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Abstract 27 

Cosmogenic nuclide burial dating provides an alternative method for sediment dating, and the 28 

combination of radionuclide 10Be with noble gas isotope 21Ne would theoretically extend the 29 

burial dating range up to around 15 Ma ago, which endows 10Be/21Ne pair with huge potential 30 

in middle-Miocene sediment dating. Especially in the magnetostratigraphic studies of the 31 

Cenozoic sedimentary strata, the 10Be/21Ne pair could be expected to provide absolute age 32 

marker when the well-dated volcanic ash layer or bedded mammalian fossils are absent. 33 

However, the validity and accuracy of the 10Be/21Ne burial dating when used close to its 34 

limiting middle Miocene ages has not been assessed in case study. Here, we show our dating 35 

results of the sedimentary stratum samples, which deposited at the same bedding of the 36 

Vertebrate fossils of Platybelodon tongxinensis that offer an independent age constraint 37 

between 12 and 15 Ma. The 10Be/21Ne analyses yielded a mean burial age of 13.25±0.33 Ma, 38 

which agrees well with the paleontological proxy, and the MSWD value of 0.66 indicates the 39 

good agreement of the apparent dispersion of six aliquots data with their individual 40 

measurement errors. In view of the extended applicable dating range of 10Be/21Ne pair, it is 41 

promising in providing absolute age marker or valuable chronological information for a 42 

variety of fields in Earth science and beyond. 43 

Keywords: Cosmogenic burial dating; 10Be/21Ne; Mid-Miocene; Sediment dating 44 

1. Introduction 45 

Sediments record crucial information about the erosional and sedimentary processes (e.g., 46 

Balco et al., 2013; Granger et al., 2015; Ivy-Ochs and Briner, 2014; Matmon et al., 2012), and 47 

are regarded as the key to understanding issues of how landscape evolves as well as how 48 

geomorphic processes interact with tectonic activities and/or climatic changes (e.g., Bishop, 49 

2010; Burbank et al., 1996). However, suitable chronological methods for sediment dating on 50 

the timescales of millions of years are actually scarce. Magnetostratigraphy can afford unique 51 



chronological sequences for the continental sediments relying on an age marker of well-dated 52 

volcanic ash layer or bedded mammalian fossils, but this independent age constraint is not 53 

always available in every sedimentary stratum (Balco and Shuster, 2009).  54 

Cosmogenic nuclide burial dating provides an alternative method for sediment dating 55 

(Granger and Muzikar, 2001). A pair of cosmogenic nuclides produced in the same minerals 56 

but with different half-lives, or one stable isotope and one radionuclide, in principle allows 57 

the determination of burial time since the onset of sediment deposited on the basis of the 58 

time-dependent relative concentration of this pair of nuclides (Lal, 1991; Lal and Arnold, 59 

1985). Radioactive 10Be/26Al is the most widely used pair in burial dating because both 10Be 60 

and 26Al are produced in quartz whose chemical composition is simple and in which the 61 

nuclide production ratio has been well established. Shorter-lived nuclide controls the upper 62 

limit of a nuclide pair when it decays to a level that cannot be measured accurately, therefore, 63 

the 10Be/26Al nuclide pair is sensitive to the decay time on the scale of few million years 64 

dependent on the half-life of 26Al, which endows it with great capability to accurately date 65 

Plio-Pleistocene sediments.  66 

The combination of radionuclide 10Be with noble gas isotope 21Ne would theoretically 67 

extend the applicable range of cosmogenic burial dating up to middle Miocene of around 15 68 

Ma ago (Balco and Shuster, 2009), and additionally the stable 21Ne recorded the pre-burial 69 

exposure history of sediments more directly, which is supposed to be a promising proxy for 70 

the temporal variability of the paleo-erosion rates at source basin. However, only a few study 71 

cases have employed stable 21Ne in sediment burial dating (e.g., Balco and Shuster, 2009; 72 

Davis et al., 2011; Sartégou et al., 2018), and the burial ages dated by using 10Be/21Ne pair 73 

mainly distribute in Plio-Pleistocene period. 74 

In this work, we select an ideal sampling site, where the basin-filling process has been 75 

investigated thoroughly and the definite age sequence of the sedimentary strata has been 76 



established. Especially, an independent age constraint from Vertebrate fossils that are mixed 77 

with the sediments we collected has further restricted the depositional time of surrounding 78 

sediments within the age range of 12-15 Ma. We aim to date the sediments here by using 79 

cosmogenic 10Be/21Ne burial dating method, in order to show the improved dating range 80 

yielded by the combination of stable nuclide 21Ne with radioactive nuclides, and on the other 81 

hand, to assess the accuracy of 10Be/21Ne burial dating when used close to its limiting middle 82 

Miocene ages.  83 

2. Geological Setting 84 

  85 

Figure 1. A: Digital elevation model (GeomapApp) image of the northeastern margin of Tibetan Plateau 86 

and its adjacent regions. White polygon outlines the region of south Ningxia basin showing in B. 87 

Abbreviations are as follows. LSF: NiuShou Shan-Luo Shan fault; TJSF: Tianjing Shan fault. B: 88 

Topographic map of the southern Ningxia Basin showing the sampling site with the red star. Strata are 89 

marked locally just surrounding the sampling site. White rectangle shows the location of C. C: Geological 90 

map surrounding the sampling site showing distributions of the Cenozoic stratigraphy.  91 

The study area is located in the southern Ningxia Basin, NW China, where is at the tectonic 92 

junction zone of the northeastern Tibetan Plateau, Ordos block and Alax block. The southern 93 

Ningxia Basin is bound by the Niushou Shan-Luo Shan (LSF) and Tianjing Shan (TJSF) 94 

faults, and thus it is separated from the Yinchuan Graben in the northeast direction and the 95 

Sikouzi Basin in the southwest (Figs. 1 A and B). Cenozoic sediments are widely deposited in 96 

this area due to the uplift and denudation of the northeastern Tibetan Plateau during its 97 



northeastward progressive growth, and the lithological units spanning the age range from ~29 98 

to 0.5 Ma belong to four different formations: Sikouzi, Qingshuiying, Hongliugou, and 99 

Ganhegou (Wang et al., 2011). Deformation associated with the fault movement in the 100 

western foothills of the Niushou Shan had generated a syncline (Zhang et al., 2010), and 101 

across the north limb of this syncline, there is a section well-exposed along a NE-SW trending 102 

dry valley (Fig. 1C). The deformed bedding of Hongliugou Formation, with the bedding dip 103 

of 38° NE, and the overlying horizontal young Quaternary deposits are exposed along the 104 

section (Figs. 2 A and B), but the Pliocene Ganhegou Formation is absent, which indicates 105 

that the deformation happened coeval with the Ganhegou Formation. 106 

The Hongliugou Formation is characteristic of fluvial original sediments, and is dominated 107 

by red-orange mudstone, siltstone and coarse-grain sandstone. The provenance of Hongliugou 108 

Formation in this region is implied by the sedimentary facies and palaeocurrent to be the 109 

Xiang Shan in the southwest area which is mainly composed of Early Palaeozoic quartzose 110 

sandstones (Zhang et al., 2010). Caves are recently excavated in the Hongliugou Formation 111 

by local people to search for fossils, which provide ideal sampling sites for collecting the 112 

buried sediments for cosmogenic burial dating. Some mammalian fossils are found to be 113 

mixed with the sediments in one cave (Fig. 2A), which is roughly 0.5 m high and 25 m deep 114 

in total, and the overlying sediments are more than 25 meters from the surface straight 115 

downwards to the cave location (Fig. 2B).  116 

The mammalian fossils recovered in this cave include Aceratherium (Fig. 2C), 117 

Platybelodon (Fig. 2D) and Lagomeryx complicidens, and among them, a branch of left lower 118 

mandible (Left M2-M3, Fig. 2D) is well preserved. The M2 has three ridges, with anterior and 119 

posterior serrated crests of pretrite cusps, the size of which is 115 mm× 62.3 mm, with thick 120 

cement in the molar valleys. The third lower molars M3 are hypsodont and angusticoronate 121 

crown. It belongs to the 5-ridge type, with the pretrite cusps and posttrite cusps, and the 122 



posterior serrated crests of the pretrite cusps are developed, with thick cement filled in the 123 

valleys as well. The fifth ridge has not fully erupted, without the posttrite cusp. The 124 

configuration and structure of this branch of left lower mandible are closely matched for the 125 

Platybelodon tongxinensis described by Ye and Jia (1986) collected from the same locality. 126 

Therefore, the specimen mixed with the cave sediments is likely to be assigned to 127 

Platybelodon tongxinensis, referred to as the Dingjiaergou Fauna, with an age between 12 and 128 

15 Ma, (Chen, 1978; Qiu and Qiu, 1995), which provides an independent age constraint on 129 

the deposition time of the sediments in this cave.  130 

 131 

Figure 2. A: The overview of the Hongliugou Formation in the north margin of the southern Ningxia basin. 132 

The black arrow shows the cave in which we sampled. B: Profile showing the deformed Hongliugou 133 

Formation with the bedding dip of 38° NE and its angular-unconformity contact with the overlying 134 

Quaternary deposits. The sampling site is marked and the vertebrate fossils which are mixed with the 135 

sediments are shown in C and D. Vertebrate fossils that belong to Aceratherium (C) and Platybelodon (D) 136 

(locally referred to as the Dingjiaergou Fauna) are mixed with the buried sediments we sampled, suggesting 137 

an age of 12–15 Ma. 138 

3. Material and Methods  139 

3.1 Sample Collection 140 

Six samples were collected at the position of 20 m inwards from the cave entrance, where 141 

are basically shielded from the cosmic-ray irradiation at present (Fig. 2B). Each aliquot is a 142 

bulk sediment collected from an area with the same length of about 20 cm for each dimension 143 

and is mainly composed of quartz-bearing sandstone, with seldom gravel clasts. Six aliquots 144 

were collected within a lateral offset of 3 m. Coarse sands were sieved out for analysis, and in 145 

order to limit the effect of spatial variability on the erosional rate at source area, only 250-500 146 

m grain-size fraction in the sediments was selected. 147 



3.2 Neon and Beryllium Analyses 148 

Sediment samples were purified to extract pure quartz basically according to the procedure 149 

reported by Kohl and Nishiizumi (1992) for 21Ne and 10Be analyses. Neon analyses were 150 

carried out in two laboratories for the comparison of the effect of different measurement 151 

procedure on dating results. The neon extraction was under one-step heating at 1350 °C on 152 

MAP-215 Magnetic Sector Mass Spectrometer in SUERC (Scottish Universities 153 

Environmental Research Center) and stepwise heating at four steps of 400 °C, 600 °C, 800 °C 154 

and 1350 °C on GV 5400 Noble Gas Mass Spectrometer in IGCEA (Institute of Geology, 155 

China Earthquake Administration), respectively. The neon blanks had an atmospheric 156 

composition, containing ~2×107 atoms of 20Ne at room temperature and ~1×108 atoms of 20Ne 157 

at high temperature. For all samples and calibrations, the abundances of masses 2, 16, 18, 19, 158 

20, 21, 22, 40 and 44 were determined. Corrections for 40Ar2+ at mass 20 and for 44CO2
2+ at 159 

mass 22 were calculated from the measured mass 40 (40Ar+) and mass 44 (44CO2
+) signals by 160 

using their individual charge state ratios of 40Ar+/40Ar2+= 4.18–4.20 and 44CO2
+/44CO2

2+ = 161 

104–106. The isobaric interference from H2
18O+ and H19F+ at mass 20 can be ignored. 162 

Detailed information about measurement procedure can be referred elsewhere (Ma et al., 2015; 163 

Vermeesch et al., 2015).  164 

The 10Be chemical separations and analyses were also carried out in two laboratories. 10Be 165 

chemistry was conducted following the standard procedure (e.g., Wagner et al., 2010), and 166 

10Be/9Be nuclide ratio in the samples and chemical procedural blanks were measured using 5 167 

MV AMS at SUERC AMS facility and 3 MV AMS at Arizona AMS Laboratory, University of 168 

Arizona. All 10Be/9Be ratios were normalized to the NIST standard SRM-4325 with 10Be/9Be 169 

of 2.79×10-11 when using 10Be half-life of 1.36×106 a (Nishiizumi et al., 2007). The chemical 170 

procedural blanks for 10Be/9Be nuclide ratio were at levels of 3.40×10-15 for SUERC and 171 

3.60×10-15 for Arizona, which were subtracted from the measured nuclide ratios of samples as 172 



the blank correction for the chemical procedures. 173 

3.3 10Be/21Ne Burial Age Calculation  174 

For quartz samples, we use the most recently reported mean SLHL (sea level high-latitude) 175 

value of 4.15 atoms g-1 a-1 for the total 10Be production rate from the Lal/Stone time 176 

dependent model (Lal, 1991; Stone, 2000) compiled by Martin et al. (2017). Based on this 177 

updated 10Be production rate, cosmogenic 21Ne production rate (SLHL) is calculated to be 178 

17.5 atoms g-1 a-1 by using a 21Ne/10Be production ratio of 4.23 defined in Kober et al. (2011). 179 

The rates of production by neutron spallation are scaled with elevation and latitude by using 180 

the scaling method of Stone (2000). Attenuation length for neutron flux in the sediments of 181 

density 2.6 g cm-3 is adopted the value of 160 g cm-2 (Gosse and Phillips, 2001). 182 

The production rate by muon reactions of 10Be is determined following the model described 183 

by Granger and Smith (2000). For 21Ne, however, the correlation of muon-induced production 184 

rate with depth has not yet been studied clearly, so in this work, we have followed the 185 

approximation that the muon-induced 21Ne/10Be production ratio is constant with depth   186 

Balco and Shuster (2009) used. The muon-induced nuclide production rates are just scaled for 187 

elevation using an atmospheric pressure at the sampling site of 870 g cm-2 and an atmospheric 188 

attenuation length of 240 g cm-2 (Rossi, 1948). Due to the latitudinal variation in muon flux is 189 

sufficiently small at moderate latitudes, latitude dependence of production rates by muon 190 

could be ignored (Allkofer and Jokisch, 1973). 191 

Burial ages “tb,” are calculated assuming sediments being dated were derived from a 192 

steadily eroding process at provenance, without taking the muogenic nuclide production 193 

during the eroding process into account, therefore, cosmogenic nuclide concentrations 194 

measured in samples “Ni,m,” are (Granger and Muzikar, 2001): 195 

𝑁i,𝑚 = 𝑃𝑠,𝑖/[λi + ρs ∙ 𝐸/Λ𝑛] ∙ exp(−𝑡𝑏 ∙ λi) + 𝑁i,𝑝𝑏                      (1) 196 

where i= 10 and 21 for 10Be and 21Ne, respectively; tb is the burial time from sediments were 197 



deposited; E is the steady erosion rate, which is referred as the paleo-erosion rate at 198 

provenance; Ni,pb is nuclide accumulation after sample deposited; Ps,i is the average 199 

basin-wide nuclide production rate at provenance, which is calculated by scaling the SLHL 200 

rate to the assumed elevation and latitude of the catchment basin at provenance. Here, 201 

considering the provenance of the sediments originated from the mountain ranges at the 202 

northeastern margin of Tibetan Plateau, we roughly constrain the average altitude of the 203 

watershed in the level of 2000 m, and neglect the latitude variation; λi is the radioactive decay 204 

constant, and for 21Ne, λ21= 0; ρs is rock density at the source area where the sediments 205 

originated from, and we use the typical value of 2.6 g cm-3 in this work; and Λn is the 206 

attenuation length for neutron flux.  207 

Combination of 10Be and 21Ne could theoretically yield the burial age and the paleo-erosion 208 

rate at source basin provided the post-burial nuclide concentration can be independently 209 

estimated. When taking no account of the post-burial nuclide concentrations, a 21Ne/10Be 210 

burial age could be calculated based on Eq. 1 as following:   211 

𝑡𝑏 = −(1/λ10) ∙ ln[(𝑁10,𝑚/𝑁21,𝑚) × (𝑃𝑠,21/𝑃𝑠,10) + (𝑁10,𝑚/𝑃𝑠,10) × λ10]          (2) 212 

Symbols are the same as those defined in Eq. 1. The resultant age from Eq. 2 is referred as 213 

simple burial age here. 214 

The post-burial nuclide concentrations in samples from a steadily accumulating landscape 215 

could be calculated following the approach reported by Hetzel et al. (2004): 216 

𝑁𝑖,𝑝𝑏 =
𝑃𝑖,𝑛∙exp(−𝛼∙𝑡𝑏∙ρ/Λ𝑛) 

λi−ρ∙𝛼/Λ𝑛
∙ {1 − exp[−(λi − ρ ∙ 𝛼/Λ𝑛) ∙ 𝑡𝑏]}  217 

     + ∑ {
𝑃𝑖,𝜇−𝑗∙exp(−𝛼∙𝑡𝑏∙ρ/Λ𝜇−𝑗) 

λi−ρ∙𝛼/Λ𝜇−𝑗

3
𝑗=1 ∙ {1 − exp[−(λi − ρ ∙ 𝛼/Λ𝜇−𝑗) ∙ 𝑡𝑏]}}      (3) 218 

where the first term is for nuclide concentration by neutron spallation, with Pi,n indicating the 219 

surface production rates at sampling location. For this work, the cave location is 37.7001°N 220 

and 105.9768°E, with the elevation of 1266 m; the rest three terms are referring to 221 



muon-induced nuclide concentrations, in which Pi,μ-j is the production rate by muon reaction 222 

at the sampling location and Λμ-j is the attenuation length for muon flux (Granger and Smith, 223 

2000, and references therein); ρ is sediment density of Hongliugou Formation and was 224 

determined to 2.6 g cm-3;  is the sediment accumulation rate in basin, and the value is given 225 

by 10 cm ka-1 based on the magnetostratigraphy study in the adjacent basin of Sikouzi (Wang 226 

et al., 2011), which represents the combined effects of sedimentation and denudation occurred 227 

during the sediment deposition. Other symbols are the same as those defined before. 228 

The post-burial nuclide concentration in sample is firstly roughly estimated according to Eq. 229 

3 by using the simple burial age. Then, correcting the measured 10Be and 21Ne concentrations 230 

in Eq. 1 for their respective post-burial production and combining the two nuclides, the 231 

paleo-erosion rate (E) is determined and the burial age (tb) is recalculated. Iterate the above 232 

process until the resultant burial age converges on a solution. 233 

4. Results 234 

Considering the long depositional time would result extremely low 10Be concentrations in 235 

samples that were close to the detection limit of AMS measurement, we have used twice the 236 

amount for routine samples to keep the amount of 10Be maintaining at the order of 105 atoms, 237 

in order to minimize measurement errors for 10Be. The measurement results of 10Be and 21Ne 238 

analyses for six aliquots are summarized in Tabs. 1-2.  239 

As expected, the 10Be/9Be isotopic ratio is only several times higher than the blank level 240 

even twice the amount for routine sample was used, and the uncertainties of resultant 10Be 241 

concentration is high. As for neon analysis, all data points of neon isotope ratios from either 242 

the one-step heating or the four-step heating basically lie on the spallation line within the 243 

measurement uncertainties (Niedermann et al., 1993) in the neon three-isotope diagram 244 

illustrated in Fig. 3, indicating no significant non-cosmogenic 21Ne released before 1350°C. 245 

The resultant concentrations of cosmogenic 21Ne in six aliquots are listed in Tab. 3. 246 



Table 1. Data for 10Be analysis with 1 uncertainties 247 

Sample Mass of quartz  
(g) 

Mass of Be carrier 
(mg) 

10Be/9Be* 
(× 10-13) 

error 

(1) 

10Be† 

(×105 atom) 

error 

(1) 

[10Be]§ 

(×103 atom g-1) 

error 

(1) 

rel.# 
(%) 

SUERC AMS          
Blank CFG1602 N.D.** 0.2332 0.0340 0.0073 N.D. N.D. N.D. N.D. N.D. 
HLV-03 41.391 0.2241 0.1576 0.0133 1.17 0.206 2.83 0.498 17.6 
HLV-04 64.021 0.2244 0.2561 0.0123 2.50 0.195 3.91 0.304   7.78 
HLV-05 55.343 0.2256 0.2104 0.0170 1.90 0.253 3.44 0.456 13.3 
HLV-06 32.612 0.2249 0.1518 0.0113 1.10 0.184 3.37 0.564 16.7 
HLV-07 47.904 0.2254 0.2168 0.0122 1.99 0.195 4.15 0.408   9.83 
          
Arizona AMS          
Blank HZB32 N.D. 0.3134 0.0360 0.0148 N.D. N.D. N.D. N.D. N.D. 
HLV-10 52.032 0.3157 0.1289 0.0250 2.45 0.474 3.40 1.057 31.1 

Note: 10Be analyses carried out in two laboratories, with samples HLV-03—HLV-07 in SUERC AMS facility (SUERC AMS), and HLV-10 in Arizona AMS Laboratory (Arizona 
AMS). 

*The measurements are normalized to 10Be primary standard NIST SRM4325 with 10Be/9Be ratio of 2.79×10-11 when using 10Be half-life of 1.36 Ma (Nishiizumi et al., 2007). 

†The total amount of 10Be atom in the samples, having been corrected for blanks. 
§The blank-corrected 10Be concentrations are calculated from the measured 10Be/9Be ratios of the samples and the respective blank. 
#The relative error of 10Be concentration. 
**N.D.= no data. 

 248 

Table 2. Data for neon isotope measurements with 1 uncertainties  249 

Sample 
ID 

Weight 
(g) 

T(°C) [20Ne] 
(×109 at g-1) 

error 

(1) 
[21Ne] 

(×106 at g-1) 

error 

(1) 

21Ne/20Ne* 
(×10-3) 

error 

(1) 

22Ne/20Ne* 
(×10-3) 

error 

(1) 

[21Ne]c† 
(×106 at g-1) 

error 

(1) 

SUERC             
HLV-03 0.435 1350 34.35 0.026 117.2 0.82 3.37 0.033 102.5 0.36 14.38 1.20 
HLV-04 0.396 1350 23.70 0.024 82.89 0.87 3.46 0.043 102.7 0.35 11.92 1.08 
HLV-05 0.419 1350 26.29 0.054 93.64 1.15 3.52 0.050 102.8 0.53 14.91 1.38 
HLV-06 0.412 1350 25.84 0.045 90.82 1.26 3.47 0.054 102.6 0.45 13.45 1.44 
HLV-07 0.423 1350 21.15 0.010 78.24 0.99 3.66 0.055 103.0 0.69 14.89 1.25 
             
IGCEA             
HLV-10 1.005 400  2.19 0.065  8.64 0.81 3.94 0.369 102.8 1.00 2.15 0.21 
  600  8.83 0.042 31.74 1.71 3.59 0.194 103.2 0.72 5.60 0.36 
  800 11.86 0.040 38.19 1.17 3.22 0.100 102.3 0.80 3.08 0.14 
  1350  1.92 0.089  8.64 0.54 4.50 0.286 104.1 1.06 2.95 0.21 
          Total§ 13.78 0.49 

   Note: Data set of neon measurements carried out in two laboratories, with samples HLV-03—HLV-07 in Isotope Geoscience Laboratory of SUERC, and HLV-10 in Neotectonics and 
Geochronology Laboratory of IGCEA. 

*The ratios of 21Ne/20Ne and 22Ne/20Ne are normalized by the ratios of air calibration. The uncertainties in air calibration with the values of 0.7% for 21Ne/20Ne and 0.4% for 22Ne/20Ne are propagated 
into the sample data.   

†Cosmogenic 21Ne concentration in the samples, calculated as the sum of the excesses 21Ne. Excess 21Ne is calculated without applying blank corrections and assuming an atmospheric origin of 

all the measured 20Ne according to the equation of [21Ne]ex= [21Ne]m×(Rm-Ra)/Rm, in which Rm is the measured 21Ne/20Ne-ratio, and Ra is the atmospheric 21Ne/20Ne-ratio, with the value of 0.002959 
(Eberhardt et al., 1965). The uncertainties in the air calibrations are included in the reported uncertainties. 

§The cosmogenic 21Ne concentration calculated using the 21Ne excesses in four heating steps of 400, 600, 800 and 1350 °C. 



 250 

Figure 3. Ne three-isotope diagram for buried sediment samples. For samples HLV-03—HLV-07, the data 251 

of Ne isotope ratios are from one-step heating extraction at 1350°C, and for sample HLV-10, showing the 252 

data from stepwise heating extractions at 400°C, 600°C, 800°C, and 1350°C. Mixtures of atmospheric and 253 

cosmogenic neon plot on the spallation line, whose slope has been experimentally determined to be 254 

1.120±0.021 for quartz (Niedermann et al., 1993). The dotted line mfl means the mass fractionation line. 255 

Error bars represent 1 uncertainties. 256 

The 10Be/21Ne burial ages of six aliquots and the corresponding paleo-erosion rates at 257 

source area are listed in Tab. 3. The average age of six aliquots is calculated to be 13.25±0.33 258 

Ma (Fig. 4), with high measurement precision of 2.46%. The accuracy of the measured burial 259 

age has been verified by the mammal fossils of Platybelodon tongxinensis that suggests the 260 

time period during 12-15 Ma. The MSWD (Mean Square of the Weighted Deviates) value is 261 

calculated to be 0.66, which indicates the good agreement of the apparent dispersion of six 262 

aliquots data with their individual measurement errors.  263 

 264 

Figure 4. Overview of the measured burial ages of six aliquots and the analytical uncertainties. The dotted 265 

line and gray band show the average burial age of this set of data and the 1 uncertainty of 13.25±0.33 Ma. 266 



Table 3. Burial ages and paleo-erosion rates from 10Be and 21Ne in sediments 267 

Sample 
ID 

Nuclide Measured 
concentration 

(atom g-1 SiO2) 

Post-burial nuclide concentration* 
(atom g-1 SiO2) 

tb† 
(Ma) 

Paleo-erosion rate 
E§ 

(cm ka-1) Neutron Negative 
muon-1 

Negative 
muon-2 

Fast  
muon 

Total Npb/Nm  
(%) 

HLV-03 10Be 2.83±0.50 ×103 57.57 3.66 2.98 6.27 70.48 2.5 13.73 
(+0.55/-0.47) 

0.32±0.03 
 21Ne 1.44±0.12 ×107 2.68×105 1.67×104 1.31×104 2.66×104 3.24×105 2.3 

HLV-04 10Be 3.91±0.30 ×103 94.41 6.00 4.89 10.28 115.58 3.0 12.76 
(+0.34/-0.31) 

0.39±0.04 
 21Ne 1.19±0.11 ×107 2.68×105 1.67×104 1.31×104 2.66×104 3.24×105 2.7 

HLV-05 10Be 3.44±0.46 ×103 67.77 4.31 3.51 7.38 82.97 2.4 13.41 
(+0.47/-0.42) 

0.31±0.03 
 21Ne 1.49±0.14 ×107 2.68×105 1.67×104 1.31×104 2.66×104 3.24×105 2.2 

HLV-06 10Be 3.37±0.56 ×103 72.42 4.61 3.75 7.88 88.66 2.6 13.28 
(+0.56/-0.49) 

0.34±0.04 
 21Ne 1.35±0.14 ×107 2.68×105 1.67×104 1.31×104 2.66×104 3.24×105 2.4 

HLV-07 10Be 4.15±0.41 ×103 81.85 5.21 4.24 8.91 100.20 2.4 13.04 
(+0.38/-0.34) 

0.31±0.03 
 21Ne 1.49±0.13 ×107 2.68×105 1.67×104 1.31×104 2.66×104 3.24×105 2.2 

HLV-10 10Be 3.40±1.06 ×103 71.68 4.56 3.71 7.80 87.76 2.6 13.30 
(+0.82/-0.61) 

0.33±0.01 
 21Ne 1.38±0.05 ×107 2.68×105 1.67×104 1.31×104 2.66×104 3.24×105 2.4 

Note: Cave location is 37.7001°N and 105.9768°E, and the site elevation at the cave entrance is 1266 m. The elevation of the catchment basin at sediment provenance is adopted the value of 
2000 m, taking no account of the latitude variation. For quartz samples, the total production rates at sea level and high latitude (SLHL) of 4.15 atoms g-1 a-1 for 10Be (Martin et al., 2017) and 17.5 atoms 
g-1 a-1 for 21Ne (Kober et al., 2011; Martin et al., 2017) are used. Production rate of neutron spallation is scaled for elevation and latitude using Stone (2000) scaling method with a factor of 2.54. Rate of 
muon-induced production is just scaled for elevation using an atmospheric attenuation length of 240 g cm-2 (Rossi, 1948) and atmospheric pressure at the sampling site is 870 g cm-2, therefore the 
resultant scaling factor for muon production rate over SLHL is e[(1013-870)/240]= 1.81. The radioactive decay constant of 10Be is used λ10= 5.10×10-7 a-1 (Nishiizumi et al., 2007), in order to be consistent 
with the value we used when choosing the isotopic ratio of 10Be AMS standard. 

*The individual contribution of four reaction mechanisms, neutron spallation, two terms of slow negative muons capture, and fast muons reaction, is listed separately, and the total value means the 
sum of the above four data. 

†Burial ages are calculated taking the post-burial nuclide production into account. The uncertainties of burial ages are just the propagation of analytical errors of 10Be and 21Ne concentrations, 
which do not include the uncertainties of decay constant of 10Be and production rates. 

§Erosion rates in source area, the muon-induced nuclide production during eroding process is not included in calculation. The uncertainties only originated from the analytical uncertainties of 
nuclide concentrations, but errors of post-burial nuclide concentrations, production rates and the decay constant of 10Be have not been included. 



We have plotted the data on the 21Ne/10Be concentration ratio v.s. 10Be concentration 268 

diagram (Fig. 5). After correcting the post-burial nuclide production, the data points of all 269 

aliquots drop in a region confined by the burial age ranging from 12 to 14 Ma and the 270 

paleo-erosion rate spanning from 0.3 to 0.5 cm ka-1, consistent with the calculated results by 271 

iterated method. 272 

 273 

 274 

Figure 5. Burial dating plot showing the 21Ne/10Be ratio and the 10Be concentration of six aliquots of 275 

sediments, collected from the Hongliugou Formation in the southern Ningxia basin, with a density of 2.6 g 276 

cm-3 on the logarithmic axes, and the nuclide concentrations are normalized to the nuclide production rate 277 

at SLHL. A: Solid line represents the 21Ne/10Be ratio evolution under steady-state erosion. The 278 

pre-exposure period erosion rates are shown in the range of 10-6 to 1.0 cm ka-1 in italic, and the set of 279 

parallel dotted lines indicate the change of 21Ne/10Be ratio under different erosion rates when samples were 280 

buried and completely shielding from the cosmic radiation. The dash lines show the isolines of burial ages 281 

in the range of 1 to 15 Ma, calculated using the steady erosion model. The data of six aliquots corrected for 282 

post-burial production and normalized to SLHL are showed as the red circles, and error bars represent 1 283 

uncertainties. The red rectangle showing the array in the vicinity of the data of six aliquots is enlarged in B. 284 

B: Enlarged 21Ne/10Be burial plot for these six aliquots. 285 

The post-burial nuclide production involving spallation and muon reactions has been taken 286 



into account in this study in order to accurately determine the burial ages, and the post-burial 287 

nuclide concentrations induced by different reactions are listed in Tab. 3 as well. As expected, 288 

the post-burial nuclide production just makes a minor contribution to the total nuclide 289 

concentrations measured in samples for both 10Be and 21Ne, which are negligible. On the 290 

other hand, in post-burial nuclide concentration, the majority contribution is still from neutron 291 

spallation, more than 80% of the total amounts. Although the fast muon-induced production is 292 

insignificant at surface, due to its long attenuation length, the fast muon reaction nearly makes 293 

an equal contribution as the negative muon does to the total nuclide production at sufficient 294 

depth.  295 

5. Discussion 296 

Under some situations, the validity and accuracy of the burial dating depends strongly on 297 

the geological models used to describe the histories sediments had experienced. As a result, 298 

we interpret the influence of the geological assumptions involved in this case on the burial 299 

dating results. 300 

5.1 Uncertainties derived from the pre-exposure histories  301 

Firstly, the nuclide concentration ratio before burial would be lower than their production 302 

rate ratio. For the low erosion rate at provenance of this work, the assumption that the initial 303 

nuclide concentration ratio between 10Be and 21Ne is equal to their production ratio is not 304 

valid because the precondition of ρs·E/Λn>>λ10 does not hold true (Granger and Muzikar, 305 

2001). As a result, the radioactive decay of 10Be during the long pre-burial history could not 306 

be neglected, otherwise, it would lead to the overestimate of the burial age. Moreover, the 307 

nuclide production rates of the watershed at provenance have been estimated by using a 308 

basin-average altitude of 2000 m, but actually, the average elevation of the source basin is 309 

probably higher than what we assumed. To take the uncertainty from this assumption into 310 

account, we have considered the influence from a variation of 500 m attached to the 311 



catchment average elevation on the calculated burial age as well as the paleo-erosion rate. In 312 

the case of sample HLV-03, for example, the paleo-erosion rate was then estimated to be 313 

0.46±0.04 cm ka-1 and the corresponding burial age was determined to be 13.79(+0.56/-0.48) 314 

Ma. It is revealed that the adopted average elevation of source catchment basin has no 315 

significant influence on the burial age determination, just a 0.4% increase for HLV-03, while 316 

results in non-negligible influence on the paleo-erosion rate estimation, which increases from 317 

0.32±0.03 to 0.46±0.04 cm ka-1 with the provenance elevation increasing from 2000 to 2500 318 

m. 319 

  On the other hand, for this work, the muogenic nuclide production in the pre-exposure 320 

history is not taken into account due to its contribution is insignificant compared to the 321 

neutron spallation production at surface and shallow depth (Granger and Smith, 2000). If the 322 

contribution of muogenic nuclide production is included in the calculation following the 323 

approach described by Lupker et al. (2012), the burial dating result, by taking the sample 324 

HLV-03 as example again, has shown a negligible change, with the decrease less than 1%, 325 

while, the paleo-erosion rate yields a significant increase which is up to 13%. Therefore, it 326 

seems that the burial age determination is less affected by the assumptions adopted in the 327 

pre-exposure period, in contrast, the calculated paleo-erosion rate would change significantly 328 

under different conditions associated to the sediment provenance. 329 

5.2 Influence of the depositional process on the burial age calculation    330 

We have assumed a steady accumulation model of sediments in the basin at a rate of 10 cm 331 

ka-1, based on the magnetostratigraphic constraint of a section located in the adjacent basin of 332 

Sikouzi (Wang et al., 2011). The apparent sedimentary rate is reported to slightly increase to 333 

~24 cm ka-1 during the period of 5-2 Ma ago and sedimentary hiatus has been proven to occur 334 

(Wang et al., 2011). However, because that the post-burial nuclide concentration is just 335 

sensitive to the accumulation rate of the first few meters of sediment immediately overlying 336 



samples (Balco et al., 2005), and samples would be buried deeper than 5000 g cm-2 after no 337 

more than one million years in the case of 10 cm ka-1 of accumulation rate, the rate change of 338 

sediment accumulation beyond this period would not affect the post-burial nuclide production 339 

and the accuracy of burial dating. 340 

As for the geological context of samples after deposition, the deformation of the 341 

Hongliugou Formation caused the change on burial depth of samples. Whereas, this tectonic 342 

deformation is considered to occur during or later than Pliocene indicated by the absence of 343 

the Pliocene deposit of Ganhegou Formation. Samples had been deeply buried at that time 344 

and their nuclide inventories were on longer sensitive to buried depth. Therefore, the resultant 345 

burial ages in this case are supposed not to be affected by the complicated geological context 346 

sediments had experienced. 347 

However, there are still some significant error sources on the calculated burial ages than 348 

those described above which derive from breaking down the assumption of single episodic 349 

burial for sediments. For example, if the quartz has been reworked from old deposits, the 350 

calculated burial age will overestimate the true depositional age, which lead to gross mistake 351 

in the interpretation of the age data. However, it is difficult to recognize multiple episodes of 352 

burial histories by using 10Be/21Ne nuclide pair. The way to identify reworked samples by 353 

constructing an isochron has proved to be effective for 10Be/26Al burial dating (Balco and 354 

Rovey, 2008), but there is no successful attempt on the isochron 10Be/21Ne burial dating till 355 

now.  356 

6. Conclusions 357 

We have selected an ideal sampling site with an independent age constraint of 12-15 Ma for 358 

a preliminary proof of the Mid-Miocene upper limit of 10Be/21Ne burial dating method. The 359 

resultant 10Be/21Ne burial age of 13.25±0.33 Ma agrees well with the paleontological proxy, 360 

and the MSWD value of 0.66 indicates the good agreement of the apparent dispersion of six 361 



aliquots data with their individual measurement errors. The uncertainties of the burial ages 362 

mainly derive from errors of nuclide measurements, but uncertainties in decay constants and 363 

production rates have propagated into an intrinsic uncertainty in resultant ages which could 364 

not be reduced. Geological models adopted in this case have been proven not to propagate 365 

significant uncertainties into burial ages. The extended burial dating range of 10Be/21Ne pair 366 

endows it with huge potential in the applications of middle Miocene sediment dating, which 367 

makes it a promising technique to provide absolute age marker or valuable chronological 368 

information for a variety of fields in geoscience and even beyond.     369 
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