assemblages, occurs 

where transport during reactions has been enhanced (e.g., Mørk, 1985; John & Schenk, 2003; 

Putnis & Austrheim, 2010). All these developments positively correlate with the observed 

strain gradient, and show that eclogitization of the gabbro was driven by the close interplay of 

infiltration of externally derived fluids and deformation (Mørk, 1985; Austrheim, 1987; 

Krabbendam et al., 2000; Lund & Austrheim, 2003; Labrousse et al., 2010; Putnis & John, 

2010). 

 

METHODS 

From a hand specimen that covers the margin of an eclogite shear zone, three 2-mm thick 

rock wafers covering the strain gradient were extracted in x-z kinematic orientations (Fig. 

1). From these wafers, parallelepipeds with dimensions of 2x2x6 mm were cut for 

synchrotron X-ray microtomography (SµCT). After SµCT, the wafers including the SµCT 

samples were polished into thin sections that could be used for further analyses using light 

microscopy, scanning electron microscopy (SEM), electron microprobe analyses (EMPA) 

and electron backscatter diffraction (EBSD). This approach allowed for a comprehensive 

characterisation of the metamorphic microfabrics in four dimensions (Fig. 1). This study 

focussed on three specimens, #066B2, #061751 and #0618, which sample the low-, 

intermediate- and high-strain domains of the shear zone. 

Analytical Techniques 

Mineral assemblage and chemical zoning were analysed on the carbon-coated thin sections 

using a Zeiss SIGMA HD VP Field Emission SEM equipped with an Oxford Instruments 

SD Energy-dispersive X-ray Spectroscopy (EDS) detector and AZtec software for 

acquisition and processing of EDS spectra, at the School of Geoscience in Edinburgh. 

Working conditions during acquisition of SEM backscatter images and during EDS analysis 

were 20 kV acceleration voltage and a working distance of 6.9 mm. Chemical compositions, 

to be correlated with the X-ray absorption coefficients, were measured on a Cameca SX100 
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electron microprobe at 20 kV acceleration voltage and a beam diameter of 3 µm, at the 

University of Edinburgh. Further microprobe analyses were acquired at the EMPA at the 

University of Munster, using a JEOL 8530F electron microprobe. The standard microprobe 

conditions were 15 nA and 20 kV for quantitative analysis and 50 nA and 15 kV for the 

element mapping. Compositional maps were obtained using XMapTools v. 2.3.1 (Lanari et 

al., 2014). 

Crystallographic orientations were measured on a Jeol 6610 SEM equipped with a 

NordlysNano EBSD detector (Oxford Instruments) at the Plymouth University Electron 

Microscopy Centre. Working conditions during acquisition of the EBSD patterns were 20 

kV acceleration voltage, 70° sample tilt, high vacuum (in case of the carbon-coated samples 

0617 and 066B2), and low vacuum (30 Pa, in case of the uncoated sample 0618). EBSD 

patterns were acquired on rectangular grids with step sizes varying from 0.8 to 4.8 µm. All 

the thin sections were chemically polished with colloidal silica prior to EBSD analysis. 

EBSD patterns were indexed with the AZtec software (Oxford Instruments) and processed 

with Channel 5 software (Oxford Instruments). Raw EBSD data were processed to reduce 

data noise following the procedure proposed by Prior et al., (2002) and Bestmann & Prior 

(2003). Crystallographic data were plotted on pole figures as one point per grain. Pole 

figures are oriented with their horizontal diameter corresponding to the trace of the 

mylonitic foliation (E-W). Crystallographic maps were produced to highlight phase 

distribution (phase map), the internal misorientation of grains (local misorientation map) 

and the crystallographic orientation of grains with respect to specific directions in the 

kinematic reference frame (Inverse Pole Figure Map, IPF).  

Synchrotron X-ray microtomography 

X-ray absorption microtomographic data were collected at the beamline 2-BM at the 

Advanced Photon Source (USA) using a monochromatic beam of 27 KeV and a low 

sample-detector distance to minimise phase contrast. 1500 projections per dataset were 

reconstructed into 3-dimensional image stacks using the gridrec algorithm (Rivers & 

Wang, 2006). The voxel (i.e. a 3-dimensional pixel) side length of the reconstructed data is 

1.3 µm, which is sufficient to resolve the necessary petrographic details on the µm-scale. 

Image Processing and Analysis 

The reconstructed X-ray absorption microtomographic datasets were filtered using an 

Anisotropic Diffusion Filter 2D to reduce image noise (Tschumperlé & Deriche, 2005; 

Schlüter et al., 2014). Using the image processing software Fiji (Schindelin et al., 2012), 

garnet was then segmented (i.e. numerically isolated) from the 3-dimensional data using 

Statistical Region Merging followed by Global Thresholding (Nock & Nielsen, 2004) (see 

supp. information, Appendix S2). Analysis of the resulting segmented images included the 

quantification of garnet volumes and grain sizes, as well as a garnet interconnectivity 

analysis, all of which were performed in Avizo Fire (v.8) 

(http://www.fei.com/software/avizo3d/) using its Labelling and Label Analysis operators. 

Label analysis is a process that identifies and evaluates face-connected clusters of voxels 

belonging to a specific class (i.e. garnet) in segmented data. Face-connected voxel clusters 

do not represent individual garnet grains but rather volumes occupied by garnet. Since X-

ray absorption microtomography does not detect grain boundaries in the garnet coronas, 
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numerical separation of the voxel clusters into individual grains is impossible in our data 

and we are restricted to interpreting voxel clusters. To avoid introducing numerical 

artefacts derived from segmentation errors during the analyses of garnet, isolated voxel 

clusters with a volume smaller than 125 cubic voxels (5x5x5 voxels, ~275 µm
3
) were 

removed using the Analysis Filter operator (see Fusseis et al., 2012 for details). 

In microtomographic data, volume calculations are affected by errors introduced by the 
segmentation method (Arns et al., 2002). To estimate the errors, we applied the method 

described in Fusseis et al. (2012). Each segmented volume was both numerically eroded 

and dilated by 1 voxel, and the resulting changes to the volume and label analysis were 

quantified. The resulting quantifications are considered as maximum possible errors.  

Besides providing error bars, binary data that have been eroded or dilated have the 
potential to reveal details on the shape and spatial arrangement of voxel clusters, as each 

morphological operation (numerical erosion) will cause voxel clusters to join, break up or 

disappear altogether (see inset in Fig. 8). We analysed a version of the segmented garnet 

data that underwent a single morphological erosion step. Morphological erosion removes 

each voxel classified as garnet that is not completely surrounded by other voxels classified 

the same. The erosion operator responds to the size and shape of the voxel clusters, and the 

shortest diameter defines this response. The smallest unit that would survive a 

morphological erosion step is a cubic array consisting of 3
3
 voxels. A much larger, 

spherical voxel cluster would retain its spherical shape through multiple erosion steps. 

Oblate voxel clusters will respond differently to erosion. Where cluster shapes are 

irregular, morphological erosion will strangulate clusters at the weakest links and break 

them apart into several smaller ones, which is reflected by a corresponding change in the 

cluster size distribution. 

Using Avizo Fire, the 2-dimensional BSE images together with the EDS and EBSD image 

data were reintroduced into 3-dimensional space to combine observations from various 

sources with the microtomographic data into multidimensional datasets (Fig. 2 & 3). This 

allowed correlating X-ray absorption signals with chemical compositions and 

crystallographic information and, as a result, extrapolating observations made by electron 

microscopy to the third dimension (see supp. information, Appendix S1). 

RESULTS 

Petrological characterization 

In the low strain domain, at larger distance to the shear zone centre (sample #066B2), 

although the magmatic gabbroic assemblage is still preserved, all mineral phases show 

reaction textures (Fig. 3a). These reactions, related to sluggish kinetics, were triggered by 

fluid-rock interactions: the amount of the reacted rock volume decreases with the distance to 

the hydrous shear zone (Lund & Austrheim, 2003; John et al., 2009).  

Olivine cores (Fo54Fa45.6Tep0.3) are surrounded by innermost coronas of fibrous 

orthopyroxene followed by a ∼ 50 µm wide poikiloblastic corona of garnet 
(Alm63.3Grs19.8Py14.9, Fig. 3a) and fibrous amphibole (hornblende) at the contact with 

plagioclase. The grain size of olivine cores is variable, generally of the order of a few 

hundred micrometers. Olivine grains exhibit cleavage planes in different orientations. While 

orthopyroxene coronas seem to have a constant width around olivine grains, garnet coronas 
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vary in thickness. Biotite is present in the mineralogical assemblage as stand-alone grains. 

These microfabrics are similar to the ones previously described by Mørk, (1985), 

Krabbendam et al., (2000),  Lund & Austrheim (2003), Müller (2013).  

 

In the intermediate strain domain (sample #061751), the assemblage changes (Fig. 3c-3d). 

Olivine grains are pseudomorphically replaced by orthopyroxene and orthoamphibole 

intergrowth, which is surrounded by a thin (a few µm wide) rim of omphacite (Fig. 4b, see 

also Lund & Austrheim, 2003).  Clinopyroxene grains in this domain appear less regular and 

altered by cloudy patches of Fe-Ti oxides as a result of destabilization through the reaction: 

Cpx (Aug) + Na ⇒ Na-Aug + Fe-Ti oxides, in which Na-Aug constitutes a second generation 
of more altered clinopyroxene with increase Jd-component but reduced Ti and Fe contents 

(Cpx2) (Mørk, 1985). Garnet and amphibole are still present, but they do not form clear 

corona structures anymore (see also Fig. 3c). The 3-dimensional distribution of garnets still 

resemble coronas where decaying olivine grains are more completely replaced by 

orthopyroxene, but generally garnet grains develop euhedral crystals and form disconnected 

and more elongated aggregates (Fig. 7b). Towards the shear zone, all plagioclase is replaced 

by clinozoisite and albite symplectites through the reaction (Fig. 4b, c): Pl (An) + H2O ⇒ 

Czo + Ab symplectites (Wayte et al., 1989; Lund & Austrheim, 2003; John et al., 2009; 

Müller, 2013) (Fig. 4).  

 

In the most deformed sample (#0618), all mineral phases are aligned parallel to a mylonitic 
foliation. The foliation is defined by a compositional layering of elongated orthopyroxene-

amphibole symplectites, and garnet, forming isolated elongated clusters >100 µm wide and 

several hundred µm long (Fig. 3e-3f). Some of the garnet grains still exhibit faceted crystals 

(Fig. 7c). 

Omphacite is present at the margins of relict magmatic clinopyroxene grains and of 

orthopyroxene-amphibole symplectites (Fig. 4c).  

 

Garnet chemical composition 

Garnet compositions in the three samples were measured using electron microprobe analyses 

in order to confirm the chemical evolution of garnet with respect to the deformation history 

(Fig. 5, 6). With increasing deformation, garnet compositions become more Alm-rich (Fig. 

5), an expected trend for a gabbro that is gradually equilibrating under eclogite-facies P-T 

conditions. Within the low-strain domain, high CaO concentrations (XGrs) are represented by 

garnet in the proximity of Ca-rich phases (e.g. plagioclase). In the high strain domain the 

compositional maps show that some garnet displays CaO zoning (5-12 wt. %) and MgO 

zoning pattern similar to those observed in low strain domain (Fig. 6). Many garnets, 

however, have low CaO, reflecting an equilibration towards Alm-rich compositions. 

Nevertheless, some grain do have a higher content in CaO (~10%) (a’) and MgO (~11%) (b’). 

We interpret this to result from coalescence (a, b) and subsequent disintegration of individual 

zoned coronas. Furthermore, fine-grained garnets (Fig. 6c to the left) represent highly 

fragmented and collapsed former coronas. 

 

4D spatial evolution of garnet grains 

 

A subvolume with dimensions of 600
3
 voxels (∼0.5 mm

3
) was extracted from each of the 
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three microtomographic datasets to visualize the 3-dimensional distribution of garnet (Fig. 7). 

In the subsequent label analysis, garnet distribution was evaluated and quantified in the 

original, statistically representative 7 mm
3

 subvolumes (Fig. 3, 10). In the label analysis, we 

considered all garnet clusters that consist of face-connected voxels and are larger than 125 

cubic voxels (~ 275 µm
3
). This allowed us to relate the following observations to the 3-

dimensional petrography presented above. 

The volumetric quantification of the segmented garnet data shows that the garnet volume 

increases into the shear zone, from 6 % (± 2.5 %) in the low-strain sample, to 11 % (± 3 %) in 

the intermediate strain sample, and 20 % (± 4 %) in the high-strain sample.   

 

The visualisation confirms that in the low strain domain, garnet forms voluminous 

interconnected coronas around orthopyroxene and decaying olivine grains (Fig. 7). It also 

becomes apparent that different olivine cores have garnet rims with different thicknesses. 

Measurements of garnet corona thicknesses around five different olivine grains show an 

average thickness of 60 µm with standard deviations that vary from 10 to 35 µm in the most 

complex coronas. Where two olivine grains neighbour each other, garnet coronas become 

almost twice as thick. There seems to be no correlation between the thickness of the garnet- 

and the amphibole rims, which should have evolved in unison (Mørk, 1985; Mørk, 1986; 

Johnson & Carlson, 1990). Despite their considerable spatial extent, garnet coronas do not 

enclose olivine grains entirely, which leaves dormant reactants in direct contact with each 

other (Figure 9). The resulting baseball-glove shaped domains also do not show any 

preferential spatial orientation with respect to the kinematic framework of the shear zone 

(Figure 10). The total garnet volume in the analysed subvolume is accommodated by 1116 

garnet voxel clusters (Table S3).  

The label analysis shows that the garnet population is dominated by one large interconnected 

garnet voxel cluster that percolates across the entire subvolume (Fig. 10a). This cluster 

accounts for 83 % of the entire garnet volume in the sample (Fig. 8a, B). Garnet voxel 

clusters between 2.2*10
6 

and 3.08*10
7 

µm
3
 account for 11%, whereas voxel clusters < 

2.2*10
6 

µm
3
 do not contribute substantially to the total garnet volume (Fig. 8b). 

We submitted the segmented data to a numerical volume erosion process to learn more about 

the spatial arrangement of garnet (see supporting information for details on the procedure and 

Table S4 for the results). Garnet interconnectivity persists through the volume erosion, which 

evidences how tightly individual garnets grains are linked in the coronas (see supp. 

information for details). In the eroded data, the garnet volume forms 2796 voxel clusters 

(Table S4). The largest interconnected voxel cluster dramatically decreases in volume from 

4*10
8
 µm

3
 to 10

8
 µm

3
, now accounting for only 35 % of the total volume. The eight largest 

interconnected voxel clusters (> 2.2*10
6 

µm
3
) account for 89 % of the total garnet volume as 

seen in the cumulative frequency diagram (Fig. 8b). The erosion process also leads to a 

substantial increase in frequency for sizes smaller than 10
4
 cubic µm

3
 (Fig. 8a), which is in 

contrast to the intermediate and high-strain datasets. 

 

The visualisation of garnet in the intermediate strain domain shows that the larger garnet 

voxel clusters form complexly-shaped rims around orthopyroxene aggregates that likely have 

their origin in former coronas (Fig. 10b). In this sample, the garnet volume is made up of 

12068 garnet voxel clusters. This almost ten-fold increase over the low strain sample is 

essentially being accommodated by the smallest (< 10
5 

µm
3
) and largest (> 6*10

8 
µm

3
) voxel 

cluster size fractions (Table S3). A similar number of voxel clusters in the size region of 10
5 
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µm
3
 was detected, whilst a particularly large number of voxel clusters with volumes between 

10
3
 and 10

4
 µm

3
 were found. Again, the largest 10 voxel clusters (> 2.2*10

6 
µm

3
) account for 

over 90 % of the total garnet volume. The largest interconnected voxel cluster, which is 

larger than in the low-strain sample (from 4*10
8
 µm

3
 to 6.5*10

8
 µm

3
), develops through the 

subvolume and accounts for 80 % of the total garnet volume. The garnet voxel clusters in the 

range of 2.6*10
5
 to 4*10

6 
µm

3
 are often formed by isolated, euhedral and potentially newly 

formed garnet grains (Fig. 7, 10b; see Discussion). Voxel clusters smaller than 10
5 

µm
3
 are 

arranged in patchy clouds surrounding bigger interconnected voxel clusters.                                              

In the numerically eroded data, the number of garnet voxel cluster reduces to 4995. Since a 

numerical erosion cannot lead to voxel cluster coalescence, this decrease reflects a sensitivity 

to the disappearance of volumetrically small voxel clusters in the procedure (Fig. 8c, Table 

S4). In the erosion process, the largest voxel cluster breaks apart to form two smaller voxel 

clusters, which together account for 70 % of total garnet volume (Fig. 8d, Fig. S9). 

 

In the most deformed sample, the garnet voxel clusters define a mylonitic foliation. In this 

subvolume, garnets contribute to a deformation microfabric; the garnet voxel clusters define 

the compositional layering observed in the SEM analysis (Fig. 10c). Additional analyses that 

we conducted (using the software package Quant3D, Ketcham & Ryan (2004)) revealed that 

most of the garnet voxel clusters in this sample have an oblate shape (Fig. S11). Garnet in the 

subvolume is organized in 9297 voxel clusters (Table S3). A total of 46 voxel clusters have a 

volume larger than 2.2*10
6 

µm
3
, and they account for 86 % of the total garnet volume (Fig. 

8f). The absolute frequency-size distribution is self-similar, with no major local variations 

between the size classes. This trend is confirmed by the cumulative plot (Fig. 8f), which 

shows that all size classes contribute progressively towards the total garnet volume, and is in 

contrast to the other two samples. 

Numerical erosion reduces the number of garnet voxel clusters to 8014, of which 62 are 

larger than 2.2*10
6 

µm
3
 and accommodate 81 % of garnet total volume (Table S4). The 

reduction in total voxel cluster number is accommodated by all size fractions, which indicates 

that the voxel clusters have shapes that withstand a numerical erosion process (Fig. 8e, f). 

EBSD analysis: Misorientation of garnet grains in the shear zone 
 

We analysed predominantly garnet in the three samples using EBSD to investigate the 

dominant deformation mechanisms that contributed towards the evolution of the 

microfabric in garnets. 

Garnet and orthopyroxene in the low strain sample exhibit frequent low angle boundaries 

(misorientation between 3° and 10°). The phase map of a coronitic domain around 

magmatic olivine shows that orthopyroxene and hornblende grows as fibrous crystals: the 

long axis of orthopyroxene and hornblende are perpendicular to the reaction interface (Fig. 

S3a). In the case of hornblende, the elongation is parallel to the <001> axis (Fig. S4f). The 

inverse pole figure map (IPF) of garnet, shown with respect to the E-W direction (i.e. 

approximately equivalent to the normal to the reaction interface and parallel to the 

elongation direction of hornblende) (Fig. 11a), highlights the presence of low-angle 

boundaries, which correspond, in the local misorientation map (Fig. S3c), to internal 

misorientation zones with up to 9° of misorientation in garnet. A misorientation profile 

across them does not show any progressive distortion of the crystal lattice, but rather a 

sudden jump in misorientation (Fig. 11b). The average local internal misorientation of 
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grains is very low, on the order of 1°, i.e. within the error of measurement. The 

misorientation axes for misorientation angles of 3-10° do not show clear maxima in crystal 

coordinates (Fig. 11c). Differently from orthopyroxene and amphibole, garnet does not 

show a clear preferred orientation with respect to the reaction interface (Fig. 11a, S4e).  

In the intermediate strain sample the spatial density of low angle boundaries is highly 

variable. A local misorientation map shows that the interiors of garnet grains are virtually 

undeformed (average local misorientation on the order of 1°), and that there are bands with 

high misorientation up to 9° (Fig. S5b). A misorientation profile across one of the bands 

shows a rather abrupt misorientation jump (of up to 8°) (Figure 11e). Similar to the low 

strain domain, the misorientation axes for misorientation angles of 3-10° do not show clear 

maxima in crystal coordinates (Figure 11f). The IPF map and the associated  pole figures 

show a weak preferred orientation of garnet, with clusters of grains preferentially oriented 

with their <111> parallel to the stretching lineation of the shear zone (Fig. S5a, S5e).  The 

IPF map shows that garnet grains range in size between 10-20 µm and 200 µm.   

In the high strain sample, the density of low angle boundaries in garnet is very low, and 

they are typically present only in grains larger than 50 µm (Figure 11G). The phase map 

indicates that individual garnet grains range in size from ca. 10 µm to ca. 150-200 µm and 

are dispersed in a matrix of hornblende, orthopyroxene and minor biotite (Fig. S6a). Garnet 

grains are internally strain-free (average local misorientation is < 1°), and again, there is no 

progressive accumulation of misorientation towards the few internal high misorientation 

bands (as indicated by the local misorientation map in Fig. S6b). Less frequently, a 

progressive accumulation of lattice distortion (of up to 4°) towards the low angle 

boundaries was observed (Fig. 11h). The misorientation axes for misorientation angles of 3-

10° do not show clear maxima in crystal coordinates (Fig. 11i). Pole figures of garnet show 

only weak maxima of <100>, one of which is oriented subparallel to the stretching lineation 

(Fig. S6c, S7a, S7b). Neighbouring grains are typically characterized by large 

misorientations (> 30°, Fig. S6f). 

In contrast, hornblende shows a crystal preferred orientation (CPO) with the c-axis oriented 

subparallel to the stretching lineation. This CPO of hornblende has been commonly 

observed in lower crustal shear zones where hornblende grew synkinematically to 

deformation (Berger & Stünitz, 1996; Getsinger & Hirth, 2014; Menegon et al., 2015).  

 

DISCUSSION 

Synkinematic nature of fluid-rock interaction 

According to Mørk (1985), the coronas between olivine and plagioclase form through 

reaction: Ol + Pl (An) + Cpx + H2O ⇒ Opx + Grt + Am + Pl (Ab).  It is unclear whether 
these coronas formed as products of synkinematic fluid infiltration (Krabbendam et al., 2000; 

Lund & Austrheim, 2003), or as results of late-magmatic processes (Mørk, 1986). However, 

we speculate that amphibole is indicative of the external influx of hydrous fluids upon shear 

zone formation, as shown later by CPO of hornblende in the high strain zone (Austrheim, 

1987; Austrheim, et al., 1997; Engvik et al.,  2000; Labrousse et al., 2004; Putnis & 

Austrheim, 2010). 

Moreover, truly eclogite-facies assemblages are only observed at fluid pathways 

terminations or where fluid availability and/or deformation enhanced the size of the reacted 
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domains allowing for sufficient material transport and thus bulk equilibration resulting in 

the formation of an omphacite-garnet assemblage (Fig. 4) (Lund & Austrheim, 2003; John et 

al., 2009; Putnis & Austrheim, 2010). However, the overall dominance of amphibole over 

omphacite in the samples indicates that the chemical equilibrium of the system was local, 

and in favour of garnet-amphibole assemblage, instead of garnet and omphacite. In those 

cases where plagioclase reacted in rather isochemical systems, the high-pressure assemblage 

is dominated by the Ab-Czo symplectites ± amphibole ± garnet as reported by Lund & 

Austrheim (2003) and John et al. (2009).  

Mørk (1985) interprets the discontinuous growth of thin omphacite layers between 

orthopyroxene and garnet coronas to have formed through: (Ol) + Grt + Opx + Am + Pl ⇒ 
Omp + Spl. However, the lack of spinel inclusions observed by Mørk (1985) points to this 

reaction being incomplete in our samples, and mineral growth limited by material supply (see 

also Mørk, 1985; John et al., 2009).The Ab-Czo symplectites are preserved without evidence 

of any later overprint, and we consider them to have formed as prograde replacement of 

plagioclase in a fluid-mediated system, indicating a metastable prograde reaction (Wayte et 

al., 1989). Therefore, in the presence of amphibole, omphacite associated with these delicate 

symplectite textures indicates a prograde conversion of the gabbro to an eclogite in which 

fluid infiltration was synkinematic and linked to the progress of reaction and deformation 

(Fig. 4b). 

 

Strain-dependent evolution of garnet microfabrics in the Kråkeneset shear zone 

The observations reported above allow to draw a detailed picture of the synkinematic 

evolution of garnet in this deep-crustal shear zone. Our microtomographic data indicate that, 

across the studied shear zone margin, from low to high strain, garnets evolve from a highly 

interconnected coronitic texture to a tectonic microfabric, where they are organized in 

oblate aggregates and define the foliation of the shear zone (Fig. 10c). Simultaneously, the 

garnet volume in the rocks more than triples. Based on chemical analyses, which revealed a 

partial local equilibration of garnets grains at eclogite facies (Fe-rich), we interpret the 

oblate sheared aggregates as having formed by the progressive, synkinematic disintegration 

and rearrangement of coronas in combination with the simultaneous nucleation and 

coalescence of garnets grains at similar P, T, X metamorphic conditions (Fig. 12).  

We argue that the garnet coronas originally formed as the high-pressure reaction products of 

a prograde metastable reaction between olivine and plagioclase by the coalescence of 

nuclei. As strain localises in the shear zone, these garnet coronas are broken apart and start 

to disintegrate (Fig. 12a, 12b).  At this stage, the garnet voxel clusters do not reflect a 

deformation microfabric yet, and the largest garnet cluster is still interconnected through the 

entire sample forming complexly-shaped rims around orthopyroxene porphyroclasts that 

have replaced olivine. New garnet grains nucleate in between these large voxel clusters but 

are still small at this stage, while existing garnet grains are overgrown and increase in 

volume. At the highest level of strain, the former garnet coronas have been deformed and 

re-arranged by granular flow in a ductively deforming matrix, leading to a mylonitic 

deformation microfabrics defined by oblate garnet voxel clusters (Fig. 3, 10c). 

What happens to the garnet? 

The results of the label analysis, and in particular the evolution of different size classes of 

garnet voxel clusters, reveal how the volumetric increase in garnet is accommodated and 
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what processes affect the garnet population across the shear zone margin. The overall 

increase in the number of garnet voxel clusters into the shear zone reflects the synkinematic 

formation of a well-dispersed garnet population (Fig. 8). This is achieved by the coeval 

activity of three processes, the fragmentation and breakup of garnet coronas, the formation 

of overgrowth rims, and the nucleation of new garnet crystals (Fig. 12): 

1. The increase in the number of garnet voxel clusters, particularly the large ones, with 

increasing strain clearly reflects a reduction of garnet interconnectivity. The largest 

voxel cluster in the low and intermediate strain domain accounts for ~80 % of the 

overall garnet volume, whereas a similar volume proportion is accommodated by 46 

voxel clusters (> 2.2*10
6
 µm

3
) in the most deformed sample.  

2. The transition from the low strain- to the intermediate strain domain sees a complete 

reorganisation in the population of the smallest garnet voxel clusters (Fig. 8c). Voxel 

clusters ≤ 4.1*10
3
 µm

3 
increase in number from 698 to 11239 (Table S3). These 

clusters occur dispersed in between the larger clusters, without any obvious textural 

link. As the total amount of garnet volume increases, they cannot be fragments of 

initial coronitic garnet, therefore we argue that this population of smallest voxel 

clusters is the product of nucleation and speculate that these garnets may evidence 

pervasive fluid infiltration (see following section).  

3. In contrast, we infer the increase in the number of intermediate-sized voxel clusters 

with volumes between 2.6*10
5
 and 4*10

6 
µm

3
, which is particularly apparent in the 

intermediate strain domain, to be related to overgrowth. The 3-dimensional 

visualisation shows that garnet voxel clusters have euhedral or semi-euhedral shapes, 

which is congruent with this mechanism (Padrón-Navarta et al., 2008).  

 

What the morphological operator “Erosion” reveals about the garnet distribution  

The frequency diagrams reveal that the number of voxel clusters does increase as a response 
to erosion in the low strain domain for smaller voxel cluster sizes (< 10

4 
µm

3
, Fig. 8a, b) and 

in the intermediate strain domain for the largest interconnected cluster (Fig. 9). This 

indicates that a substantial number of voxel clusters exhibit cross-sectional diameters short 

enough to respond to a single erosion step. By acting as predetermined breaking points, 

these weak bridges become crucial in the disintegration of the garnet coronas as the rock 

transitions to the intermediate strain microfabrics (see also Fig. 12a). We infer that the 

larger proportion of the garnet volume that is accommodated by smaller clusters in the 

eroded dataset (Fig. 8b) is a consequence of this break-up. 

In the intermediate strain domain, the absolute frequency of voxel clusters <5*10
4
 µm

3
 

decreases significantly as a consequence of morphological erosion (Figure 8c, Tables S3, 

S4). These are the voxel clusters that make up the patchy clouds in between the larger 

garnet aggregates. Many of these small clusters are apparently susceptible to annihilation in 

a single erosion step, which points towards a significant deviation from sphericity in this 

voxel cluster population. 

In the high strain domain, the garnet voxel clusters retain their self-similar frequency-size 

distribution through the morphological erosion process in the high strain domain (Fig. 8e, f). 

However, the changes to the frequency of voxel clusters in the different bins seem to reflect 

a slight decrease in the fractal dimension (Fig. 8e, f). A new population of voxel clusters 

with volumes <10
3 

µm
3
 is generated from larger clusters, and the largest voxel cluster halves 
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in size (from 1.1 to 2.2*10
8 

µm
3
).  

Micromechanisms involved  

Our EBSD data indicate that the mechanism by which the garnet coronas are disintegrated 

does not involve crystal plasticity by means of dislocation activity. Whilst garnet was shown 

to deform by dislocation creep at upper amphibolite to granulite facies metamorphic 

conditions (Ji & Martignole, 1994; Ji & Martignole, 1996), this was not the case in the 

sampled shear zone. Misorientation maps and profiles indicate that neighbouring garnet 

domains show only limited rotations (Fig. 11). These motions are accommodated by 

narrow, distinct bands that correspond to low-angle boundaries; the grains themselves show 

very little internal deformation. The bands coincide with sudden jumps in misorientations, 

testifying the lack of crystal plasticity (Fig. 11b, e, h, e.g. Viegas et al., (2016)). 

Furthermore, the plots of misorientation axis in crystal coordinates show that the low-angle 

boundaries are not tied to the host crystallography but rather show a highly dispersed 

distribution (Fig. 11c, f, i). Based on these arguments, we suggest that the low angle 

boundaries in the low strain domain are growth features, and probably related to an early 

stage of coalescence of nuclei. The overall lack of chemical differences amongst the newly 

formed garnets and their seeds would be congruent with a close initial nucleation spacing of 

garnets seeds, similar to the observations reported in Whitney & Seaton (2010). 

On the basis of an almost complete lack of evidence for crystal plasticity, we argue that the 
progressive disintegration and rearrangement of garnet coronas was accommodated by 

microfracturing and passive granular flow of garnets in a viscously deforming matrix (cfr. 

Trepmann & Stöckhert, 2002).  This view is supported by experimental data on garnet 

rheology, which establish the possibility of brittle garnet behaviour at the inferred 

metamorphic conditions (Voegelé et al., 1998; Wang & Ji, 1999; Zhang & Green, 2007).  

Microfracturing and passive granular flow of garnet grains could have been assisted by a 

fluid phase (Den Brok & Kruhl, 1996; Storey & Prior, 2005; Smit et al., 2011). As it is well 

established, fluid infiltration played a critical role in triggering eclogitization and strain 

localisation in dry and ridged precursor rocks (Austrheim, 1987; Austrheim et al., 1997; 

Engvik et al., 2000; John & Schenk, 2003; Miller et al., 2007; Labrousse et al., 2010; Putnis 

& John, 2010).  The presence of fluids in the system is evident from the hydrous high-

pressure mineral assemblage in the shear zone. However, we found no clear evidence for 

fluid-assisted deformation mechanisms, such as intergranular pressure solution (e. g. Azor et 

al., (1997), Smit et al., (2011)), diffusion creep (Den Brok & Kruhl, 1996; Storey & Prior, 

2005) or grain-boundary sliding and diffusion creep (Terry & Heidelbach, 2004) to have 

dominated garnet deformation. However, we do interpret garnet to trace fluid migration 

pathways to some extent (see following subsection). 

Implications for fluid flow, mass- and element transport 
The 3-dimensional spatial arrangement of garnets is not only the result of deformation, but, 

in the low-strain domain, it also reflects mass transport between plagioclase and olivine 

grains during their reaction (Austrheim, 1987; Lund & Austrheim, 2003; Labrousse et al., 

2010; Putnis & John, 2010). Our observations show that garnet coronas are highly 

interconnected throughout the low strain samples (Fig. 10a) and thus, fluid transport must 

have happened on a trans-granular scale. However, the coronas do not encapsulate and 

isolate olivine grains from plagioclase, as commonly thought when observing coronas in 
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two dimensions (Mørk, 1986; Johnson & Carlson, 1990; Keller et al., 2004). Where the 

coronas did not form, this happened despite the reactants being in direct contact with each 

other, and obviously the reaction was subdued. We argue that garnet formed where fluids 

facilitated the reaction and we therefore link the heterogeneously distributed reaction 

products to fossilized fluid pathways.  

In the intermediate strain domain, syn-reactive fluid-infiltration is testified by the presence 

of cloudy patches of small garnets, along with the observation that water-bearing minerals 

are concentrated in the shear zone centre. The abundance of these minerals decreases along 

the lateral strain gradient away from the shear zone and are absent where the gabbro is 

undeformed (John et al., 2009). These observations are congruent with those reported in 

earlier studies by Austrheim (1987), Wayte et al., (1989), Engvik et al. (2001), John & 

Schenk (2003), and Putnis & John (2010). These studies established that eclogitization in 

the lower crust can be triggered by an external input of fluids and facilitated by the presence 

of preferential pathways, such as fractures, which controlled element mobility and defined 

reaction pathways. However, our data also reveal that there is no systematic arrangement of 

the garnet coronas with respect to a kinematic framework defined by the deformation 

microfabrics. It therefore remains unclear what controlled preferential fluid pathways on the 

grain scale. 

In an extension to this argument, we claim that in the high-strain samples, the oblate garnet 

aggregates also should have channelized synkinematic fluid flow (see also Austrheim 

(1987)). We interpret the aligned, oblate garnet aggregates, defining the foliation, and 

thereby direct synkinematic fluid flow in the shear zone. 

 

CONCLUSIONS 

4-dimensional quantitative X-ray micro-tomography proved to be an excellent approach to 

investigate the evolution of metamorphic reaction microfabrics in three dimensions. In 

combination with established microanalytical methods, it allowed a comprehensive 

characterization of the processes affecting the evolution of garnet during eclogitization in a 

shear zone in the Western Gneiss Region, Norway. In particular, we were able to: 

• Capture and monitor the spatial distribution of mineral phases in four dimensions: the X-
ray absorption contrast between individual mineral phases in our micro-tomographic data is 

sufficient to allow the same petrographic observations than in light- and electron 

microscopy, but extended to the 3
rd 

and, where strain is considered a proxy for time, 4
th 

dimension. 

• Quantify the change in garnet volume across the strain gradient: with increasing 
deformation, the garnet volume increases from about 6 % to 20 %. 

• Determine the interconnectivity of garnet grains as a function of strain, with implication 

for mass transport, syn-reactive fluid flow and rock strength. 

• Identify the 3-dimensional geometry of garnet coronas, find that they do not encapsulate 

olivine grains and have no apparent preferred alignment. We interpret the garnet coronas to 
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outline fossilized fluid pathways. 

• Identify the mechanisms by which garnet is reorganised during shearing: microfracturing, 

nucleation and overgrowth. We interpret these observations as pointing to a mechanical 

disintegration of garnet coronas during strain localisation and their rearrangement into 

individual sheared isolated voxel clusters, with the ongoing nucleation of new garnets and 

overgrowth while the rock was deforming. There is no evidence for crystal plastic 

deformation, all garnets are internally strain free and in the more deformed samples they 

show a very weak crystal preferred orientation.  

Our study clearly shows what 3- or 4-dimensional datasets from reaction micro-fabrics can 
add to the understanding of metamorphic processes. We reiterate that a 2-dimensional 

analysis of deformation microfabrics can lead to incorrect petrological and structural 

interpretations, and it does omit information that only become available when rocks are 

investigated in three dimensions.  
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Appendix S1 Ground-truthing: Correlating synchroton X-ray micro-tomography data 

with chemical compositions 

Appendix S2 Segmentation of micro-tomographic data 

Appendix S3 4D evolution of grain shapes  

Figure S1 Grey value histograms calculated from three SµCT datasets. The calculated 

absorption coefficients (µ) for the mineral phases correlate with grey scale values measured 

on the microtomographic data. The histograms reflect the metamorphic reactions during 

strain localization. 

Figure S2 Schematic workflow used to analyse the microtomographic data. 

Figure S3 EBSD results of low strain domain (sample 066B2). On EBSD-derived maps, 

high-angle boundaries (grain boundaries, misorientation > 10°) and low-angle boundaries 

(subgrain boundaries, misorientation > 3° and < 10°) were indicated with black and fuchsia 

lines, respectively. a) Phase map: Olivine (yellow), Plagioclase (white), Orthopyroxene 

(blue), Garnet (red), Hornblende (green). Red lines represent twinning boundaries in 

plagioclase. b) Inverse Pole Figure of garnet in relation to the stretching lineation in the shear 

zone. Legend on bottom left corner. c) Local Misorientation Map, and legend, representing 

local misorientations from 0 (blue) to 9 degrees misorientation (red). The arrow indicates the 
average local internal misorientation. d) Misorientation profile A-A’, location shown in 

figure c). 

Figure S4 EBSD results of low strain domain (sample 066B2). e) Pole figures of garnet. 

Equal area projections, upper hemisphere. Half width is 15°, maximum intensity is 5.54 and 

total number of grains is 41. f) Pole figure of hornblende. Equal area projections, upper 

hemisphere. Half width 15°, maximum intensities 7.91 and total number of grains is 130. g) 

Misorientation axis in crystal coordinates for low angle boundaries (3-10°). 

Figure S5 EBSD results of intermediate strain domain (sample 0617). a) Inverse Pole Figure 

of garnet. Legend as in Fig. S3b. b) Local Misorientation Map, and legend representing local 

misorientations from 0 (blue) to 9 degrees misorientation (red). The arrow indicates the 

average local internal misorientation. c) Misorientation profile A-A’, location is shown in 

figure a). d) Misorientation profile B-B’, location shown in figure a). e) Pole figures of 

garnet. Equal area projections, upper hemisphere. Half width is 15°, maximum intensity 2.74 

and total number of grains is 255. The trace of the shear foliation is oriented NW-SE, pole 

figures are oriented with the trace of the mylonitic foliation parallel to the diameter (E-W). f) 

Misorientation axis of low angle boundaries (3-10°) in crystal coordinates. 

Figure S6 EBSD results of high strain domain (sample 0618). a) Phase map: Grt (red), Am 

(green), Opx (blue), Bt (yellow). b) Local Misorientation Map, and legend representing local 

misorientations from 0 (blue) to 9 degrees misorientation (red). The arrow indicates the 

average local internal misorientation.  c) Inverse Pole Figure of garnet. Legend as in Fig. S3b. 

d) Misorientation profile A-A’, location is shown in figure c). E) Misorientation profile B-B’, 

location shown in figure d. f) Misorientation profile C-C’, location shown in figure c). 

Figure S7 EBSD results of high strain domain (sample 0618). a) Pole figures of garnet. 
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Equal area projections, upper hemisphere. Half width 15°, maximum intensity 1.96 and total 

number of grains is 223. The trace of the shear foliation is oriented NNE-SSW, pole figures 

are oriented with the trace of the mylonitic foliation parallel to the diameter (E-W). b) Pole 

figures of hornblende. Equal area projections, upper hemisphere. Half width is 15°, maximum 

intensity 2.04 and total number of grains is 856. c) Misorientation axis of low angle 

boundaries (3-10°) in crystal coordinates. 

Figure S8 The image shows the results of Statistical Region Merging technique for 
increasing Q. Scale as in image a). a) Original data. b) SRM Q=2. c) SRM Q=10. d) SRM 

Q=25: note that the image is more detailed. e, f, g) Histograms relative to the three different 

SRM parameters. 

Figure S9 Label analysis of intermediate strain domain after erosion. The large 
interconnected voxel cluster is now divided in disconnected subvoxel clusters. Long side 

2630 µm. 

Figure S10 Quant3D explained. The tomographic data are first segmented to extrapolate the 

material of interest. Star points are placed within the segmented material: the distance of 

each star points to the next material boundary are calculated in many orientations and 

normalised. Simplified from Ketcham (2005). 

Figure S11 Results of Quant3D analysis on eroded data, from low strain (a) to high strain 
(c). With increasing deformation, garnet grains evolve from isodiametric shapes to more 

progressively discoid shapes as a results of the deformation. 

Figure S12 Histograms of GB cutoff misorientation (MO) angles: a) Low strain, b) 

Intermediate strain, c) High strain. The histograms confirmed that the vast majority of 

boundaries are indeed characterized by misorientation angles < 10 degrees- there has to be a 

sharp cutoff at 10 degrees, thus lending further support to the choice of using 10 degrees as 

threshold between low- and high-angle boundaries. 

Table S1 Electron microprobe chemical compositions of oxides in garnets, used to calculate 

the X-ray absorption coefficients. 

Table S2 Representative garnet structural formulae for the low (#066B2) and high (#0618) 

strain domain obtained from the microprobe analyses at the University of Münster. 

Table S3 Frequency distribution data for non-eroded data. The first column of each dataset 
refers to absolute frequency, the second one to the cumulative frequency relative to the total 

amount of garnet in each sample. 

Table S4 Frequency distribution data for eroded data. Bins refer to cubic micrometres. The 
first column of each dataset refers to absolute frequency, the second one to the cumulative 

frequency relative to the total amount of garnet in each sample. 
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FIGURE CAPTIONS 

Figure 1 The illustration shows the approximate original position (circles) of thin sections in 

the hand specimen, and the positions of tomographic data in the thin sections which are 

indicated by the red squares. 3D volume renderings, derived from tomographic data from the 

three samples, are shown in the bottom part. Slice is cut parallel to the fabric attractor. Axis 

for the kinematic frame (X, Y, Z) are indicated in the microtomographic data. 

Figure 2 Microtomographic datasets: a) low strain, b) intermediate strain, and c) high strain. 

Figure a) exhibits minor artefacts (horizontal stripes) that do not affect the analyses. Mineral 

phases and features are recognizable from the corresponding SEM images (Fig. 3). The 

images represent the XZ plane and are parallel to the thin sections. 

Figure 3 BSE images of Krakeneset samples and corresponding microtomographic datasets, 

from low to high strain domain respectively:  a) Sample 066B2 (Low strain)- Olivine grains 

are surrounded by complex coronas of orthopyroxene, garnet and amphibole. b) 3-

dimensional dataset of low strain domain: high-pressure amphibole-garnet coronas surround 

olivine grains (dimensions 1503 x 1196 x 1831 cubic voxels). Note the variable thickness of 

amphibole. c) Sample 0617 (Intermediate Strain)- In the intermediate strain domain, olivine 

cores are replaced by orthopyroxene, while garnet and amphibole are no more part of the 

corona structures. d) Corresponding microtomographic dataset (dimensions 1322 x 1219 x 

2023 cubic voxels). e) Sample 0618 (High Strain)- The high strain domain is characterized 

by a compositional layering of elongated garnet and plagioclase versus orthopyroxene and 

amphibole rich layers. f) Microtomographic dataset of the high strain domain (dimensions 

1313 x 1234 x 1980 cubic voxels): note garnet grains behaving as rigid objects in a more 

ductile matrix of orthopyroxene and amphibole. 

Figure 4 a) Optical microscope image illustrating the mineral phases and microstructures 

present in the more deformed samples. b) BSE image showing old olivine cores now replaced 

by orthopyroxene-amphibole symplectites. Relict cores of magmatic clynopyroxene are 

present (Mag_Cpx “relict”), and are surrounded by a thin rim of omphacite (Omp), which is 

present also between garnet and orthopyroxene-amphibole symplectites (“Opx-Amp Symp”). 

c) Symplectites of albite-clinozoisite are replacing the plagioclase; omphacite surrounds relict 

magmatic clynopyroxene (Mag_Cpx “relict”) and orthopyroxene-amphibole symplectites.  

Figure 5 Grs-Alm-Py plot showing garnet compositions from EMPA analyses, as single 

measurements across different grains.  End-members values, calculated as average from the 

single measurements, are presented in the graph by the large symbols. Filled symbols 

represent compositions compositionally closer to the plagioclase source (richer in CaO). 

Empty symbols represent compositions richer in Fe-Mg. With increasing deformation, garnet 

compositions become more Alm-rich, a trend expected for a gabbro that is equilibrating 

under P-T-t conditions of eclogite facies. In Tab. S2, representative structural formulae are 

reported for the three samples. 

Figure 6 Compositional maps for CaO and MgO for the low (a-b) and high (c-d) strain 

domains, obtained using XMapTools v. 2.3.1 (Lanari et al., 2014). CaO and MgO do have the 

same compositional zoning (4-10%) in the most deformed sample. C) Many garnets in the 

high strain domain have low CaO, reflecting an equilibration towards Alm-rich compositions. 
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The higher content in CaO (~10%) (a’) and MgO (~11%) (b’) shown by some grain is 

interpreted as to result from coalescence (a, b) and subsequent disintegration of individual 

zoned coronas. Fine-grained garnets (Fig. 6c to the left) represent highly fragmented and 

collapsed former coronas. 

Figure 7 The figures illustrate the results of segmentation of garnet from the 

microtomographic data. Top: cropped volumes of original datasets (∼0.5 mm
3
); bottom: 

garnets rendered in purple. Fog is added within the datasets to better visualize the 3D 

architecture. a) Low strain, b) Intermediate strain, c) High strain. Note 3D orientation and 

texture of garnet grains. Note the presence of more faceted grains in the intermediate and 

high strain domain. 

Figure 8 Garnet voxel cluster size distribution for non-eroded (solid lines) and eroded 

(dashed lines) data. From low to high strain, there is an increase in frequency for all size 

classes with increasing strain. Note the presence of the very large interconnected garnet voxel 

cluster in the low strain domain (blue solid curve), while the presence of much smaller sizes 

in the most deformed sample. The sketch on the top left corner illustrates the erosion process 

and the effects of particle size and shape: some particle might completely disappear. a,b) 

Absolute frequency and cumulative volume, respectively, for the low strain sample. c, d) 

Absolute frequency and cumulative volume, respectively, for the intermediate strain sample. 

e, f) Absolute frequency and cumulative volume, respectively, for the high strain sample. 

Figure 9 Label analysis of the end-members of the studied samples. a) 3D volume rendering 

of labels relative to low strain domain (dimensions 1503 x 1196 x 1831 cubic voxels). b) 

Intermediate Strain (dimensions 1322 x 1219 x 2023 cubic voxels). c) High strain 

(dimensions 1313 x 1234 x 1980 cubic voxels). Individual disconnected aggregates of 

garnet are identified with different colours. 

Figure 10 Outputs of segmentation for olivine (green) and garnet (blue) grains, in the low 

strain domain (different viewing angles). The red arrows indicate olivine grains that are not 

completely enclosed by garnet coronas. 

Figure 11 EBSD analysis results. Low strain: a) IPF map superposed on a pattern quality 
(Band Contrast) map. b) Profile X-Y, location in figure a). c) Misorientation axis by crystal 

coordinates for low angle boundaries (3-10°). Intermediate strain domain: d) IPF map. e) 

Profile X-Y, location in figure d; f) Misorientation axis by crystal coordinates for low angle 

boundaries (3-10°). High strain: g) IPF map. h) Profile X-Y, location in figure g; i) 

Misorientation axis by crystal coordinates for low angle boundaries (3-10°).  

Figure 12 Schematic sketch illustrating the evolution of reaction microfabrics, and in 

particular of garnet grains. a) Low strain domain. b) Intermediate strain. c) High strain. See 

text for discussion. 
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SUPPORTING INFORMATION 

Appendix S1 Ground-truthing: Correlating synchroton X-ray micro-tomography data 

with chemical compositions 

Appendix S2 Segmentation of micro-tomographic data 

Appendix S3 4D evolution of grain shapes 

Figure S1 Grey value histograms calculated from three SµCT datasets. The calculated 

absorption coefficients (µ) for the mineral phases correlate with grey scale values measured 

on the microtomographic data. The histograms reflect the metamorphic reactions during 

strain localization. 

Figure S2 Schematic workflow used to analyse the microtomographic data. 

Figure S3 EBSD results of low strain domain (sample 066B2). On EBSD-derived maps, 

high-angle boundaries (grain boundaries, misorientation > 10°) and low-angle boundaries 

(subgrain boundaries, misorientation > 3° and < 10°) were indicated with black and fuchsia 

lines, respectively. a) Phase map: Olivine (yellow), Plagioclase (white), Orthopyroxene 

(blue), Garnet (red), Hornblende (green). Red lines represent twinning boundaries in 

plagioclase. b) Inverse Pole Figure of garnet in relation to the stretching lineation in the shear 

zone. Legend on bottom left corner. c) Local Misorientation Map, and legend, representing 

local misorientations from 0 (blue) to 9 degrees misorientation (red). The arrow indicates the 

average local internal misorientation. d) Misorientation profile A-A’, location shown in 
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figure c). 

Figure S4 EBSD results of low strain domain (sample 066B2). e) Pole figures of garnet. 

Equal area projections, upper hemisphere. Half width is 15°, maximum intensity is 5.54 and 

total number of grains is 41. f) Pole figure of hornblende. Equal area projections, upper 

hemisphere. Half width 15°, maximum intensities 7.91 and total number of grains is 130. g) 

Misorientation axis in crystal coordinates for low angle boundaries (3-10°). 

Figure S5 EBSD results of intermediate strain domain (sample 0617). a) Inverse Pole Figure 

of garnet. Legend as in Fig. S3b. b) Local Misorientation Map, and legend representing local 

misorientations from 0 (blue) to 9 degrees misorientation (red). The arrow indicates the 

average local internal misorientation. c) Misorientation profile A-A’, location is shown in 

figure a). d) Misorientation profile B-B’, location shown in figure a). e) Pole figures of 

garnet. Equal area projections, upper hemisphere. Half width is 15°, maximum intensity 2.74 

and total number of grains is 255. The trace of the shear foliation is oriented NW-SE, pole 

figures are oriented with the trace of the mylonitic foliation parallel to the diameter (E-W). f) 

Misorientation axis of low angle boundaries (3-10°) in crystal coordinates. 

Figure S6 EBSD results of high strain domain (sample 0618). a) Phase map: Grt (red), Am 

(green), Opx (blue), Bt (yellow). b) Local Misorientation Map, and legend representing local 

misorientations from 0 (blue) to 9 degrees misorientation (red). The arrow indicates the 

average local internal misorientation.  c) Inverse Pole Figure of garnet. Legend as in Fig. S3b. 

d) Misorientation profile A-A’, location is shown in figure c). E) Misorientation profile B-B’, 

location shown in figure d. f) Misorientation profile C-C’, location shown in figure c). 

Figure S7 EBSD results of high strain domain (sample 0618). a) Pole figures of garnet. 

Equal area projections, upper hemisphere. Half width 15°, maximum intensity 1.96 and total 

number of grains is 223. The trace of the shear foliation is oriented NNE-SSW, pole figures 

are oriented with the trace of the mylonitic foliation parallel to the diameter (E-W). b) Pole 

figures of hornblende. Equal area projections, upper hemisphere. Half width is 15°, maximum 

intensity 2.04 and total number of grains is 856. c) Misorientation axis of low angle 

boundaries (3-10°) in crystal coordinates. 

Figure S8 The image shows the results of Statistical Region Merging technique for 

increasing Q. Scale as in image a). a) Original data. b) SRM Q=2. c) SRM Q=10. d) SRM 

Q=25: note that the image is more detailed. e, f, g) Histograms relative to the three different 

SRM parameters. 

Figure S9 Label analysis of intermediate strain domain after erosion. The large 

interconnected voxel cluster is now divided in disconnected subvoxel clusters. Long side 

2630 µm. 

Figure S10 Quant3D explained. The tomographic data are first segmented to extrapolate the 

material of interest. Star points are placed within the segmented material: the distance of 

each star points to the next material boundary are calculated in many orientations and 

normalised. Simplified from Ketcham (2005). 

Figure S11 Results of Quant3D analysis on eroded data, from low strain (a) to high strain 
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(c). With increasing deformation, garnet grains evolve from isodiametric shapes to more 

progressively discoid shapes as a results of the deformation. 

Figure S12 Histograms of GB cutoff misorientation (MO) angles: a) Low strain, b) 

Intermediate strain, c) High strain. The histograms confirmed that the vast majority of 

boundaries are indeed characterized by misorientation angles < 10 degrees- there has to be a 

sharp cutoff at 10 degrees, thus lending further support to the choice of using 10 degrees as 

threshold between low- and high-angle boundaries. 

Table S1 Electron microprobe chemical compositions of oxides in garnets, used to calculate 

the X-ray absorption coefficients. 

Table S2 Representative garnet structural formulae for the low (#066B2) and high (#0618) 

strain domain obtained from the microprobe analyses at the University of Münster. 

Table S3 Frequency distribution data for non-eroded data. The first column of each dataset 

refers to absolute frequency, the second one to the cumulative frequency relative to the total 

amount of garnet in each sample. 

Table S4 Frequency distribution data for eroded data. Bins refer to cubic micrometres. The 

first column of each dataset refers to absolute frequency, the second one to the cumulative 

frequency relative to the total amount of garnet in each sample. 

 

 

Appendix S1 Ground-truthing: Correlating synchroton X-ray micro-tomography data 

with chemical compositions 

Where X-ray microtomographic data allow for a complete visualisation of microfabrics in 

rocks in 3D (Denison and Carlson, 1997; Gualda and Rivers, 2006; Whitney et al., 2008; 

Wang et al., 2011; Goergen and Whitney, 2012; Sayab et al., 2014), the combination with 

established microanalytical techniques critically expands our insight into tectonic and 

metamorphic processes. High-resolution microtomographic data and electron microscopic 

analyses have similar resolutions on the µm-scale, and analytical results from the same 

samples can therefore be extrapolated between the techniques. The obvious gain from this is 

that metamorphic microfabrics can then be fully quantified in 3D. However, the marriage of 

2D with 3D analyses hinges on a) a registration of the 2D data within the 3D dataset, b) a 

correlation of actual compositional data from the mineral phases with intensities recorded in 

the 3D scalar fields that make a microtomographic dataset (Gualda and Rivers, 2006) and c) 

the involved procedure of segmenting individual mineral volumes from the 3- dimensional 

datasets to allow for a further quantitative analysis. While routines for image registration are 

readily available, also in AvizoFire
®

, and segmentation is discussed in section “Image 

Processing and Analysis”, the following summarises our strategy to correlate X-ray 

absorption with compositional information. 

In most microtomographic data material-specific X-ray absorption is recorded as a function 

of position in the sample and, as an output of the reconstruction process, stored in an array 

of intensity values. The relationship between absorption and intensity (usually visualised as 
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grey scale values) in the tomographic data is given by the Lambert-Beer law: 

� = �� exp �−	 
��
���
��

� 
where I represents the intensity of the X-ray source before it hits the sample, I0 is the 

attenuated intensity after X-rays passed through a sample of thickness x, and µ is a linear 

attenuation coefficient (e.g., Baker et al., 2012; Fusseis et al., 2014). The intensity 

distribution in a polymineralic sample can be plotted in a histogram that relates voxel 

frequency to recorded intensity (e.g., Fig. S1). Given that intensity is material-specific, these 

data can, in the best of cases, be used to quantify the volume of a particular mineral phase. 

However, it is important at this stage to establish a tight link between X-ray absorption 

microtomographic and actual compositional data from the same sample, and confirm that the 

grey values correspond to the minerals of interest. To achieve this we calculated the X-ray 

absorption coefficients for each mineral phase based on the chemical compositions acquired 

through EMPA analysis, and compared them with the grey scale distribution in the 

tomographic data (Fig. S1). X-ray mass attenuation coefficients are listed in a NIST 

(National Institute of Standards and Technology) database for elements Z=1 to 92, and for a 

number of substances of radiological interest. Where the energy of the incoming photons is 

known (in our case 27 KeV) and compositional data are available, the absorption 

coefficients can be calculated for any mineral. We used averaged electron microprobe 

analyses (EMPA) to calculate the theoretical X-ray mass attenuation coefficients of the 

minerals in our samples. Fig. S1 compares the calculated absorptions with three grey value 

histograms from the three studied datasets. Our analytical strategy, where the actual 

microtomography sample was polished and used for electron microscopy and EMPA 

analyses, allowed to combine compositional measurements with intensity signals and 

thereby anchor the two x-axes against each other. Fig. S1 does indeed capture some of the 

metamorphic processes that affect the samples. For example the peak for plagioclase, which 

is clearly present in the low strain dataset, is replaced by a minimum in the high strain 

domain, reflecting the lack (or a very small presence) of plagioclase in the eclogitic shear 

zone centre.  

Appendix S2 Segmentation of micro-tomographic data 

To be able to segment garnets from the tomographic images, we denoised the images in Fiji. 

The parameters for Anisotropic Diffusion Filter in 2D included 20 iterations, a1 and a2 were 

set up at 0.7 and 0.5 respectively. Before applying the filter, we improved the contrast on the 

images and saved them in Bitmap format in order to preserve the new contrast. 

On the filtered data, Statistical Region Merging (SRM) technique was applied (Nock and 

Nielsen, 2004). This algorithm is a region growing technique, which groups homogeneous 

pixels together and grow them iteratively together by merging other pixels or smaller 

regions. The limit of regions to be merged together is determined by a statistical test and the 

scale is controlled by the size of the parameter Q: the higher is Q, the higher is the number 

of subregions and the more detailed is the resulting image but it is also noisier (Nock and 

Nielsen, 2004) (Fig. S8). The changes operated by SRM can be visualised in the image 

histograms. Each boundary phase is marked in the histogram by a vertical bar, which allows 

Global Threshold to segment the material of interest in a more controlled way (Fig. S8). 

Global thresholding allows to select from the grey scale values in the histogram, and 
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therefore from their X-ray absorption coefficient, a particular phase that can be extrapolated 

from the contest. In some cases, the choice of using one single output of SRM was 

insufficient. In Fiji, it was thus possible to combine different SRM outputs to obtain the best 

segmentation for garnet grains by using Image Calculator and the Multiply operator to get 

rid of unwanted segmented phases or islands.  

A summary of the workflow used to analyse the data is shown in Figure S2. 

Appendix S3 4D evolution of grain shapes 

We performed Quant3D analysis to investigate the 3-dimensional shape of garnet grains and 

to understand if synchroton X-ray micro-tomography can be used to gain information on the 

dynamic evolution of grain shapes. Quant3D is a fabric analysis software developed by 

Ketcham and Ryan (2004) and Ketcham (2005), written in IDL programming language and 

it includes three main fabric analysis methods. Originally developed by previous works for 

two-dimensional analysis (Ketcham (2005b) and references therein), these methods can now 

be used also to analyse 3-dimensional structures.  The software gives the eigenvectors (û1, 

û2, û3) and eigenvalues (τˆ1, τˆ2, τˆ3) of the fabric tensors, which define orthogonal 

principal axes and are related to the moment of inertia, the degree of anisotropies (DA), the 

isotropy index I and the elongation index (E) (Ketcham, 2005).  The results can be 

visualized as a 3-dimensional rose diagram. In the rose diagram, each vertex is projected 

from the unit sphere either inward or outward from the origin of the star points. The vertex 

positions from the origin are normalized by the maximum distance value. In the rose 

diagram, eigenvectors, scaled by their respective eigenvalues, are also plotted. The rose 

diagram can be visualized as rendered surface with a colour code mode, where the red 

colour represents a normalized value of 1.0, as a distance from the origin equal to the 

coordinate axis length: lower values, indicating closer distances to the origin, are represented 

with cooler rainbow colours (Ketcham and Ryan (2004)). The results can be exported as 

VRML format, containing all the spatial information and readable by lots of applications. In 

our analysis, star points were placed outside the material of interest by assigning black 

values (0) to the garnets. In this way, the distances to the next material boundary represent 

distances to the material of interest, and thus they give an indication of the grain shapes. 

Analysis parameters were as followed: uniform distribution of orientations (513), random 

rotation, dense vectors. The results were exported as rose diagrams and VRML format files.  

In order to avoid errors introduced by image segmentation, the analysis were performed on 

eroded data, as previously mentioned (section “Image Processing and Analysis”). The results 

are shown in Fig. S12. With increasing strain, garnet shapes evolve from an isodiametric 

grain to increasingly discoidal and oblate shapes. 
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Figure S1 The graph shows grey value histograms calculated from three SµCT datasets. The 

calculated absorption coefficients (µ) for the mineral phases correlate with grey scale values 

measured on the microtomographic data. The histograms reflect the metamorphic reactions 

during strain localization. 

 

 

 

Figure S2 Schematic workflow used to analyse the microtomographic data. 
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Figure S3 EBSD results of low strain domain (sample 066B2). On EBSD-derived maps, 

high-angle boundaries (grain boundaries, misorientation > 10°) and low-angle boundaries 

(subgrain boundaries, misorientation > 3° and < 10°) were indicated with black and fuchsia 

lines, respectively. a) Phase map: Olivine (yellow), Plagioclase (white), Orthopyroxene 

(blue), Garnet (red), Hornblende (green). Red lines represent twinning boundaries in 

plagioclase. b) Inverse Pole Figure of garnet in relation to the stretching lineation in the shear 

zone. Legend on bottom left corner. c) Local Misorientation Map, and legend, representing 

local misorientations from 0 (blue) to 9 degrees misorientation (red). The arrow indicates the 

average local internal misorientation. d) Misorientation profile A-A’, location shown in 

figure c). 
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Figure S4 EBSD results of low strain domain (sample 066B2). e) Pole figures of garnet. 

Equal area projections, upper hemisphere. Half width is 15°, maximum intensity is 5.54 and 

total number of grains is 41. f) Pole figure of hornblende. Equal area projections, upper 

hemisphere. Half width 15°, maximum intensities 7.91 and total number of grains is 130. g) 

Misorientation axis in crystal coordinates for low angle boundaries (3-10°). 
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Figure S5 EBSD results of intermediate strain domain (sample 0617). a) Inverse Pole Figure 

of garnet. Legend as in Fig. S3b. b) Local Misorientation Map, and legend representing local 

misorientations from 0 (blue) to 9 degrees misorientation (red). The arrow indicates the 

average local internal misorientation. c) Misorientation profile A-A’, location is shown in 

figure a). d) Misorientation profile B-B’, location shown in figure a). e) Pole figures of 

garnet. Equal area projections, upper hemisphere. Half width is 15°, maximum intensity 2.74 

and total number of grains is 255. The trace of the shear foliation is oriented NW-SE, pole 

figures are oriented with the trace of the mylonitic foliation parallel to the diameter (E-W). f) 

Misorientation axis of low angle boundaries (3-10°) in crystal coordinates. 
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Figure S6 EBSD results of high strain domain (sample 0618). a) Phase map: Grt (red), Am 

(green), Opx (blue), Bt (yellow). b) Local Misorientation Map, and legend representing local 

misorientations from 0 (blue) to 9 degrees misorientation (red). The arrow indicates the 

average local internal misorientation.  c) Inverse Pole Figure of garnet. Legend as in Fig. S3b. 

d) Misorientation profile A-A’, location is shown in figure c). E) Misorientation profile B-B’, 

location shown in figure d. f) Misorientation profile C-C’, location shown in figure c). 
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Figure S7 EBSD results of high strain domain (sample 0618). a) Pole figures of garnet. 

Equal area projections, upper hemisphere. Half width 15°, maximum intensity 1.96 and total 

number of grains is 223. The trace of the shear foliation is oriented NNE-SSW, pole figures 

are oriented with the trace of the mylonitic foliation parallel to the diameter (E-W). b) Pole 

figures of hornblende. Equal area projections, upper hemisphere. Half width is 15°, maximum 

intensity 2.04 and total number of grains is 856. c) Misorientation axis of low angle 

boundaries (3-10°) in crystal coordinates. 

 

 

Figure S8 The image shows the results of Statistical Region Merging technique for 

increasing Q. Scale as in image a). a) Original data. b) SRM Q=2. c) SRM Q=10. d) SRM 

Q=25: note that the image is more detailed. e, f, g) Histograms relative to the three different 
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SRM parameters. 

 

 

Figure S9 Label analysis of intermediate strain domain after erosion. The large 

interconnected voxel cluster is now divided in disconnected subvoxel clusters. Long side 

2630 µm. 

 

 

 
  

Figure S10 Quant3D explained. The tomographic data are first segmented to extrapolate the 

material of interest. Star points are placed within the segmented material: the distance of 

each star points to the next material boundary are calculated in many orientations and 

normalised. Simplified from Ketcham (2005). 

 

 

 

Figure S11 Results of Quant3D analysis on eroded data, from low strain (a) to high strain 
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(c). With increasing deformation, garnet grains evolve from isodiametric shapes to more 

progressively discoid shapes as a results of the deformation. 

 

 

Figure S12 Histograms of GB cutoff misorientation (MO) angles: a) Low strain, b) 

Intermediate strain, c) High strain. The histograms confirmed that the vast majority of 

boundaries are indeed characterized by misorientation angles < 10 degrees- there has to be a 

sharp cutoff at 10 degrees, thus lending further support to the choice of using 10 degrees as 

threshold between low- and high-angle boundaries. 
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Table S1 Electron microprobe chemical compositions of oxides in garnets, used to calculate 

the X-ray absorption coefficients. 

 
 

Table S2 Representative garnet structural formulae for the low (#066B2) and high (#0618) 

strain domain obtained from the microprobe analyses at the University of Münster. 
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Table S3 Frequency distribution data for non-eroded data. The first column of each dataset 

refers to absolute frequency, the second one to the cumulative frequency relative to the total 

amount of garnet in each sample. 
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Table S4 Frequency distribution data for eroded data. Bins refer to cubic micrometres. The 

first column of each dataset refers to absolute frequency, the second one to the cumulative 

frequency relative to the total amount of garnet in each sample. 
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