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A B S T R A C T

Generalised Structure Tensors (GSTs) are used to formulate constitutive models for anisotropic fibre-reinforced
materials in which fibres are dispersed. The GST approach has been applied so far to models based on invariants
𝐼4 and 𝐼5 (𝐼6 and 𝐼7). These anisotropic invariants capture the effect of deformation on each fibre family in
isolation, unlike the invariant 𝐼8, which couples two fibre families. We extend the GST approach to models
based on the invariant 𝐼8. We consider two different formulations and for each model derive expressions for
stress and elasticity tensors in both the general case and for axisymmetric distributions. We apply the proposed
formulation to the hyperelastic Holzapfel–Ogden model for myocardium and obtain a modified model, in which
fibre dispersion is consistently accounted for in every term of the strain-energy function. We demonstrate that
when accounting for fibre dispersion in the coupling term, the effect on the predicted material response can be
significant and may also reduce material symmetry.

1. Introduction

Many soft biological tissues can be regarded as elastic solid com-
posites, consisting of an incompressible and isotropic matrix, which is
reinforced by one or several families of fibres. From the perspective
of constitutive modelling, the term ‘‘fibres’’ can be used broadly to
refer to slender one-dimensional load-bearing objects. To this category
belong mathematical representations for actin filaments [1], which are
elements of the cytoskeleton, and for collagen and elastin [2], which
are abundant in the extra-cellular matrix of connective tissues. Idealised
and simplified descriptions are used for complex arrangements of fibres,
which can be organised into hierarchical fibrillar units, as in tendons
and ligaments [3], or into layers forming a multi-ply structure, as in
the arterial wall [4]. Another example is the myocardium, in which
myofibres are interconnected by fine endomysial collagen and form
branching laminae, surrounded by the perimysial collagen network [5].

The orientation of constituents is the central microstructural charac-
teristic that determines the anisotropy of the tissue response. The align-
ment can be described via the orientation of actual fibres or in terms of
a special direction that is not associated with any structural elements
aligned along it, such as the myocardium sheet normal vector [6,7].
Local variability of microscopic organisation is found in many tissues
and can be captured at the continuum level using orientation density
functions (ODFs), which express the probability of observing certain
orientations within a representative volume element. This statistical
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datum is acquired by histological examinations using modern imaging
techniques: see, e.g., [8]. For the convenience of subsequent analysis,
the datum is fitted by unimodal 2D or 3D distribution functions, which
reproduce the dispersion of fibres around a preferred direction, as well
as the extreme cases of the strict parallel alignment and the isotropic
distribution.

Structure-based constitutive models for soft tissues incorporate dis-
tributed orientation properties by means of the angular integration
(AI) [9] or the generalised structure tensors (GSTs) [4,10], which are
critically compared in [11,12] and contributions cited therein. The AI
approach computes the total tissue stress as a weighted average of
stresses for each possible structural orientation. The resulting expression
is an integral over a range of angles, hence the name. The GST approach
defines the anisotropic response using a GST, which is a weighted
average of rank-one structure tensors. The GST approach has been ap-
plied to various tissues, including arteries [13,4], myocardium [14,15],
heart valves [10], articular cartilage [16,17], annulus fibrosus [18], and
cornea [19]. The role of the GST in these models is to take into account
fibre dispersion in anisotropic invariants 𝐼4 and 𝐼5 (𝐼6 and 𝐼7), which
capture the effect of deformation on each fibre family in isolation. To our
knowledge, GST models for the invariant 𝐼8 have not been considered
before. This invariant couples two fibre families and is used, for instance,
in models for myocardium [5] and annulus fibrosus [20].
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In this paper we present a novel model for accounting for fibre
dispersion in strain-energy functions that depend on the coupling in-
variant 𝐼8. In Section 2 we give necessary background information and
introduce notation for the GSTs. In Section 3 we consider two different
formulations for the dispersed coupling invariant, discuss issues arising
and derive expressions for stress and elasticity tensors in the general
case and for axisymmetric distributions. In Section 4 we demonstrate
the effect of accounting for fibre dispersion in the coupling invariant
using a modification of the Holzapfel–Ogden model for myocardium [5].
Discussion and final remarks conclude the paper in Sections 5 and 6.

2. Invariant-based hyperelastic constitutive models

2.1. Anisotropic hyperelastic material

Consider a hyperelastic material with two distinguished directions 𝐌
and 𝐌′. By the representation theorem [21,22], a general strain energy
𝛹 (𝐂,𝐌,𝐌′) can be expressed as a function of 9 invariants,

𝐼1 = tr𝐂 = 𝟏 ∶ 𝐂, 𝐼2 =
1
2
(

tr2𝐂 − tr𝐂2) , 𝐼3 = det 𝐂, (1)

𝐼4 = (𝐌⊗𝐌) ∶ 𝐂, 𝐼5 = (𝐌⊗𝐌) ∶ 𝐂2, (2)

𝐼6 = (𝐌′ ⊗𝐌′) ∶ 𝐂, 𝐼7 = (𝐌′ ⊗𝐌′) ∶ 𝐂2, (3)

𝐼8 = (𝐌⊗𝐌′) ∶ 𝐂, 𝐼8 = (𝐌 ⋅𝐌′)𝐌 ⋅ 𝐂𝐌′,

𝐼8 = 𝐼28 = (𝐌 ⋅ 𝐂𝐌′)2 (4)

𝐼9 = 𝐌 ⋅𝐌′, 𝐼9 =
(

𝐌 ⋅𝐌′)2, (5)

where the double contraction of two second-order tensors is defined as
𝐓 ∶ 𝐓̃ = tr

(

𝐓𝐓̃𝑇
)

= T𝑖𝑗 T̃𝑖𝑗 , and 𝟏 is the identity tensor. The complete
set of invariants 𝐼1,… , 𝐼9 is not unique, in the sense that alternative
choices exist, e.g., for 𝐼8, and 𝐼9, which are listed above. Invariants 𝐼9
and 𝐼9 do not depend on the deformation, their role is to define the
undeformed values for 𝐼8|𝐂=𝟏 = 𝐼9 and 𝐼8|𝐂=𝟏 = 𝐼8|𝐂=𝟏 = 𝐼9. For the
sake of uniformity, we define and use 𝐼8-like invariants, whose values
in the undeformed state are always zero,

𝐼80 = 𝐼8 − 𝐼9 = 2𝐌 ⋅ 𝐄𝐌′, 𝐼80 = 𝐼8 − 𝐼9 = (𝐌 ⋅𝐌′)
(

𝐼8 − 𝐼9
)

, (6)

𝐼80 = (𝐼8 − 𝐼9)2 =
(

2𝐌 ⋅ 𝐄𝐌′)2, (7)

where the Green–Lagrange strain tensor 𝐄 = 1
2 (𝐂 − 𝟏) is introduced.

The use of these invariants as arguments of the strain-energy function
guarantees that if the material is stress-free in the undeformed state for
some choice of 𝐌, 𝐌′, then this is also the case for any other choice of
the two vectors. Unless explicitly stated otherwise, we assume that the
strain-energy function 𝛹 is expressed in terms 𝐼80, 𝐼80, or 𝐼80, and not
in terms of 𝐼8, 𝐼8, or 𝐼8.

In principle, 𝐌 and 𝐌′ can be regarded as arbitrary directions,
which are chosen for the purpose of relating material orientation—
any pair of non-collinear vectors will serve this purpose. However, in
fibre-reinforced materials it is convenient and customary to make no
distinction between 𝐌 and −𝐌 (𝐌′ and −𝐌′). In other words, the strain
energy is given in the form of 𝛹 (𝐂,𝐌⊗𝐌,𝐌′⊗𝐌′). This identification
has two consequences:

∙ the strain-energy function 𝛹 (𝐂,𝐌⊗𝐌,𝐌′⊗𝐌′) cannot depend
on the sign of 𝐼8, which is an odd functions of 𝐌 and 𝐌′. To
ensure this, invariants 𝐼8 or 𝐼8 = 𝐼28 can be used instead of 𝐼8.
Strictly speaking, 𝐼8 is an invariant of a function 𝛹 (𝐂,𝐌,𝐌′), but
not of 𝛹 (𝐂,𝐌⊗𝐌,𝐌′ ⊗𝐌′);

∙ if 𝐌 and 𝐌′ are orthogonal, then the strain-energy functions
𝛹 (𝐂,𝐌 ⊗𝐌,𝐌′ ⊗𝐌′) can only describe orthotropic materials.
In order to allow for general anisotropy, vectors 𝐌 and 𝐌′ must
not be orthogonal. Orthotropy also arises when non-orthogonal
directions 𝐌 and 𝐌′ are mechanically equivalent, in which
case the vectors can be replaced by their bisectors, which are
orthogonal, see, e.g., [23].

Thus, without loss of generality, orthotropy implies orthogonality
𝐌 ⋅ 𝐌′ = 0. The strain energy of an orthotropic material depends, in
general, only on 7 invariants, 𝐼1 … 𝐼7, since 𝐼8, 𝐼8, and 𝐼8 satisfy

𝐼8 = 0, 𝐼28 = 𝐼8 = 𝐼2 + 𝐼5 + 𝐼7 + 𝐼4𝐼6 − 𝐼1(𝐼4 + 𝐼6). (8)

The second identity is given in [24] without a proof, which we provide
in Appendix A. Note that the orthogonality 𝐌 ⋅ 𝐌′ = 0 makes 𝐼80 and
𝐼80 identical to 𝐼8 and 𝐼8 respectively, whereas invariants 𝐼80 = 𝐼8 = 0
become unsuitable for constitutive description.

The second Piola–Kirchhoff stress in an unconstrained hyperelastic
material is given by

𝐒 = 2 𝜕𝛹
𝜕𝐂

= 2
∑

𝑖

𝜕𝛹
𝜕𝐼𝑖

𝜕𝐼𝑖
𝜕𝐂

. (9)

The stress in an incompressible material reads

𝐒 = −𝑝𝐂−1 + 2
∑

𝑖≠3

𝜕𝛹
𝜕𝐼𝑖

𝜕𝐼𝑖
𝜕𝐂

, (10)

where 𝑝 is a Lagrange multiplier corresponding to the constraint 𝐼3−1 =
0, and any set of independent invariants can be used. The following
useful identities arise from (1)–(4),

𝜕𝐼1
𝜕𝐂

= 𝟏,
𝜕𝐼2
𝜕𝐂

= 𝐼1𝟏 − 𝐂,
𝜕𝐼4
𝜕𝐂

= 𝐌⊗𝐌,

𝜕𝐼5
𝜕𝐂

= 2[𝐂𝐌⊗𝐌]sym,
(11)

𝜕𝐼6
𝜕𝐂

= 𝐌′ ⊗𝐌′,
𝜕𝐼7
𝜕𝐂

= 2[𝐂𝐌′ ⊗𝐌′]sym,

𝜕𝐼80
𝜕𝐂

=
𝜕𝐼8
𝜕𝐂

= [𝐌⊗𝐌′]sym,
(12)

𝜕𝐼80
𝜕𝐂

=
𝜕𝐼8
𝜕𝐂

=
(

𝐌 ⋅𝐌′) [𝐌⊗𝐌′]sym,

𝜕𝐼80
𝜕𝐂

= 2𝐼80[𝐌⊗𝐌′]sym.
(13)

Here [𝐓]sym = 1
2

(

𝐓 + 𝐓T) denotes the symmetric part of the second order
tensor 𝐓. By using (11)–(13) in (10), we obtain

𝐒 = −𝑝𝐂−1 + 2𝛹1𝟏 + 2𝛹2(𝐼1𝟏 − 𝐂) + 2𝛹4𝐌⊗𝐌
+4𝛹5[𝐂𝐌⊗𝐌]sym (14)

+2𝛹6𝐌′ ⊗𝐌′ + 4𝛹7[𝐂𝐌′ ⊗𝐌′]sym + 2𝛹80[𝐌⊗𝐌′]sym, (15)

where 𝛹𝑖 = 𝜕𝛹∕𝜕𝐼𝑖 with the argument omitted for brevity. If invariants
𝐼80 or 𝐼80 are used, then the last term is replaced by either

2𝛹8̃0 𝐼9[𝐌⊗𝐌′]sym or 4𝛹8̂0 𝐼80[𝐌⊗𝐌′]sym, (16)

where 𝛹80, 𝛹8̃0, and 𝛹8̂0 denote partial derivatives with respect to 𝐼80,
𝐼80, and 𝐼80, respectively.

2.2. The GST model

Consider a family of distributed (dispersed) fibres, whose orientation
is given by an even orientation density function (ODF) 𝜌(𝐍) = 𝜌(−𝐍). The
original GST model [4] accounts for the distributed fibre reinforcement
and extends a material model based on a fibre potential 𝜓f (𝐼4) as follows,

𝛹GST = 𝜓f (𝐼⋆4 ) = 𝜓f (𝐇 ∶ 𝐂), 𝐇 = ∫S2
𝜌(𝐍)𝐍⊗ 𝐍𝑑𝜔, (17)

where 𝐇 is the generalised structure tensor (GST), S2 = {𝐍 ∈ R3, |𝐍| =
1} denotes the unit sphere, 𝐍 is the direction of integration, 𝑑𝜔 is the
solid angle element in the direction 𝐍. We use ∮S2 𝜌𝑑𝜔 = 1 as the
normalisation condition for 𝜌. An alternative condition ∮S2 𝜌𝑑𝜔 = 4𝜋
is used by other authors.

The unit vector 𝐍 denotes one of many possible fibre directions
and is distinguished from 𝐌, which appears in (2) and denotes there
a predetermined direction of anisotropy. One may as well regard 𝐍 as
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a stochastic analogue of the deterministic vector 𝐌, that is, 𝐼4(𝐍) is the
analogue to 𝐼4(𝐌), etc. The modified invariant 𝐼⋆4 can be regarded as
the average of 𝐼4(𝐍) weighted by 𝜌(𝐍). Hence, the argument of the fibre
potential 𝜓f (𝐼4) is replaced by its average:

𝐼4(𝐍) = (𝐍⊗ 𝐍) ∶ 𝐂 → 𝐼⋆4 = 𝐇 ∶ 𝐂. (18)

Phenomenological constitutive parameters must be fitted to experimen-
tal data using the modified fibre potential 𝜓f (𝐼⋆4 ) and not the original
function 𝜓f (𝐼4). Doing so is important to ensure that the descriptive and
predictive capabilities of the GST model are fully used [11].

2.2.1. Extension of the GST approach to multiple fibre families and invariant
𝐼5

The same procedure, as above, can be applied to a material contain-
ing several families, if the strain energy of each of them depends on an
𝐼4-like invariant,
𝑛
∑

𝑖=1
𝜓 (𝑖)
f (𝐼4,𝑖) →

𝑛
∑

𝑖=1
𝜓 (𝑖)
f (𝐼⋆4,𝑖), 𝐼⋆4,𝑖 = 𝐇(𝑖) ∶ 𝐂, (19)

where, in general, 𝜓 (𝑖)
f (𝐼⋆4,𝑖) are 𝑛 different functions, and 𝐇(𝑖) are based

on 𝑛 different distributions 𝜌(𝑖)(𝐍(𝑖)). In particular, we can replace 𝐼4 and
𝐼6 for 𝐼⋆4 = 𝐇 ∶ 𝐂 and 𝐼⋆6 = 𝐇′ ∶ 𝐂, where 𝐇 and 𝐇′ are GSTs computed
based on ODFs 𝜌(𝐍) and 𝜌′(𝐍′) respectively. See Fig. 1 for a schematic
representation of a material with two fibre families.

Holzapfel and Ogden [11] provide an analogous expression for the
modification of invariant 𝐼5,

𝐼5(𝐍) = (𝐍⊗ 𝐍) ∶ 𝐂2 → 𝐼⋆5 = 𝐇 ∶ 𝐂2. (20)

Similarly, we can define 𝐼⋆7 = 𝐇′ ∶ 𝐂2 for the second fibre family, and
𝐼⋆5,𝑖 = 𝐇(𝑖) ∶ 𝐂2 for the 𝑖th fibre family.

2.2.2. Axisymmetric fibre distribution
When the fibre distribution is assumed to be axisymmetric with

respect to some direction 𝐌 (which is called the mean fibre direction),
i.e.𝜌(𝐍) = 𝜌̃(𝜃) = 𝜌̃(arccos𝐍 ⋅ 𝐌), the GST takes a particularly simple
form,

𝐇 = 𝜅𝟏 + (1 − 3𝜅)𝐌⊗𝐌, 𝜅 = 𝜋 ∫

𝜋

0
𝜌̃(𝜃) sin3 𝜃𝑑𝜃. (21)

The corresponding model is called ‘‘kappa-model’’ [4,13], as the GST 𝐇
captures the extent of orientational dispersion using a single scalar, the
dispersion parameter 𝜅. The modified invariants are given by

𝐼⋆4 ≡ 𝐇 ∶ 𝐂 = 𝜅𝐼1 + (1 − 3𝜅)𝐼4,

𝐼⋆5 ≡ 𝐇 ∶ 𝐂2 = 𝜅(𝐼21 − 2𝐼2) + (1 − 3𝜅)𝐼5,
(22)

where 𝐼4 and 𝐼5 are the standard anisotropic invariants corresponding
to the mean fibre direction 𝐌. Here we used identities (2) and 𝟏 ∶ 𝐂2 =
𝐼21 − 2𝐼2, which follows from (1).

2.2.3. Extension of the GST approach to 𝐼8
To our knowledge, no modification similar to (18) and (20) was

previously considered for 𝐼8. Such modification can be used to model
fibre splay or orientation uncertainty in materials with two fibre fam-
ilies, whose strain energy has a term of the form 𝜓(𝐼8) or similar. An
example of such material is the myocardium, wherein two material
directions, labelled 𝐟 and 𝐬, are distinguished. Although GST models
for distributed (dispersed) directions in myocardium have recently
been proposed [14,15], these studies used constitutive models with the
regular invariant 𝐼8fs and the modified invariants 𝐼⋆f , 𝐼⋆s . In other words,
the models did not consider the effect of directional dispersion on the
mixed term 𝜓fs(𝐼8fs).

In this contribution, we consider a GST-based modification proce-
dure for 𝐼80, 𝐼80, and 𝐼80, thereby extend the GST approach to a complete
set of anisotropic invariants. The proposed full GST model defines

the second Piola–Kirchhoff stress tensor for a general incompressible
material with two dispersed orientations by

𝐒 = −𝑝𝐂−1 + 2𝛹1𝟏 + 2𝛹2(𝐼1𝟏 − 𝐂) + 2𝛹4𝐇 + 4𝛹5[𝐂𝐇]sym (23)

+2𝛹6𝐇′ + 4𝛹7[𝐂𝐇′]sym + 4𝛹8̂0
[

𝐇 (𝐂 − 𝟏)𝐇′]
sym, (24)

or, alternatively, by the same expression with the last term replaced by

2𝛹8̃0 [𝐇𝐇′]sym, (25)

where modified anisotropic invariants are used throughout, i.e. 𝛹𝑖 =
𝜕𝛹∕𝜕𝐼⋆𝑖 , 𝑖 = 4,… , 7, 80. The original expressions without dispersion
(14)–(16) can be recovered from the GST model by replacing the GSTs
𝐇, 𝐇′ in (23)–(25) with the rank-one structure tensors 𝐌⊗𝐌, 𝐌′⊗𝐌′.
The Cauchy stress tensor is defined as the push forward of the second
Piola–Kirchhoff stress tensor,

𝝈 = 𝐅𝐒𝐅𝑇 = − 𝑝𝟏 + 2𝛹1𝐛 + 2𝛹2(𝐼1𝐛 − 𝐛2) + 2𝛹4𝐡 + 4𝛹5[𝐛𝐡]sym (26)
+ 2𝛹6𝐡′ + 4𝛹7[𝐛𝐡′]sym + 4𝛹8̂0

[

𝐡
(

1 − 𝐛−1
)

𝐡′
]

sym, (27)

where 𝐡 = 𝐅𝐇𝐅𝑇 , 𝐡 = 𝐅′𝐇′𝐅𝑇 are the structure tensors pushed forward
into the current configuration and 𝐛 = 𝐅𝐅𝑇 is the left Cauchy–Green
deformation tensor.

In the remainder of this paper, we derive the GST model for modified
invariants 𝐼⋆80, 𝐼

⋆
80, explain why invariants 𝐼⋆8 or 𝐼⋆80 cannot be used, and

illustrate the effect of dispersion in the mixed term using an orthotropic
model for the myocardium.

3. Modified invariants 𝑰⋆
𝟖𝟎, 𝑰

⋆
𝟖𝟎, and 𝑰⋆

𝟖𝟎

We introduce the following notation,

⟨∙⟩ ≡ ∫S2
∙𝜌(𝐍)𝑑𝜔, ⟨∙⟩′ ≡ ∫S2

∙𝜌′(𝐍′)𝑑𝜔, (28)

where ⟨∙⟩ and ⟨∙⟩′ are the (weighted) averaging operators, as they are
linear, idempotent and normalised in the sense that ⟨1⟩ = ⟨1⟩′ = 1. The
modified invariants 𝐼⋆𝑖 can be regarded as the averaged counterparts of
the original invariants 𝐼𝑖, and the GSTs are thought of as the averaged
rank-one symmetric structure tensors,

𝐼⋆4 = ⟨𝐼4(𝐍)⟩ = ⟨(𝐍⊗ 𝐍)∶𝐂⟩ = 𝐇∶𝐂,
𝐼⋆5 = ⟨𝐼5(𝐍)⟩ = ⟨(𝐍⊗ 𝐍)∶𝐂2

⟩ = 𝐇∶𝐂2,
(29)

𝐼⋆6 = ⟨𝐼6(𝐍′)⟩′ = ⟨(𝐍′ ⊗ 𝐍′)∶𝐂⟩′ = 𝐇′∶𝐂,
𝐼⋆7 = ⟨𝐼7(𝐍′)⟩′ = ⟨(𝐍′ ⊗ 𝐍′)∶𝐂2

⟩

′ = 𝐇′∶𝐂2.
(30)

In a similar way, we consider the weighted average of 𝐼80 with respect
to orientation distributions of 𝐍 and 𝐍′, since 𝐼80 depends on both
directions. We define

𝐼⋆80 = ⟨⟨𝐼80(𝐍,𝐍′)⟩⟩′ = 2⟨⟨𝐍 ⋅ 𝐄𝐍′
⟩⟩

′. (31)

Note that 𝐼80 is an odd function of 𝐍 and 𝐍′. Therefore, its average over
the entire unit sphere with respect to even orientation functions 𝜌(𝐍)
and 𝜌′(𝐍′) is identically zero,

𝐼⋆80 = ⟨⟨𝐼80(𝐍,𝐍′)⟩⟩′ ≡ 0. (32)

Obviously, a definition of a strain-energy function with a constant
argument 𝐼⋆8 ≡ 0 or 𝐼⋆80 ≡ 0 is of no use. Therefore, we investigate
models based on the averaging of invariants 𝐼80 and 𝐼80, which are even
functions of the special directions.

3.1. Invariants 𝐼80 and 𝐼⋆80

The average of 𝐼80 is defined as

𝐼⋆80 = ⟨⟨𝐼80(𝐍,𝐍′)⟩⟩′ = 2⟨⟨
(

𝐍 ⋅ 𝐍′)𝐍 ⋅ 𝐄𝐍′
⟩⟩

′. (33)
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Fig. 1. Two families of dispersed fibres with mean directions 𝐌 and 𝐌′. Vectors 𝐍 and 𝐍′ correspond to one of many possible fibre orientations in the respective
fibre families, and are the variables of integration in the computation of an average weighted by orientation density functions 𝜌(𝐍) and 𝜌′(𝐍′). (a) Non-orthogonal
mean fibre directions with angle 𝛼0 = arccos𝐌 ⋅𝐌′ ≠ 𝜋

2
. Even though the material structure is invariant with respect to inverting the direction of 𝐌 or 𝐌′, the sign

of cos 𝛼0 = 𝐌 ⋅ 𝐌′ will change. (b) In the case of orthogonal mean fibre directions (𝐌 ⋅ 𝐌′ = 0) particular fibre directions within a dispersion are not necessarily
orthogonal (𝐍 ⋅ 𝐍′ ≠ 0).

In order to express it via the GST, we write

𝐼⋆80 = 2⟨⟨(𝐍⊗ 𝐍)(𝐍′ ⊗ 𝐍′) ∶ 𝐄⟩⟩′ = 2⟨𝐍⊗ 𝐍⟩⟨𝐍′ ⊗ 𝐍′
⟩

′ ∶ 𝐄

= 2(𝐇𝐇′) ∶ 𝐄 = 2[𝐇𝐇′]sym ∶ 𝐄, (34)

where we have used the fact that the integrand can separated into
factors depending respectively on 𝐍, 𝐍′, and 𝐄. Hence, we can define a
structure-like tensor

𝐇̃ = [𝐇𝐇′]sym, so that 𝐼⋆80 = 2𝐇̃ ∶ 𝐄. (35)

Remark 1. The second-order structure-like tensor 𝐇̃ is symmetric, but
unlike the generalised structure tensor, it is not necessarily positive
semi-definite. For illustration, consider the strict fibre alignment case,
and the following eigendecomposition,

𝐇̃ = 1
2
(𝐌 ⋅𝐌′)

(

𝐌⊗𝐌′ +𝐌′ ⊗𝐌
)

= 𝜆̃1𝐄̃1 ⊗ 𝐄̃1 + 𝜆̃2𝐄̃2 ⊗ 𝐄̃2, (36)

where 𝜆̃1,2 =
1
2 (𝐌 ⋅𝐌′)(𝐌 ⋅𝐌′±1), 𝐄̃1,2 = (𝐌±𝐌′)|𝐌 ±𝐌′

|

−1, and the

eigenvalues 𝜆̃1,2 of 𝐇̃ are clearly of opposite sign. The lack of positive
semi-definiteness is related to the fact that 𝐼⋆80 can take arbitrary large in
magnitude positive and negative values, as for 𝐄 = 𝛼(𝐌±𝐌′)⊗(𝐌±𝐌′)
we get 𝐼⋆80 = 𝛼(𝐌 ⋅𝐌′)(𝐌 ⋅𝐌′ ± 1)2, and such deformations are feasible
in the sense that 𝐅 = 𝐔 = (2𝐄 + 𝟏)1∕2 is a well-defined deformation
gradient, which satisfies det 𝐅 > 0. The absence of the infimum makes
invariants 𝐼80 and 𝐼8 less attractive for formulation of elastic potentials
than the quadratic invariant 𝐼80. See [25] for a review of hyperelastic
strain energies.

One can also define

𝐼⋆8 = ⟨⟨𝐼8(𝐍,𝐍′)⟩⟩′ = ⟨⟨

(

𝐍 ⋅ 𝐍′)𝐍 ⋅ 𝐂𝐍′
⟩⟩

′ = [𝐇𝐇′]sym ∶ 𝐂 = 𝐇̃ ∶ 𝐂, (37)

and establish the relation between 𝐼⋆8 and 𝐼⋆80,

𝐼⋆80 = ⟨⟨𝐼9(𝐍,𝐍′)𝐼8(𝐍,𝐍′) −
(

𝐼9(𝐍,𝐍′)
)2
⟩⟩

′

= 𝐼⋆8 − 𝐼⋆9 = 𝐇̃ ∶ 𝐂 − tr𝐇̃. (38)

The derivatives of 𝐼⋆80 and 𝐼⋆8 are given by

𝜕𝐼⋆8
𝜕𝐂

=
𝜕𝐼⋆80
𝜕𝐂

= 𝐇̃,
𝜕2𝐼⋆80
𝜕𝐂𝜕𝐂

=
𝜕2𝐼⋆8
𝜕𝐂𝜕𝐂

= 0. (39)

The second Piola–Kirchhoff stress contribution due to the fibre
potentials 𝜓̃(𝐼⋆80) and 𝜓̃(𝐼⋆8 ) have the identical form,

2 𝜕
𝜕𝐂

𝜓̃(𝐼⋆80) = 2
𝜕𝜓̃

𝜕𝐼⋆80

𝜕𝐼⋆80
𝜕𝐂

= 2𝜓̃ ′
8̃
𝐇̃. (40)

The same applies to the Lagrangian elasticity tensor contribution due to
𝜓̃(𝐼⋆80) and 𝜓̃(𝐼⋆8 ) , which read

4 𝜕2

𝜕𝐂𝜕𝐂
𝜓̃(𝐼⋆80) = 4 𝜕2

𝜕𝐂𝜕𝐂
𝜓̃(𝐼⋆8 ) = 4

(

𝜕2𝜓̃

𝜕𝐼⋆80𝜕𝐼
⋆
80

𝜕𝐼⋆80
𝜕𝐂

⊗
𝜕𝐼⋆80
𝜕𝐂

+
𝜕𝜓̃

𝜕𝐼⋆8

𝜕2𝐼⋆80
𝜕𝐂𝜕𝐂

)

= 4𝜓̃ ′′
8̃
𝐇̃⊗ 𝐇̃. (41)

Axisymmetric distributions
In the case of axisymmetric fibre distributions, the GSTs have the

special form

𝐇 = 𝜅𝟏 + (1 − 3𝜅)𝐀, 𝐇′ = 𝜅′𝟏 + (1 − 3𝜅′)𝐀′, (42)

where 𝐀 = 𝐌⊗𝐌, 𝐀′ = 𝐌′⊗𝐌′. The second-order structure-like tensor
reads

𝐇̃ = [𝐇𝐇′]sym = 𝜅𝜅′𝟏 + 𝜅′(1 − 3𝜅)𝐀 + 𝜅(1 − 3𝜅′)𝐀′

+ (1 − 3𝜅)(1 − 3𝜅′)[𝐀𝐀′]sym. (43)

Double contractions 𝐇̃ ∶ 𝐂 and 2𝐇̃ ∶ 𝐄 yield, respectively,

𝐼⋆8 = 𝜅𝜅′𝐼1 + 𝜅′(1 − 3𝜅)𝐼4 + 𝜅(1 − 3𝜅′)𝐼6 + (1 − 3𝜅)(1 − 3𝜅′)𝐼8, (44)

𝐼⋆80 = 𝜅𝜅′
(

𝐼1 − 3
)

+ 𝜅′(1 − 3𝜅)
(

𝐼4 − 1
)

+ 𝜅(1 − 3𝜅′)
(

𝐼6 − 1
)

+ (1 − 3𝜅)(1 − 3𝜅′)𝐼80, (45)

since 𝐼1 = 𝟏 ∶ 𝐂, 𝐼4 = 𝐀 ∶ 𝐂, 𝐼6 = 𝐀′ ∶ 𝐂, 𝐼8 = 𝐀𝐀′ ∶ 𝐂.
As expected, 𝜅 = 𝜅′ = 0 recovers the strict alignment case, 𝐼⋆80 = 𝐼80

and 𝐼⋆8 = 𝐼8. The fully isotropic case 𝜅 = 𝜅′ = 1
3 yields 𝐼⋆80 =

1
9

(

𝐼1 − 3
)

,
𝐼⋆8 = 1

9 𝐼1. When one family is isotropic (𝜅′ = 1
3 ), invariants 𝐼⋆8 and 𝐼⋆80

capture the average squares of stretch and strain of the other family,
𝐼⋆80 =

1
3 (𝐼

⋆
4 − 1), 𝐼⋆8 = 1

3 𝐼
⋆
4 . In a particular case of orthogonal alignment

of families, (𝐌 ⋅𝐌′)2 = 𝐀 ∶ 𝐀′ = 0, the last term in (44) disappears, as
𝐼80 = 0 identically.
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The contribution to the second Piola–Kirchhoff stress for the axisym-
metric case reads

2 𝜕
𝜕𝐂

𝜓̃(𝐼⋆80) = 2𝜓̃ ′
8̃

(

𝜅𝜅′𝟏 + 𝜅′(1 − 3𝜅)𝐀 + 𝜅(1 − 3𝜅′)𝐀′

+ (1 − 3𝜅)(1 − 3𝜅′)[𝐀𝐀′]sym
)

. (46)

The special form of the elasticity tensor contribution can be computed
by using (43) in (41).

3.2. Invariants 𝐼8 and 𝐼⋆8

The average of 𝐼80 is defined as

𝐼⋆80 = ⟨⟨𝐼80(𝐍,𝐍′)⟩⟩′ = 2⟨⟨
(

𝐍 ⋅ 𝐄𝐍′)2
⟩⟩

′
. (47)

It follows that

𝐼⋆80 = 2⟨⟨
(

𝐍 ⋅ 𝐄𝐍′)2
⟩⟩

′
= 4⟨⟨𝐍⊗ 𝐍′ ⊗ 𝐍⊗ 𝐍′

⟩⟩

′ ∶∶ 𝐄⊗ 𝐄
= 4(𝐇 ⊗̄ 𝐇′) ∶∶ 𝐄⊗ 𝐄 = 4[𝐇 ⊗̄𝐇′]sym ∶∶ 𝐄⊗ 𝐄, (48)

where again we relied on the fact that the integrand can be separated
into factors depending respectively on 𝐍, 𝐍′, and 𝐄. We introduce the
quadruple contraction of two fourth-order tensors, defined as T ∶∶
T̃ = T𝑖𝑗𝑘𝑙T̃𝑖𝑗𝑘𝑙, and the modified tensor products ⊗̄ and

̄
⊗ , defined as

[𝐀 ⊗̄𝐁]𝑖𝑗𝑘𝑙 = A𝑖𝑘B𝑗𝑙, [𝐀 ̄
⊗𝐁]𝑖𝑗𝑘𝑙 = A𝑖𝑙B𝑘𝑗 . The fourth-order tensor 𝐄⊗ 𝐄

possess both major and minor symmetries, whereas [𝐇 ⊗̄𝐇′]𝑖𝑗𝑘𝑙 = H𝑖𝑘H′
𝑗𝑙

has only the major symmetry (a fourth-order tensor 𝗖 is said to have
major or minor symmetries if, respectively,𝖢𝑖𝑗𝑘𝑙 = 𝖢𝑘𝑙𝑖𝑗 or𝖢𝑖𝑗𝑘𝑙 = 𝖢𝑖𝑗𝑙𝑘 =
𝖢𝑗𝑖𝑘𝑙). Nevertheless, the minor symmetries can be imposed upon 𝐇 ⊗̄𝐇′

for the purpose of computing 𝐼⋆80 and its derivatives. Thus, we can define
the fourth-order structure tensor as

Ĥ = [𝐇 ⊗̄𝐇′]sym = 1
4
(𝐇 ⊗̄𝐇′ +𝐇′ ⊗̄𝐇 +𝐇

̄
⊗𝐇′ +𝐇′

̄
⊗𝐇),

so that 𝐼⋆80 = 4Ĥ ∶∶ 𝐄⊗ 𝐄. (49)

The fourth-order and second-order structure-like tensors are related via
𝐇̃ = Ĥ ∶ 𝟏 = 𝟏 ∶ Ĥ.

One can also define

𝐼⋆8 = ⟨⟨

(

𝐼8(𝐍,𝐍′)
)2
⟩⟩

′
= ⟨⟨

(

𝐍 ⋅ 𝐂𝐍′)2
⟩⟩

′
= Ĥ ∶∶ 𝐂⊗ 𝐂, (50)

and establish the relation

𝐼⋆80 = 𝐼⋆8 − 2𝐼⋆8 + 𝐼⋆9 = 𝐼⋆8 − 2𝐼⋆80 − 𝐼
⋆
9 , (51)

where 𝐼⋆80, 𝐼
⋆
8 are defined in (35), (37), and 𝐼⋆9 = 𝐼⋆8|𝐂=𝟏 = Ĥ ∶∶ 𝟏⊗ 𝟏 =

tr𝐇̃.

Remark 2. In general, 𝐂 ⊗ 𝐂 and Ĥ = [𝐇 ⊗̄𝐇′]sym possess major and
minor symmetries, but are not invariant with respect to any permutation
of dimensions, e.g., [𝐇 ⊗̄𝐇′]sym ≠ 1

2

(

𝐇⊗𝐇′ +𝐇′ ⊗𝐇
)

. If this were the
case, then one could use the spectral representation Ĥ =

∑3
𝑖=1ℎ̂𝑖𝐄̂𝑖⊗𝐄̂𝑖⊗

𝐄̂𝑖 ⊗ 𝐄̂𝑖 for a general material structure, while in fact it holds only for
some special cases (e.g., when 𝐇 and 𝐇′ are coaxial). If Ĥ is regarded
as a bilinear operator acting in the linear space of second-order tensors,
then it is symmetric (major symmetries) and positive semi-definite. The
latter follows from 4𝐄 ∶ Ĥ ∶ 𝐄 = 𝐼⋆80 ≥ 0, where 𝐄 is an arbitrary
second-order tensor. This holds by virtue of (48) and does not require 𝐄
to be the Green–Lagrange strain tensor, although its symmetric part is
proportional to some Green–Lagrange strain tensor.

The derivatives of 𝐼⋆80 are given by

𝜕𝐼⋆80
𝜕𝐂

= 2Ĥ ∶ 2𝐄 = 2
[

𝐇 (𝐂 − 𝟏)𝐇′]
sym,

𝜕𝐼⋆8
𝜕𝐂

= 2Ĥ ∶ 𝐂 =
𝜕𝐼⋆80
𝜕𝐂

+ 2𝐇̃,

(52)

𝜕2𝐼⋆80
𝜕𝐂𝜕𝐂

=
𝜕2𝐼⋆8
𝜕𝐂𝜕𝐂

= 2Ĥ = 2[𝐇 ⊗̄𝐇′]sym. (53)

The second Piola–Kirchhoff stress contribution due to the fibre potential
𝜓̂(𝐼⋆80) is given by

2 𝜕
𝜕𝐂

𝜓̂(𝐼⋆80) = 4
𝜕𝜓̂

𝐼⋆80

[

𝐇 (𝐂 − 𝟏)𝐇′]
sym = 8𝜓̂ ′

8̂0
Ĥ ∶ 𝐄. (54)

The corresponding contribution to the Lagrangian elasticity tensor
reads

4 𝜕2

𝜕𝐂𝜕𝐂
𝜓̂(𝐼⋆80) = 4

(

𝜕2𝜓̂

𝜕𝐼⋆80𝜕𝐼
⋆
80

𝜕𝐼⋆80
𝜕𝐂

⊗
𝜕𝐼⋆80
𝜕𝐂

+
𝜕𝜓̂

𝜕𝐼⋆80

𝜕2𝐼⋆80
𝜕𝐂𝜕𝐂

)

(55)

= 64𝜓̂ ′′
8̂0

(

Ĥ ∶ 𝐄
)

⊗
(

Ĥ ∶ 𝐄
)

+ 8𝜓̂ ′
8̂0
Ĥ. (56)

Next, we specialise the above expressions for the case of ax-
isymmetric distributions. Similar expressions for the case of non-
axisymmetrically distributed but coaxially aligned fibre families are
included in Appendix B.

Remark 3. The choice of invariants 𝐼80 and 𝐼80 is motivated by
the possibility of using the same strain-energy function for different
material structures. To predict a stress-free state in the undeformed
configuration, the strain-energy function must satisfy 𝜕

𝜕𝐂𝜓 = 𝟎 at 𝐂 = 𝟏,
for which 𝐼8 = 𝐼8 = 𝐼9 =

(

𝐌 ⋅𝐌′)2. Therefore, a particular form of
the strain-energy function has to be adjusted to a considered material
structure. As for the averaged invariants 𝐼⋆8 , 𝐼⋆8 , the undeformed values
can be taken into account for the whole structure, 𝐼⋆9 , or for each
combination of test direction, 𝐼9(𝐍,𝐍′). These two options applied
to 𝐼8 = 𝐼28 correspond to the functional dependence on ⟨⟨𝐼28 − 𝐼29 ⟩⟩

′

and ⟨⟨

(

𝐼8 − 𝐼9
)2
⟩⟩

′
. The latter option is chosen, because it guarantees

positiveness for the full range of deformation. When applied to 𝐼8 =
𝐼9𝐼8, the two options are equivalent.

Axisymmetric distributions case
When the ODFs 𝜌 and 𝜌′ are both axisymmetric, the second-order

GSTs are given by (42), and the fourth-order structure tensor reads

H = 𝜅𝜅′𝟏 ⊗̄ 𝟏 + 𝜅′(1 − 3𝜅)[𝐀 ⊗̄ 𝟏]sym + 𝜅(1 − 3𝜅′)[𝟏 ⊗̄𝐀′]sym
+ (1 − 3𝜅)(1 − 3𝜅′)[𝐀 ⊗̄𝐀′]sym, (57)

wherein
[

[𝐀 ⊗̄𝐀′]sym
]

𝑖𝑗𝑘𝑙 =
1
4

(

A𝑖𝑘A′
𝑗𝑙 + A𝑗𝑘A′

𝑖𝑙 + A𝑖𝑙A′
𝑗𝑘 + A𝑗𝑙A′

𝑖𝑘

)

etc.
In this special case, the derivative 𝜕𝐼⋆80∕𝜕𝐂 is evaluated using (57),

(52). The stress contribution reads

2 𝜕
𝜕𝐂

𝜓̂(𝐼⋆80) = 2
𝜕𝜓̂

𝜕𝐼⋆80

𝜕𝐼⋆80
𝜕𝐂

= 4𝜓̂ ′
8̂0

(

𝜅𝜅′2𝐄 + 𝜅′(1 − 3𝜅)[2𝐄𝐀]sym (58)

+ 𝜅(1 − 3𝜅′)[2𝐄𝐀′]sym + (1 − 3𝜅)(1 − 3𝜅′)𝐼80[𝐌⊗𝐌′]sym
)

.

The quadruple contractions 4𝐇 ⊗̄𝐇′ ∶∶ 𝐄⊗𝐄 and 𝐇 ⊗̄𝐇′ ∶∶ 𝐂⊗𝐂 yield,
respectively,

𝐼⋆80 = 𝜅𝜅′(𝐼21 − 2𝐼2 − 2𝐼1 + 3) + 𝜅′(1 − 3𝜅)(𝐼5 − 2𝐼4 + 1) (59)
+ 𝜅(1 − 3𝜅′)(𝐼7 − 2𝐼6 + 1) + (1 − 3𝜅)(1 − 3𝜅′)𝐼80,

𝐼⋆8 = 𝜅𝜅′(𝐼21 − 2𝐼2) + 𝜅′(1 − 3𝜅)𝐼5 + 𝜅(1 − 3𝜅′)𝐼7
+ (1 − 3𝜅)(1 − 3𝜅′)𝐼8, (60)

where we used 2𝐄 = 𝐂 − 𝟏, the definitions of invariants (1)–(4) and the
identity 𝟏 ∶ 𝐂2 = 𝐼21 − 2𝐼2.

As expected, the strict alignment case 𝐼⋆8 = 𝐼8, 𝐼
⋆
80 = 𝐼80 is

recovered for 𝜅 = 𝜅′ = 0. When one family is isotropic (𝜅′ = 1
3 )

invariants 𝐼⋆8 and 𝐼⋆80 capture the average values of invariants 𝐼5 and
𝐼50 = 𝐌 ⊗𝐌 ∶ (𝐂 − 𝟏)2, 𝐼⋆8 = 1

3 𝐼
⋆
5 = 1

3𝜅(𝐼
2
1 − 2𝐼2) +

1
3 (1 − 3𝜅)𝐼5 and

𝐼⋆80 =
1
3 𝐼

⋆
50 =

1
3

(

𝜅𝜅′(𝐼21 − 2𝐼2 − 2𝐼1 + 3) + 𝜅′(1 − 3𝜅)(𝐼5 − 2𝐼4 + 1)
)

.
The elasticity tensor contributions can be computed by using (57) in

(56).
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3.3. Geometric interpretation of 𝐼8 and related invariants

The 𝐼8-like anisotropic invariants are defined as projections and
can be expressed in terms of the cosines of angles between deformed
structural directions. With cos 𝛼0 = 𝐌 ⋅ 𝐌′ and cos 𝛼 = 𝐅𝐌 ⋅ 𝐅𝐌′, we
have

𝐼8 =
√

𝐼4𝐼6 cos 𝛼, 𝐼80 =
√

𝐼4𝐼6 cos 𝛼 − cos 𝛼0, (61)

𝐼8 =
√

𝐼4𝐼6 cos 𝛼 cos 𝛼0, 𝐼80 =
(

√

𝐼4𝐼6 cos 𝛼 − cos 𝛼0
)

cos 𝛼0, (62)

𝐼8 = 𝐼4𝐼6cos2𝛼, 𝐼80 =
(

√

𝐼4𝐼6 cos 𝛼 − cos 𝛼0
)2
. (63)

These expressions allow us to interpret 𝐼8-like invariants geometrically:
they capture the angle between two structural directions along with
their lengths, or the change thereof. One can consider a strain energy
term that depends on the cosine of the angle alone (e.g., as in [26,20]),

𝜓(𝐼80), 𝐼80 =
𝐼8

√

𝐼4𝐼6
− 𝐼9 = cos 𝛼 − cos 𝛼0. (64)

This invariant, unlike the ones considered previously, cannot be fac-
torised into structural and deformation parts, and cannot be expressed
in terms of a structure tensor contracted with a deformation dependent
part. This precludes the direct application of the GST approach. Also,
there are no reasonable special cases that yield 𝐼80 ≡ 𝐼80, because
demanding 𝐼4(𝐍)𝐼6(𝐍′) = 1 for a non-degenerate set of orientations leads
to the trivial case of pure rotation, 𝐅𝑇𝐅 = 𝟏.

Remark 4. The dispersed invariant 𝐼⋆80 incorporates fibre dispersion
by averaging 𝐼80 with respect to orientation density functions of fibre
families. Fibre dispersion can also be included into the 𝐼8-like term
by defining 𝐼⊛80 =

(√

𝐼⋆4 𝐼
⋆
6 cos 𝛼 − cos 𝛼0

)2
. This invariant takes into

account fibre splay only for computing mean square of stretch in fibre
families, while the angles 𝛼 and 𝛼0 are calculated based on the mean
fibre directions (in contrast to 𝐼⋆80, which considers angles between
pairwise combinations of fibres from different families). Even though
𝐼⊛80 might seem a simpler alternative to 𝐼⋆80, we reject it for the following
reasons. First, we do not see any particular justification for treating
extensional and angular components differently for the purpose of
averaging. Second, the notion of mean fibre direction is not applicable
to a general ODF, in which case 𝐼⊛80 is not defined. Finally, a model based
on 𝐼⊛80 displays a less complex behaviour. In Section 4.1 we show how
fibre dispersion in invariant 𝐼⋆80 may reduce symmetry of a material with
orthogonal mean fibre directions, as it indirectly involves anisotropic
invariants 𝐼5 and 𝐼7. This is not the case for 𝐼⊛80, which depends on
deformation only through 𝐼1, 𝐼4, 𝐼6, and 𝐼8.

4. Example. application to a myocardium model

We illustrate the application of the GST approach to the 𝐼8-term
using the Holzapfel–Ogden model [5] for passive myocardium as an
example. This model distinguishes three mutually orthogonal material
directions in the reference configuration: the myofibre direction 𝐟0, the
sheet direction 𝐬0, and the sheet-normal direction 𝐧0. The mechanical
response of the tissue is defined by the strain-energy function

𝛹HO = 𝜓iso(𝐼1) + 𝜓f (𝐼4f ) + 𝜓s(𝐼4s) + 𝜓fs(𝐼80fs), (65)

where

𝜓iso(𝐼1) =
𝑎
2𝑏

{

exp[𝑏(𝐼1 − 3)] − 1
}

,

𝜓fs(𝐼80fs) =
𝑎fs
2𝑏fs

{

exp(𝑏fs𝐼80fs) − 1
}

,
(66)

𝜓𝑖(𝐼4𝑖) =
𝑎𝑖
2𝑏𝑖

{

exp[𝑏𝑖(𝐼4𝑖 − 1)2] − 1
}

, 𝑖 = f , s, (67)

and 𝐼4f = 𝐟0 ⋅ 𝐂𝐟0, 𝐼4s = 𝐬0 ⋅ 𝐂𝐬0, and 𝐼80fs ≡ 𝐼8fs =
(

𝐟0 ⋅ 𝐂𝐬0
)2, since

𝐟0⋅𝐬0 = 0. A modification of this model, which was considered in [14,15],

is defined by

𝛹EPPH = 𝜓iso(𝐼1) + 𝜓f (𝐼⋆4f ) + 𝜓s(𝐼⋆4s) + 𝜓fs(𝐼80fs), (68)

where the dispersed invariants 𝐼⋆4𝑖 = 𝜅𝑖𝐼1 + (1 − 3𝜅𝑖)𝐼4, 𝑖 = f , s take into
account axisymmetric distributions of two structural directions around
their mean values, 𝐟0 and 𝐬0 (the notation 𝛹EPPH is due to first letters
of the authors’ names [14]). The extent of dispersion is controlled by
parameters 0 ≤ 𝜅f , 𝜅s ≤

1
3 . The last term in the strain energy (68), which

is responsible for fibre-sheet interaction, disregards fibre dispersion and
is exactly the same, as in (65). We propose a model that accounts for
fibre dispersion in every anisotropic term of the strain energy,

𝛹⋆HO = 𝜓iso(𝐼1) + 𝜓f (𝐼⋆4f ) + 𝜓s(𝐼⋆4s) + 𝜓fs(𝐼
⋆
80fs), (69)

where 𝐼⋆80fs is defined as in (60). Note that 𝐼⋆80fs ≠ 𝐼⋆8fs, unless 𝜅f = 𝜅s =
0, and 𝐼⋆80fs is used here in view of the considerations in Remark 3. In
order to observe the consequence of fibre dispersion in the mixed term
alone, we also consider

𝛹⋆HO8 = 𝜓iso(𝐼1) + 𝜓f (𝐼4f ) + 𝜓s(𝐼4s) + 𝜓fs(𝐼
⋆
80fs). (70)

The models are analysed and compared in simple shear and biaxial
stretch, which approximate deformations in two common test protocols
used for characterisation of the mechanical properties of soft tissues.
For comparison we use a single parameter set [14], which is given in
Table 1. All four models, HO, EPPH, HO8⋆, and HO⋆, are identical in the
case of strict alignment of fibres (𝜅f = 𝜅s = 0). The discrepancy between
the models increases with the extent of dispersion, as demonstrated in
what follows.

4.1. Simple shear

Six different deformations are defined by spatially uniform defor-
mation gradients 𝐅fs, 𝐅fn, 𝐅sf , 𝐅sn, 𝐅nf , 𝐅ns, e.g., 𝐅fs = 𝟏 + 𝛾𝐬0 ⊗ 𝐟0,
where 𝛾 is the amount of shear. For each deformation mode, consider
a corresponding shear component of the Cauchy stress tensor, that is,
for 𝐅fs consider 𝜎fs = 𝐟0 ⋅ 𝝈(𝐅fs(𝛾))𝐬0 and so on. Detailed analytical
expressions for the Cauchy stress in simple shear are derived in Ap-
pendix C. The resulting stress–strain curves, one for each deformation
mode, are widely used to match forces and displacements measured in
shear experiments (for instance, see [6,5]), although it is commonly
known that the uniform simple shear deformation cannot be maintained
in principle in the standard experimental protocol, in which forces are
applied to only two faces of a cuboidal sample.

The EPPH model (68) predicts values of 𝜎fs and 𝜎sf that are 22% and
43% higher than those predicted by the HO⋆ model (69), Fig. 2a. This
indicates that accounting for fibre dispersion in the invariant 𝐼⋆80 can
lead to significant changes in mechanical response. A comparison of the
models (65)–(70) reveals that accounting for dispersion in anisotropic
invariants leads to a softer material response, when the same set of
material parameters is used. This ‘‘softening’’ effect of dispersion is
greater in invariants 𝐼⋆4f and 𝐼⋆4s than in 𝐼⋆80fs, Fig. 2b. The stress curves
with and without dispersion diverge due to the difference between
the values of 𝐼⋆80fs and 𝐼80fs (Fig. 4a) and the values of 𝜕𝐼⋆80fs∕𝜕𝐂 and
𝜕𝐼⋆80fs∕𝜕𝐂.

Incorporating fibre dispersion into the mixed term 𝜓fs also reduces
the symmetry of the material. The original HO model (65) and the EPPH
model (68) predict identical shear response in nf and ns modes, whereas
the HO⋆ model (69) permits distinct behaviour. This can be explained
by noting that 𝐼⋆80 is no longer invariant under permutation f ↔ s, if
only the two associated distributions are not identical, see Eq. (59) and
Fig. 1. The identity (59) also shows that the strain energy (69) indirectly
involves more anisotropic invariants, compared to strain energy (68).
One can expect more anisotropy in a material characterised by a greater
number of anisotropic invariants. The difference |𝜎nf − 𝜎ns| increases as
a monotonic function of |𝜅f − 𝜅s|, as illustrated in Fig. 3. Some of the
data reported in [6] shows clearly distinct behaviour of myocardium in
nf and ns modes, but the values of the dispersion parameters presently
used are too low to account for it within the HO⋆ model (69).
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Table 1
Parameter values for Holzapfel–Ogden model for myocardium [5], which were provided in [14] to fit the shear
experimental data from [6]. Parameters 𝑎, 𝑎f , 𝑎s, 𝑎fs have dimensions of stress (kPa, hereinafter omitted), while
parameters 𝑏, 𝑏f , 𝑏s, 𝑏fs are dimensionless. The values for structural parameters 𝜅f and 𝜅s are estimated in [14]: 𝜅f
corresponds to a diseased myocardium; sheet dispersion datum was not available for the diseased case, therefore
the value of 𝜅s for the healthy case is used.

𝑎 𝑏 𝑎f 𝑏f 𝑎s 𝑏s 𝑎fs 𝑏f𝑠 𝜅f 𝜅s
0.333 9.242 18.535 15.972 2.564 10.446 0.417 11.602 0.0886 0.0249

Fig. 2. Softening effect of orientational dispersion. (a) Shear stress as a function of amount of shear in 6 shear modes as predicted by the EPPH model (68) [14]
(solid) and the proposed model HO⋆(69) (dashed). (b) Shear stress 𝜎fs in the corresponding shear mode, as predicted by the original HO model (65), EPPH model
(68), the proposed HO⋆ model (69), which takes into account dispersion in all terms, and the model HO8⋆ (70), which considers dispersion only in the invariant 𝐼⋆80.

Fig. 3. The HO⋆ model (69) allows distinct response in the nf and ns shear deformation modes. (a) Shear stresses 𝜎nf and 𝜎ns in the respective modes plotted for
selected values of 𝜅s (the arrow shows the order of 𝜎nf curves as 𝜅s increases). The value of 𝑎 is chosen to satisfy 𝜎nf |𝛾=0.5 = 1, while other parameters are fixed,
𝜅f = 𝑎f = 𝑎s = 0, 𝑏 = 1.5, 𝑎fs = 1, 𝑏fs = 13. (b) The value of |𝜎nf − 𝜎ns| at 𝛾 = 0.5 in respective deformation modes as a function of 𝜅f and 𝜅𝑠; other parameters are as in
(a). Both plots demonstrate that the difference |𝜎nf − 𝜎ns| increases together with |𝜅f − 𝜅𝑠|.

Fig. 4. Invariants 𝐼⋆80 (dashed) and 𝐼80 (solid) in simple shear (a) and biaxial stretch (b). Shaded area depicts the difference 𝐼⋆80 − 𝐼80 in respective deformation
modes. The effect of dispersion for dispersion values 𝜅f = 0.086, 𝜅s = 0.0249 is substantial in simple shear, but insignificant in biaxial stretch.

4.2. Biaxial stretch

The effect of dispersion in 𝐼⋆80 is small in biaxial stretch deformations,
which are defined as 𝐅biax = 𝜆1𝐟0⊗ 𝐟0 + 𝜆2𝐬0⊗ 𝐬0 + 𝜆−11 𝜆−12 𝐧0⊗𝐧0, where
the principal stretches are related by the ratio 𝑟 =

(

𝜆1 − 1
)

∕
(

𝜆2 − 1
)

,

and the boundary condition 𝝈 ⋅ 𝐧0 = 𝟎 is implied. Detailed analytical
expressions for the Cauchy stress are derived in Appendix C. In the
strict alignment case, we have 𝐼⋆80 ≡ 𝐼80 = 0, as the deformation
is coaxial with the structural directions 𝐟0, 𝐬0, and 𝐧0, which remain
orthogonal in the deformed state. In the presence of orientational
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dispersion, the integrated fibre directions 𝐍 and 𝐍′ are almost always (in
the probability-theoretical sense) non-orthogonal in both the reference
and current configurations, as shown in Fig. 1b. This leads to a non-zero
value of 𝐼⋆80 and engages the mixed term 𝜓fs into the stress response
under biaxial stretching. Notwithstanding, the value of 𝐼⋆80 remains very
small (Fig. 4b), and the effect on the stress curves is negligible for the
parameter values given in Table 1. Note that the considered ranges of
shear and biaxial deformations are consistent in the sense that stress
values of the same order are recorded for them in experiments [7].

One can also consider a biaxial deformation that is not coaxial
with the structural directions 𝐟0, 𝐬0, i.e. rotated around 𝐧0. In this
case, both 𝐼80 and 𝐼⋆80 are non-zero under a non-equibiaxial stretch.
Nevertheless, their values remain small and the effect of dispersion
in 𝐼⋆80 is negligible under the biaxial stretching. This can be seen by
computing the maximum value of 𝐼80 with respect to the rotating
orthogonal axes {𝐟0, 𝐬0} or the maximum shear component of 2𝐄biax =
(𝜆21 − 1)𝐄1 ⊗ 𝐄1 + (𝜆22 − 1)𝐄2 ⊗ 𝐄2 + (𝜆−21 𝜆−22 − 1)𝐧0 ⊗ 𝐧0, which is the
same and is given by 𝐼80max =

1
2

(

𝜆21 − 𝜆
2
2
)

. For the protocols used in [7],
𝐼80max = 0.05375 is attained at 𝜆 = 1.1, 𝑟 = 2 and is one order of
magnitude smaller than the value in the fs-shear deformation mode,
𝐼80max = 𝛾max = 0.5. Therefore, the contribution of 𝜓fs(𝐼

⋆
80) itself is not

significant in biaxial stretch, not to mention the effect of dispersion in
this mixed term.

5. Discussion

We have applied the GST approach for materials with orientationally
distributed fibres to strain-energy functions that depend on the coupling
invariant 𝐼8, which represent pairwise interaction between fibre fami-
lies. By analogy with the original GST model for 𝐼4 and its extension
for 𝐼5 [4,11], we have considered the weighted averages of invariants
𝐼8 = 𝐼8𝐼9 and 𝐼8 = 𝐼28 and derived two corresponding GST formulations.
With our contribution, one can properly incorporate fibre dispersion
data into material models that include invariant 𝐼8 and, in principle, into
any hyperelastic constitutive model, since GST-based expressions are
now available for every anisotropic invariant in the set 𝐼1,… , 𝐼9, which
forms a functional basis for an arbitrary strain-energy function [21,22].

Using the Holzapfel–Ogden model for passive myocardium [5] as an
example, we have demonstrated that accounting for fibre dispersion in
the coupled term can have a significant quantitative effect in shearing
deformations (Fig. 2). This indicates that the models that ignore fibre
dispersion in this term [14] may predict behaviour inconsistent with
their basic assumptions and need to be reassessed or modified in the
fashion we propose. The proposed HO⋆ model and the models that
ignore fibre dispersion in some or all terms fit shear test data [6] equally
well for a range of structural parameters, when the tissue is idealised
as a homogeneously deformed uniform body (not shown). However,
depending on the values of fibre and sheet dispersion parameters, the
proposed model is capable of more complex anisotropic response, which
we discuss next. It must be noted that inhomogeneous deformations and
variability of tissue structure across a test specimen, as well as proper
boundary conditions, should be taken into account when fitting a model
to experimental data. In general, this can only be done by solving the
corresponding boundary value problem numerically, e.g., using finite
element methods.

The incorporation of fibre dispersion in the coupling invariant,
unlike that in other anisotropic invariants, has a potential to reduce
material symmetry, when the extent of dispersion varies between the
fibre families (Fig. 3). This effect is minor for the parameter values
used here (Table 1, [14]): the phenomenological constitutive parameters
were fitted to simple shear behaviour of porcine myocardium (with
no record of abnormality) [6], while the dispersion parameters cor-
respond to hypertrophic fibre and normal laminar murine myocardial
structures [27,28,14]. New data and further studies are required to
estimate the relevance of this reduced material symmetry in diseased
myocardium and other tissues, where the effect of fibre dispersion in the

coupling invariant can potentially be significant and sufficient to explain
increased mechanical anisotropy without need for extra terms of the
strain-energy function or explicit dependence on additional anisotropic
invariants.

It has been brought to our attention that the six shear modes of the
HO⋆ model (69) are not only distinct, but also do not satisfy the relation

𝜎fs(𝛾) + 𝜎sn(𝛾) + 𝜎nf (𝛾) = 𝜎sf (𝛾) + 𝜎ns(𝛾) + 𝜎fn(𝛾), (71)

which holds for the HO model (65) and the EPPH model (68). The
relation (71) was noted by Latorre and Montans [29] for materials with
the strain energy 𝛹LM =

∑

𝑖,𝑗𝜔𝑖𝑗 (𝑖𝑗 ), where 𝑖𝑗 are the components of
the logarithmic Lagrangian strain tensor  = 1

2 ln𝐂 and 𝜔𝑖𝑗 are suitable
(but otherwise arbitrary) spline functions. We note that condition (71) is
ensured (for some materials) by the additive split 𝛹 =

∑

𝑖𝜓𝑖(𝐼𝑖), where
each 𝜓𝑖(𝐼𝑖) is invariant with respect to at least one odd permutation
of subscripts (f , s, n). For example, in the case of axisymmetric fibre
dispersion, the term 𝜓f (𝐼⋆4f ) is invariant with respect to permutation
(f , s, n) ↦ (f , n, s). It follows and can be rigorously demonstrated that
a bijection is established between the contributions of 𝜓f to the Cauchy
stresses on the opposite sides of condition (71). Therefore, for a material
model to satisfy condition (71), it is sufficient that each additive term of
its strain energy function respects some odd permutation of subscripts
(f , s, n). The condition (71) does not hold for the HO⋆ model (69),
because the mixed term 𝜓fs(𝐼

⋆
80fs) is affected by every odd permutation,

with the only exception being 𝜅f = 𝜅s, as can be seen from Eq. (59),
which should be changed beforehand to adopt notation used for my-
ocardium.

It is often assumed that fibres buckle under compression and only
contribute to material response when stretched. Constitutive models
address this assumption by excluding compressed fibres by means of
switch conditions [4,30], deformation-dependent [31] or pre-integrated
GSTs [12,32]. These studies consider exclusion of compressed fibres
in the context of decoupled fibre families, whose elastic potentials
are functions of 𝐼4. Avazmohammadi et al. [33] considered a fibre
interaction term, which vanishes as soon as one fibre family is slack.
Their model captures the coupling between fibre families using a linear
combination of 𝐼4-like invariants. Even though the relevance of fibre
exclusion to invariant 𝐼8 remains to be examined from the physical
standpoint and also considering material stability [24], all existing
methods for fibre exclusion can be straightforwardly applied to the
proposed formulations, since the fourth-order GST Ĥ and the structure-
like tensor 𝐇̃ are defined in terms of the second-order GSTs.

6. Conclusion

We have derived two GST formulations for invariants 𝐼8 and 𝐼8,
which capture the pair-wise coupling of fibre families in a fibre-
reinforced material. With this method, orientational distribution of
fibres can be incorporated into the coupling part of a hyperelastic
constitutive model. Although we have used a model for myocardium as
an example, the method is general and can be applied to any soft tissue.
The following theoretical observations have been made in the course of
derivation. We have noted that 𝐼8 cannot be used as a basis of a GST
model, since it is an odd function of structural directions. We have also
noted that in order to formulate a universal constitutive law applicable
to various material structures, the averaging must be applied not to 𝐼8
or 𝐼8 directly, but to their strain-based counterparts, 𝐼80 and 𝐼80. The
resulting models can be expressed in terms of a fourth-order structure
and second-order structure-like tensors, respectively, which in turn are
given by a tensor and dot products of the well-known GSTs. Simpler
expressions are available for the case of axisymmetric fibre distributions.

We have applied our formulation to the Holzapfel–Ogden model
for myocardium [5] and obtained a model, which takes into account
fibre dispersion in every term of the strain-energy function. We have
shown that including fibre dispersion in the coupling term significantly
decreases the stress in simple shear deformations and also causes minor
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changes in biaxial stretching. In addition, the proposed model can
produce six distinct response curves, which correspond to six simple
shear modes, whereas in models without dispersion in the coupling
term [5,14] two curves coincide exactly. This loss of symmetry is
negligible for the parameter set that we used for myocardium, but
just like the effect on biaxial response, it can be significant for other
parameter values or in other tissues. We conclude that the proposed
model should be used instead of the models we compared it to [5,14],
because it consistently incorporates fibre dispersion in every term of the
strain-energy function and can predict quantitatively and qualitatively
different behaviour.
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Appendix A. An expression for 𝑰𝟐
𝟖 in an orthotropic material

Lemma 1. We demonstrate that

0 = 𝐼2 + 𝐼5 + 𝐼7 + 𝐼4𝐼6 − 𝐼1
(

𝐼4 + 𝐼6
)

− 𝐼28 , (72)

if only unit vectors 𝐌 and 𝐌′ in (1)– (5) are orthogonal, i.e. 𝐌 ⋅𝐌′ = 0.

Proof. We introduce notation 𝐀 = 𝐌⊗𝐌, 𝐀′ = 𝐌′⊗𝐌′, 𝐀′′ = 𝐌′′⊗𝐌′′,
where 𝐌′′ is a unit vector, orthogonal to both 𝐌 and 𝐌′. From these
definitions if follows that

𝐀⊗ 𝐀 = 𝐀 ⊗̄𝐀, 𝐀′ ⊗ 𝐀′ = 𝐀′ ⊗̄𝐀′, 𝐀′′ ⊗ 𝐀′′ = 𝐀′′ ⊗̄𝐀′′. (73)

Orthonormality of 𝐌 and 𝐌′ implies that {𝐌,𝐌′,𝐌′′} is an orthonormal
basis, therefore,

𝟏 = 𝐀 + 𝐀′ + 𝐀′′. (74)

For the terms involved in (72) we have the following,

𝐼2 =
1
2
(

𝟏⊗ 𝟏 − 𝟏 ⊗̄ 𝟏
)

∶∶ 𝐂⊗ 𝐂, (75)

𝐼5 = 𝐀 ⊗̄ 𝟏 ∶∶ 𝐂⊗ 𝐂, 𝐼7 = 𝐀′ ⊗̄ 𝟏 ∶∶ 𝐂⊗ 𝐂, (76)
𝐼4𝐼6 = (𝐀 ∶ 𝐂)(𝐀′ ∶ 𝐂) = 𝐀⊗ 𝐀′ ∶∶ 𝐂⊗ 𝐂, (77)
𝐼1𝐼4 = 𝟏⊗ 𝐀 ∶∶ 𝐂⊗ 𝐂, 𝐼1𝐼6 = 𝟏⊗ 𝐀′ ∶∶ 𝐂⊗ 𝐂, (78)
𝐼28 = 𝐀 ⊗̄𝐀′ ∶∶ 𝐂⊗ 𝐂. (79)

Now we need to demonstrate that
( 1
2
(

𝟏⊗ 𝟏 − 𝟏 ⊗̄ 𝟏
)

+ 𝐀 ⊗̄ 𝟏 + 𝐀′ ⊗̄ 𝟏 + 𝐀⊗ 𝐀′ − 𝟏⊗ 𝐀

− 𝟏⊗ 𝐀′ − 𝐀 ⊗̄𝐀′
)

∶∶ 𝐂⊗ 𝐂 = 0.

It is sufficient to show that
1
2
(

𝟏⊗ 𝟏 − 𝟏 ⊗̄ 𝟏
)

+ 𝐀 ⊗̄ 𝟏 + 𝐀′ ⊗̄ 𝟏 + 𝐀⊗ 𝐀′ − 𝟏⊗ 𝐀

− 𝟏⊗ 𝐀′ − 𝐀 ⊗̄𝐀′ = 𝟎⊗ 𝟎, (80)

up to the major and minor symmetries, in the sense that respects
identification 𝐀 ⊗ 𝐀′ ≡ 𝐀′ ⊗ 𝐀, 𝐀 ⊗̄𝐀′ ≡ 𝐀′ ⊗̄𝐀, etc. To proceed, we
replace 𝟏 via (74). The first term, up to the major symmetry, becomes
1
2
(

𝟏⊗ 𝟏 − 𝟏 ⊗̄ 𝟏
)

= 1
2
((

𝐀 + 𝐀′ + 𝐀′′)⊗
(

𝐀 + 𝐀′ + 𝐀′′)

−
(

𝐀 + 𝐀′ + 𝐀′′) ⊗̄
(

𝐀 + 𝐀′ + 𝐀′′))

= 𝐀⊗ 𝐀′ + 𝐀⊗ 𝐀′′ + 𝐀′ ⊗ 𝐀′′ − 𝐀 ⊗̄𝐀′

− 𝐀 ⊗̄𝐀′′ − 𝐀′ ⊗̄𝐀′′, (81)

where identities (73) were employed. Next,

𝐀 ⊗̄ 𝟏 + 𝐀′ ⊗̄ 𝟏 − 𝐀 ⊗̄𝐀′ =
(

𝐀 ⊗̄𝐀 + 𝐀 ⊗̄𝐀′ + 𝐀′ ⊗̄𝐀′′)

+
(

𝐀′ ⊗̄𝐀 + 𝐀′ ⊗̄𝐀′ + 𝐀′ ⊗̄𝐀′′) − 𝐀 ⊗̄𝐀′

= 𝐀⊗ 𝐀 + 𝐀′ ⊗ 𝐀′ + 𝐀 ⊗̄𝐀′ + 𝐀 ⊗̄𝐀′′ + 𝐀′ ⊗̄𝐀′′,
(82)

and similarly,

𝐀⊗ 𝟏 + 𝐀′ ⊗ 𝟏 − 𝐀⊗ 𝐀′ = 𝐀⊗ 𝐀 + 𝐀⊗ 𝐀′ + 𝐀⊗ 𝐀′′ + 𝐀′ ⊗ 𝐀
+ 𝐀′ ⊗ 𝐀′ + 𝐀′ ⊗ 𝐀′′ − 𝐀⊗ 𝐀′′

= 𝐀⊗ 𝐀 + 𝐀′ ⊗ 𝐀′ + 𝐀⊗ 𝐀′

+ 𝐀⊗ 𝐀′′ + 𝐀′ ⊗ 𝐀′′. (83)

After taking the sum of Eqs. (81)–(83), one can clearly see that (80)
holds. □

Appendix B. Expressions for the case of coaxially aligned non-
symmetrically dispersed families of fibres

Consider two coaxial GSTs, which are given by 𝐇 = diag
(H11,H22,H33), 𝐇′ = diag(H′

11,H
′
22,H

′
33) in an orthonormal basis

{𝐌,𝐌′,𝐌′′}, that is,
𝐇 = H11𝐀 + H22𝐀′ + H33(𝟏 − 𝐀 − 𝐀′),

𝐇′ = H′
11𝐀 + H′

22𝐀
′ + H′

33(𝟏 − 𝐀 − 𝐀′),
(84)

with 𝐀 = 𝐌 ⊗ 𝐌, 𝐀′ = 𝐌′ ⊗ 𝐌′, 𝐀′′ = 𝐌′′ ⊗ 𝐌′′. A specialisation
of Eq. (49) for this case reads

Ĥ = H33H′
33
[

𝟏 ⊗̄ 𝟏
]

sym +
(

H11 − H33
) (

H′
11 − H′

33
)

𝐀⊗ 𝐀

+
(

H22 − H33
) (

H′
22 − H′

33
)

𝐀′ ⊗ 𝐀′ (85)
+
(

H′
33
(

H11 − H33
)

+ H33
(

H′
11 − H′

33
)) [

𝐀 ⊗̄ 𝟏
]

sym

+
(

H′
33
(

H22 − H33
)

+ H33
(

H′
22 − H′

33
)) [

𝐀′ ⊗̄ 𝟏
]

sym (86)

+
((

H11 − H33
) (

H′
22 − H′

33
)

+
(

H22 − H33
) (

H′
11 − H′

33
)) [

𝐀 ⊗̄𝐀′]
sym. (87)

Double contraction with 2𝐄 yields

2Ĥ ∶ 𝐄 = H33H′
33 (2𝐄) +

(

H11 − H33
) (

H′
11 − H′

33
) (

𝐼4 − 1
)

𝐀
+

(

H22 − H33
) (

H′
22 − H′

33
) (

𝐼6 − 1
)

𝐀′ (88)
+
(

H′
33
(

H11 − H33
)

+ H33
(

H′
11 − H′

33
))

[2𝐄𝐀]sym
+

(

H′
33
(

H22 − H33
)

+ H33
(

H′
22 − H′

33
)) [

2𝐄𝐀′]
sym (89)

+
((

H11 − H33
) (

H′
22 − H′

33
)

+
(

H22 − H33
) (

H′
11 − H′

33
))

× 𝐼80
[

𝐌⊗𝐌′]
sym. (90)

Quadruple contraction with 4𝐄⊗ 𝐄 results in

𝐼⋆80 = H33H′
33
(

𝐼21 − 2𝐼2 − 2𝐼2 + 3
)

+
(

H11 − H33
) (

H′
11 − H′

33
)

×
(

𝐼4 − 1
)2 +

(

H22 − H33
) (

H′
22 − H′

33
) (

𝐼6 − 1
)2 (91)

+
(

H′
33
(

H11 − H33
)

+ H33
(

H′
11 − H′

33
)) (

𝐼5 − 2𝐼4 + 1
)

+
(

H′
33
(

H22 − H33
)

+ H33
(

H′
22 − H′

33
)) (

𝐼7 − 2𝐼6 + 1
)

(92)
+

((

H11 − H33
) (

H′
22 − H′

33
)

+
(

H22 − H33
) (

H′
11 − H′

33
))

𝐼80. (93)

The axisymmetric case is recovered by letting H11 = 1−3𝜅, H22 = H33 =
𝜅 and H′

22 = 1−3𝜅′, H′
11 = H′

33 = 𝜅′, in which case (85)–(87), (88)–(90),
and (91)–(93) become, respectively, (57), the factor in parenthesis in
(58), and (59).

Appendix C. Analytical expressions for stress components in shear
and biaxial tests

Shear deformation.

Consider orthonormal basis {𝐟0, 𝐬0,𝐧0}. Let 𝐌 = 𝐟0, 𝐌′ = 𝐬0,
𝐇 = diag(H11,H22,H33), 𝐇′ = diag(H′

11,H
′
22,H

′
33). For a simple shear
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deformation corresponding to the deformation gradient 𝐅fs = 𝟏+𝛾𝐬0⊗𝐟0,
we have
𝐂 = 𝟏 + 𝛾2𝐟0 ⊗ 𝐟0 + 2𝛾[𝐟0 ⊗ 𝐬0]sym,
𝐂2 = 𝟏 +

(

3𝛾2 + 𝛾4
)

𝐟0 ⊗ 𝐟0 + 𝛾2𝐬0 ⊗ 𝐬0 +
(

4𝛾 + 2𝛾3
)

[𝐟0 ⊗ 𝐬0]sym,
(94)

𝐛 = 𝟏 + 𝛾2𝐬0 ⊗ 𝐬0 + 2𝛾[𝐟0 ⊗ 𝐬0]sym,
𝐛2 = 𝟏 + 𝛾2𝐟0 ⊗ 𝐟0 +

(

3𝛾2 + 𝛾4
)

𝐬0 ⊗ 𝐬0 +
(

4𝛾 + 2𝛾3
)

[𝐟0 ⊗ 𝐬0]sym,
(95)

𝐂−1 = 𝟏 + 𝛾2𝐬0 ⊗ 𝐬0 − 2𝛾[𝐟0 ⊗ 𝐬0]sym,
𝐛−1 = 𝟏 + 𝛾2𝐟0 ⊗ 𝐟0 − 2𝛾[𝐟0 ⊗ 𝐬0]sym,

(96)

𝐼1 = 𝐼2 = 3 + 𝛾2, 𝐼4 = 𝐼7 = 1 + 𝛾2, 𝐼5 = 1 + 3𝛾2 + 𝛾4,
𝐼6 = 1, 𝐼8 = 𝐼80 = 𝛾.

(97)

𝐼⋆4 = (1 + 𝛾2)H11 + H22 + H33, 𝐼⋆6 = (1 + 𝛾2)H′
11 + H′

22 + H′
33, (98)

𝐼⋆5 = (1 + 3𝛾2 + 𝛾4)H11 + (1 + 𝛾2)H22 + H33,
𝐼⋆7 = (1 + 3𝛾2 + 𝛾4)H′

11 + (1 + 𝛾2)H′
22 + H′

33,
(99)

𝐼⋆8 = (1 + 𝛾2)2H11H′
11 + H22H′

22 + H33H′
33

+
(

H11H′
22 + H22H′

11
)

𝛾2, (100)

𝐼⋆80 = 𝛾4H11H′
11 + 𝛾

2 (H11H′
22 + H22H′

11
)

, (101)

𝐡 = 𝐅𝐇𝐅𝑇 = 𝐇 + 2𝛾H11[𝐟0 ⊗ 𝐬0]sym + 𝛾2H11𝐬0 ⊗ 𝐬0, (102)
[𝐂𝐇]sym = 𝐇 + 𝛾(H11 + H22)[𝐟0 ⊗ 𝐬0]sym + 𝛾2H11𝐟0 ⊗ 𝐟0, (103)
[𝐛𝐡]sym = 𝐇 + 𝛾2H11𝐟0 ⊗ 𝐟0 +

(

(2𝛾2 + 𝛾4)H11 + 𝛾2H22
)

𝐬0 ⊗ 𝐬0
+

(

(3𝛾 + 2𝛾3)H11 + 𝛾H22
)

[𝐟0 ⊗ 𝐬0]sym, (104)
[

𝐇 (𝐂 − 𝟏)𝐇′]
sym = 𝛾2H11H′

11𝐟0 ⊗ 𝐟0
+ 𝛾(H11H′

22 + H22H′
11)[𝐟0 ⊗ 𝐬0]sym, (105)

[

𝐡
(

𝟏 − 𝐛−1
)

𝐡′
]

sym = 𝛾2H11H′
11𝐟0 ⊗ 𝐟0

+
(

𝛾2(H11H′
22 + H22H′

11) + 𝛾
4H11H′

11
)

𝐬0 ⊗ 𝐬0 (106)
+
(

𝛾(H11H′
22 + H22H′

11) + 2𝛾3H11H′
11
)

[𝐟0 ⊗ 𝐬0]sym, (107)

where expressions for 𝐡′, [𝐂𝐇′]sym, and [𝐛𝐡′]sym are analogous to 𝐡,
[𝐂𝐇]sym, and [𝐛𝐡]sym. Using the above, we can specialise the Cauchy
stress tensor (26)–(27), whose only non-zero entries are

𝜎f f = −𝑝 + 2𝛹1 + 4𝛹2 + 2H11𝛹4 + 4H11(1 + 𝛾2)𝛹5 + 2H′
11𝛹6

+ 4H′
11(1 + 𝛾

2)𝛹7 + 4H11H′
11𝛾

2𝛹8̂0, (108)
𝜎ss = −𝑝 + 2(1 + 𝛾2)𝛹1 + 2(2 + 𝛾2)𝛹2 + 2(𝛾2H11 + H22)𝛹4

+ 4
(

(2𝛾2 + 𝛾4)H11 + (1 + 𝛾2)H22
)

𝛹5

+ 2(𝛾2H′
11 + H′

22)𝛹6 + 4
(

(2𝛾2 + 𝛾4)H′
11 + (1 + 𝛾2)H′

22
)

𝛹7

+ 4𝛾2
(

H11H′
22 + H22H′

11 + 𝛾
2H11H′

11
)

𝛹8̂0, (109)
𝜎nn = −𝑝 + 2𝛹1 + (4 + 2𝛾2)𝛹2 + 2H33𝛹4 + 4H33𝛹5 + 2H′

33𝛹6 + 4H′
33𝛹7,

𝜎fs = 2𝛾𝛹1 + 2𝛾𝛹2 + 2𝛾H11𝛹4 + 2𝛾((3 + 2𝛾2)H11 + H22)𝛹5 + 2𝛾H′
11𝛹6

+ 2𝛾((3 + 2𝛾2)H′
11 + H′

22)𝛹7

+ 2𝛾
(

H11H′
22 + H22H′

11 + 2𝛾2H11H′
11
)

𝛹8̂0, (110)

where 𝜎fs(𝛾) is the function of interest. Shear stresses corresponding to
other shear modes are obtained in a similar way,

𝜎fn = 2𝛾𝛹1 + 2𝛾𝛹2 + 2𝛾H11𝛹4 + 2𝛾((3 + 2𝛾2)H11 + H33)𝛹5 + 2𝛾H′
11𝛹6

+ 2𝛾((3 + 2𝛾2)H′
11 + H′

33)𝛹7

+ 2𝛾
(

H11H′
33 + H33H′

11 + 2𝛾2H11H′
11
)

𝛹8̂0, (111)

𝜎sf = 2𝛾𝛹1 + 2𝛾𝛹2 + 2𝛾H22𝛹4 + 2𝛾((3 + 2𝛾2)H22 + H11)𝛹5 + 2𝛾H′
22𝛹6

+ 2𝛾((3 + 2𝛾2)H′
22 + H′

11)𝛹7

+ 2𝛾
(

H11H′
22 + H22H′

11 + 2𝛾2H22H′
22
)

𝛹8̂0, (112)

𝜎sn = 2𝛾𝛹1 + 2𝛾𝛹2 + 2𝛾H22𝛹4 + 2𝛾((3 + 2𝛾2)H22 + H33)𝛹5 + 2𝛾H′
22𝛹6

+ 2𝛾((3 + 2𝛾2)H′
22 + H′

33)𝛹7

+ 2𝛾
(

H33H′
22 + H22H′

33 + 2𝛾2H22H′
22
)

𝛹8̂0, (113)

𝜎nf = 2𝛾𝛹1 + 2𝛾𝛹2 + 2𝛾H33𝛹4 + 2𝛾((3 + 2𝛾2)H33 + H11)𝛹5 + 2𝛾H′
33𝛹6

+ 2𝛾((3 + 2𝛾2)H′
33 + H′

11)𝛹7

+ 2𝛾
(

H11H′
33 + H33H′

11 + 2𝛾2H33H′
33
)

𝛹8̂0, (114)

𝜎ns = 2𝛾𝛹1 + 2𝛾𝛹2 + 2𝛾H33𝛹4 + 2𝛾((3 + 2𝛾2)H33 + H22)𝛹5 + 2𝛾H′
33𝛹6

+ 2𝛾((3 + 2𝛾2)H′
33 + H′

22)𝛹7

+ 2𝛾
(

H33H′
22 + H22H′

33 + 2𝛾2H33H′
33
)

𝛹8̂0. (115)

The form of the expressions (110)–(115) is the same, up to a permutation
of indices in GSTs’ components (e.g., 𝜎ns is obtained from 𝜎fs by
replacing (f , s, n) → (n, s, f )). Note that 𝛹𝑖 in (110)–(115) implicitly
depend on invariants, which may be different functions in different
deformation modes, that is, 𝛹4 in (110) is not the same as 𝛹4 in (115).

Now we write 𝜎fs,… , 𝜎ns for the special case of Holzapfel–Ogden
model with axisymmetric fibre dispersion (69),

𝜎fs = 𝑎𝛾 exp
[

𝑏𝛾2
]

+ 𝑎f 𝛾3(1 − 2𝜅)2 exp
[

𝑏f 𝛾
4(1 − 2𝜅)2

]

+ 𝑎s𝛾
3𝜅′2 exp

[

𝑏s𝛾
4𝜅′2

]

+ 𝑎fs𝛾
((

1 − 2𝜅′ − 2𝜅 + 5𝜅𝜅′
)

+ 𝛾2(2 − 4𝜅)𝜅′
)

× exp
[

𝑏bf 𝛾
2 ((1 − 2𝜅 − 2𝜅′ + 5𝜅𝜅′) + 𝛾2𝜅′(1 − 2𝜅)

)]

, (116)

𝜎fn = 𝑎𝛾 exp
[

𝑏𝛾2
]

+ 𝑎f 𝛾3(1 − 2𝜅)2 exp
[

𝑏f 𝛾
4(1 − 2𝜅)2

]

+ 𝑎s𝛾
3𝜅′2 exp

[

𝑏s𝛾
4𝜅′2

]

+ 𝑎fs𝛾
((

𝜅′ − 𝜅𝜅′
)

+ 𝛾2(2 − 4𝜅)𝜅′
)

× exp
[

𝑏bf 𝛾
2 (𝜅′(1 − 𝜅) + 𝛾2𝜅′(1 − 2𝜅)

)]

, (117)

𝜎sf = 𝑎𝛾 exp
[

𝑏𝛾2
]

+ 𝑎f 𝛾3𝜅2 exp
[

𝑏f 𝛾
4𝜅2

]

+ 𝑎s𝛾
3(1 − 2𝜅′)2 exp

[

𝑏s𝛾
4(1 − 2𝜅′)2

]

+ 𝑎fs𝛾
((

1 − 2𝜅′ − 2𝜅 + 5𝜅𝜅′
)

+ 𝛾2𝜅(2 − 4𝜅′)
)

× exp
[

𝑏bf 𝛾
2 ((1 − 2𝜅 − 2𝜅′ + 5𝜅𝜅′) + 𝛾2𝜅(1 − 2𝜅′)

)]

, (118)

𝜎sn = 𝑎𝛾 exp
[

𝑏𝛾2
]

+ 𝑎f 𝛾3𝜅2 exp
[

𝑏f 𝛾
4𝜅2

]

+ 𝑎s𝛾
3(1 − 2𝜅′)2 exp

[

𝑏s𝛾
4(1 − 2𝜅′)2

]

+ 𝑎fs𝛾
((

𝜅 − 𝜅𝜅′
)

+ 𝛾2𝜅(2 − 4𝜅′)
)

× exp
[

𝑏bf 𝛾
2 ((𝜅 − 𝜅𝜅′

)

+ 𝛾2𝜅(1 − 2𝜅′)
)]

, (119)

𝜎nf = 𝑎𝛾 exp
[

𝑏𝛾2
]

+ 𝑎f 𝛾3𝜅2 exp
[

𝑏f 𝛾
4𝜅2

]

+ 𝑎s𝛾3𝜅′2 exp
[

𝑏s𝛾
4𝜅′2

]

+ 𝑎fs𝛾
((

𝜅′ − 𝜅𝜅′
)

+ 2𝛾2𝜅𝜅′
)

exp
[

𝑏bf 𝛾
2 ((𝜅′ − 𝜅𝜅′

)

+ 𝛾2𝜅𝜅′
)]

, (120)

𝜎ns = 𝑎𝛾 exp
[

𝑏𝛾2
]

+ 𝑎f 𝛾3𝜅2 exp
[

𝑏f 𝛾
4𝜅2

]

+ 𝑎s𝛾3𝜅′2 exp
[

𝑏s𝛾
4𝜅′2

]

+ 𝑎fs𝛾
((

𝜅 − 𝜅𝜅′
)

+ 2𝛾2𝜅𝜅′
)

exp
[

𝑏bf 𝛾
2 ((𝜅 − 𝜅𝜅′

)

+ 𝛾2𝜅𝜅′
)]

. (121)

One can see, for instance, that the difference between 𝜎nf − 𝜎ns vanishes
for 𝜅 = 𝜅′. It can be expected and is shown in Fig. 3b that the difference
|

|

𝜎nf − 𝜎ns|| is a monotonous function of |
|

𝜅 − 𝜅′|
|

.

Biaxial stretching. With the same assumptions, as for the shear deforma-
tion modes, consider 𝐅 = diag(𝜆1, 𝜆2, 𝜆3), where 𝜆3 = 𝜆−11 𝜆−12 is assumed
satisfy the incompressibility condition. A biaxial stretch protocol is
introduced by imposing a relation between 𝜆1 and 𝜆2 and the boundary
condition 𝜎33 = 0, which is consistent with the deformation being
considered. The expressions for the deformation invariants read

𝐼1 = 𝜆21 + 𝜆
2
2 + 𝜆

−2
1 𝜆−22 , 𝐼2 = 𝜆−21 + 𝜆−22 + 𝜆21𝜆

2
2, (122)

𝐼4 = 𝜆21, 𝐼5 = 𝜆41, 𝐼6 = 𝜆22, 𝐼7 = 𝜆42, 𝐼8 = 𝐼80 = 0, (123)

𝐼⋆4 = H11𝜆
2
1 + H22𝜆

2
2 + H33𝜆

−2
1 𝜆−22 ,

𝐼⋆6 = H′
11𝜆

2
1 + H′

22𝜆
2
2 + H′

33𝜆
−2
1 𝜆−22 ,

(124)
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𝐼⋆5 = H11𝜆
4
1 + H22𝜆

4
2 + H33𝜆

−4
1 𝜆−42 ,

𝐼⋆7 = H′
11𝜆

4
1 + H′

22𝜆
4
2 + H′

33𝜆
−4
1 𝜆−42 ,

(125)

𝐼⋆8 = H11H′
11𝜆

4
1 + H22H′

22𝜆
4
2 + H33H′

33𝜆
−4
1 𝜆−42 , (126)

𝐼⋆80 = H11H′
11
(

𝜆21 − 1
)2 + H22H′

22
(

𝜆22 − 1
)2

+H33H′
33
(

𝜆−21 𝜆−22 − 1
)2. (127)

All the tensors involved in (26)–(27) are diagonal in the basis {𝐟0, 𝐬0,𝐧0},
so are the resulting stress tensors. For instance, we have 𝐂 = 𝐛 =
diag(𝜆21, 𝜆

2
2, 𝜆

−2
1 𝜆−22 ), 𝐡 = diag(H11𝜆21,H22𝜆22,H33𝜆−21 𝜆−22 ), etc. The non-zero

entries of the Cauchy stress tensor are

𝜎11 = −𝑝 + 2𝜆21𝛹1 + 2

(

1
𝜆22

+ 𝜆21𝜆
2
2

)

𝛹2 + 2H11𝜆
2
1𝛹4 + 4H11𝜆

4
1𝛹5

+ 2H′
11𝜆

2
1𝛹6 + 4H′

11𝜆
4
1𝛹7 + 4H11H′

11𝜆
2
1
(

𝜆21 − 1
)

𝛹8̂0, (128)

𝜎22 = −𝑝 + 2𝜆22𝛹1 + 2

(

1
𝜆21

+ 𝜆21𝜆
2
2

)

𝛹2 + 2H22𝜆
2
2𝛹4 + 4H22𝜆

4
2𝛹5

+ 2H′
22𝜆

2
2𝛹6 + 4H′

22𝜆
4
2𝛹7 + 4H22H′

22𝜆
2
2
(

𝜆22 − 1
)

𝛹8̂0,

𝜎33 = −𝑝 + 2
𝜆21𝜆

2
2

𝛹1 + 2

(

1
𝜆21

+ 1
𝜆22

)

𝛹2 + 2H33
1

𝜆21𝜆
2
2

𝛹4 + 4H33
1

𝜆41𝜆
4
2

𝛹5

+ 2H′
33

1
𝜆21𝜆

2
2

𝛹6 + 4H′
33

1
𝜆41𝜆

4
2

𝛹7 + 4H33H′
33

𝜆21𝜆
2
2 − 1

𝜆41𝜆
4
2

𝛹8̂0.

The boundary condition 𝜎33 = 0 defines the incompressibility-associated
Lagrange multiplier 𝑝. For the special case of the Holzapfel–Ogden
model with axisymmetric fibre dispersion (69), we have

𝜎11 = 2

(

𝜆21 −
1

𝜆21𝜆
2
2

)

𝛹1 + 2

(

𝜆21𝜆
2
2 −

1
𝜆21

)

𝛹2

+ 2

(

H11𝜆
2
1 − H33

1
𝜆21𝜆

2
2

)

𝛹4 + 4

(

H11𝜆
4
1 − H33

1
𝜆41𝜆

4
2

)
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+ 2

(

H′
11𝜆

2
1 − H′

33
1

𝜆21𝜆
2
2

)

𝛹6 + 4

(

H′
11𝜆

4
1 − H′

33
1

𝜆41𝜆
4
2

)

𝛹7

+ 4

(

H11H′
11
(

𝜆41 − 𝜆
2
1
)

− H33H′
33

(

1
𝜆21𝜆

2
2

− 1
𝜆41𝜆

4
2

))

𝛹8̂0, (130)

𝜎22 = 2

(

𝜆22 −
1

𝜆21𝜆
2
2

)

𝛹1 + 2

(

𝜆21𝜆
2
2 −

1
𝜆22

)

𝛹2

+ 2

(

H22𝜆
2
2 − H33

1
𝜆21𝜆

2
2

)

𝛹4 + 4

(

H22𝜆
4
2 − H33

1
𝜆41𝜆

4
2

)

𝛹5

+ 2

(

H′
22𝜆

2
2 − H′

33
1

𝜆21𝜆
2
2

)

𝛹6 + 4

(

H′
22𝜆

4
2 − H′

33
1

𝜆41𝜆
4
2

)

𝛹7

+ 4

(

H22H′
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(

𝜆42 − 𝜆
2
2
)

− H33H′
33

(

1
𝜆21𝜆

2
2

− 1
𝜆41𝜆

4
2

))

𝛹8̂0,

𝜎11 = 𝑎

(

𝜆21 −
1

𝜆21𝜆
2
2

)

exp

[

𝑏

(

𝜆21 + 𝜆
2
2 +

1
𝜆21𝜆

2
2

− 3

)]
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+ 𝑎f

(

(1 − 2𝜅) 𝜆21 − 𝜅
1

𝜆21𝜆
2
2

)

×

(

(1 − 2𝜅)
(

𝜆21 − 1
)
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(

𝜆22 +
1
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2
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− 2
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⎡

⎢

⎢
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⎤

⎥
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+ 𝑎s𝜅
′

(
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1
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2
2
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+ 2𝑎fs
⎛

⎜

⎜

⎝
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𝜎22 = 𝑎
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+ 2𝑎fs
⎛

⎜
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