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Photon fluids have recently found applications in the simulation of a variety of physical phenomena such as super-
fluidity, vortex instabilities, and artificial gauge theories. Here we experimentally demonstrate the use of a photon
fluid for analog gravity, i.e., the study of the physics of curved spacetime in the laboratory. While most analog gravity
experiments are performed in 1� 1 dimensions (one spatial plus time) and thus can only mimic 1� 1D spacetime, we
present a (room-temperature) photon superfluid where the geometry of a rotating acoustic black hole can be realized
in 2� 1D dimensions by an optical vortex. By measuring the local flow velocity and speed of waves in the photon
superfluid, we identify a 2D region surrounded by an ergosphere and a spatially separated horizon.
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1. INTRODUCTION

Photon fluids are nonlinear optical systems in which small per-
turbations in the transverse plane of a beam propagating in a non-
linear defocusing medium are described by the hydrodynamical
Euler equations [1–4]. These equations contain an additional
term due to diffraction that is completely analogous to the quan-
tum pressure term that arises in the same equations describing a
two-dimensional Bose–Einstein condensate (BEC). Photon fluids
therefore form part of the larger family of so-called “quantum flu-
ids of light” that also include polariton fluids and recent experi-
ments on photon condensation [5–7].

Photon fluid density, which defines the speed of linear excita-
tions (referred to as “sound” waves, in analogy to their BEC
counterpart) is determined by the laser intensity, while the overall
flow is controlled via the gradient of the spatial phase profile. This
last aspect makes these systems extremely versatile as the spatial
profile of a laser beam can be readily manipulated in amplitude
and phase, thus enabling recent studies investigating, for example,
superfluidity and vortex instabiities [4,8,9], artificial magnetic fields
[10], and proposals for studying artificial spacetimes [11–16].

The field of analog gravity has demonstrated that the physics
of curved spacetime can be studied in laboratory environments
that exploit the formal analogy between waves in inhomogeneous
fluid flows and scalar fields in curved spacetime [17–21]. In this

context, a spatially varying flow maps onto an effective spacetime
metric in which perturbative excitations, i.e., density or surface
waves propagate. A horizon is formed at a surface where the flow
speed across that surface exceeds the wave propagation speed, and
hence, waves are blocked or trapped beyond that boundary.

Analog horizons have been realized in various systems, where
quantum fluids such as BECs and classical systems such as surface
waves in water or pulses of light in an optical medium play the
most prominent roles [5,22–31]. These studies involved one-
dimensional flow geometries and have had considerable success.
The challenging realization of higher dimensional analog horizons
has only recently being undertaken [32] and would enable the
study of the effects of rotating spacetimes, for example, by setting
the background flow into rotation similar to a vortex in a draining
bathtub.

A rotating spacetime may form an ergosphere enclosing the
internal region within which it is impossible for an observer to
remain stationary relative to a distant observer. Recent experi-
ments using draining water tanks showed that waves entering
a hydrodynamic vortex may be scattered and amplified [32],
effectively extracting rotational energy. This effect is related to
a particle scattering effect first predicted by Penrose in 1969
[33–35] referred to as the Penrose process. A remarkably similar
phenomenon, the Zel’dovich effect, appears in the context of
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electromagnetic waves incident on rotating conducting or absorb-
ing cylinders [36]. Related to this, the experimental realization of
a 2� 1D vortex flow with the identification of both a horizon
and ergosphere has never been achieved so far.

In this work, following the theoretical prescription of Marino
for realizing a rotating black hole geometry [37] in which it may
be possible to observe the Penrose process [11], we use a room-
temperature photon superfluid to create a 2� 1D rotating space-
time with an inward draining radial flow. Measurements of the
fluid density (i.e., wave speed) and phase gradients (i.e., flow
speeds) along the radial and angular directions allow us to pre-
cisely identify the horizon and ergosphere location in the super-
fluid. The horizon is here analogous to the absorbing boundary of
the conducting cylinder in Zel’dovich’s original problem.

2. MODEL

Our photon fluid involves a monochromatic laser beam that
propagates through a bulk medium with a thermo-optic nonlin-
earity [38,39]. In the paraxial approximation, the slowly varying
envelope of the electric field E�r, z� with r � �x, y� is governed by
the nonlinear Schrödinger equation (NLSE),

∂zE � i
2k

∇2
⊥E � i

k
n0

ΔnE , (1)

where z is the propagation direction, and k � 2πn0∕λ is the
longitudinal wave number. The nonlinear change of refractive in-
dex due to the thermo-optic response is described by

Δn � γ

ZZ
dr 0dz 0R�r − r 0, z − z 0�jE�r 0, z 0�j2, (2)

where γ is the nonlinearity coefficient, and R�r, z� is the nonlocal
response function that will typically have an exponential-like de-
cay in the transverse radial direction with spatial extent σ, which
accounts for heat diffusion resulting from the absorbed laser
power. If heat diffusion is sufficiently limited, i.e., σ < Λ where
Λ is the sound wavelength, then the nonlocal response function
can be approximated as local, R�r − r 0, z − z 0� � δ�r − r 0, z − z 0�,
and thus, Δn � γjE�r, z�j2, where γ in our case is taken to be
−4.4 × 10−7 cm2∕W (see below). We will later see that this is
a valid assumption for the length scales considered in the
experiments.

For a defocusing nonlinearity, i.e., Δn < 0, the NLSE can be
recast in a set of hydrodynamical equations by means of the
Madelung transform E�r, t� �

ffiffiffiffiffiffiffiffiffiffiffiffi
ρ�r, t�

p
eiϕ�r,t� [2,12], as is also

found for dilute BECs [40]

∂tρ� ∇�ρv� � 0, (3)

∂tψ � 1

2
v2 � c2γ

n30
ρ −

c2

2k2n20

∇2 ffiffiffi
ρ

p
ffiffiffi
ρ

p � 0, (4)

where the propagation axis is mapped onto a time coordinate,
t � zn0∕c; the transverse phase gradient determines the fluid
flow, v�r, t� � �c∕kn0�∇⊥ϕ�r, t� � ∇⊥ψ�r, t�; and the laser in-
tensity (equivalently the fluid density ρ) determines the speed of
sound, cs�r, t� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2jγjρ�r, t�∕n30

p
. Therefore, in the presence of

repulsive nonlinear interactions, the transverse beam profile fol-
lows the mean-field dynamics of a BEC with the optical field E
playing the role of the complex order parameter. An equation of
motion for sound waves can then be obtained by linearizing
Eqs. (3) and (4) around a stationary background solution, where

elementary excitations are understood as first-order fluctuations of
the optical field amplitude and phase, i.e., ρ � ρ0 � ρ1 and ψ �
ψ0 � ψ1 with ρ1 ≪ ρ0 and ψ1 ≪ ψ0. The last term in Eq. (4) is
the quantum pressure; it appears in optics due to diffraction and
can be neglected in the hydrodynamic limit that is valid for length
scales much larger than the healing length, ζ � λ∕

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4n0jγjρ

p
.

Typically, in our system this implies sound waves with wave-
lengths ≥300 μm [3]. In this case, the equation of motion for
the phase perturbations can be written as a Klein–Gordon equa-
tion for a massless scalar field on a curved spacetime [37] with a
spacetime metric gμν given by

gμν �
�
ρ0
cs

�
2

0
@ −�c2s − v2� −vr −rvθ

−vr 1 0
−rvθ 0 r2

1
A (5)

and g � det�gμν�. Here, vr and vθ are the radial and azimuthal
velocity components, from which the total speed is v2 � v2r � v2θ.
The speeds vi and cs are functions of the transverse coordinates,
and hence, by tailoring the spatial phase and intensity profile it is
possible to generate a family of (2� 1) dimensional spacetime
metrics.

Following the initial proposal by Marino [37], we create a ro-
tating spacetime by using background vortex beams with orbital
angular momentum (OAM) E0 �

ffiffiffiffiffiffiffiffiffiffi
ρ0�r�

p
exp�imθ�, with topo-

logical charge integer m. The azimuthal fluid flow vθ�r� �
cm∕�kn0r� is therefore proportional as a function of r to the topo-
logical charge of the beam. An ergosphere can then be created by
controlling the beam intensity such that the speed of sound passes
from faster to slower than the total flow. Any sonic observer
within this region is forced to co-rotate with the flow due to
the associated “superluminal” dragging of inertial frames. In order
to create a trapped surface and thus an (apparent) horizon, an
additional radial phase dependence must be imposed. In any re-
gion where the flow is inward-pointing and jvr j > cs, a sound
wave will be swept inward by the fluid flow and be trapped inside
the horizon that is formed where jvr j � cs.

Figure 1(a) shows the calculated absolute flow amplitudes and
corresponding sound speed for a beam with initial amplitude

Fig. 1. (a) Initial flow and sound wave velocities calculated for a
photon fluid with Gaussian intensity envelope (width w1∕e2 �
5 mm,P � 140 mW, jγj � 4.4 × 10−7 cm2∕W) and field amplitude
E0 �

ffiffiffiffiffiffiffiffiffiffi
ρ0�r�

p
exp�imθ − 2iπ

ffiffiffiffiffiffiffiffiffi
r∕r0

p
� with r0 � 0.5 mm and m � 2.

Total flow vtot �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2r � v2θ

p
(red), radial flow vr (blue), and sound speed

cs (black) are shown. The solid circle (square) indicates the location of the
horizon (ergosphere). Inset top: 2D phase profile with values from 0
(blue) to 2π (red). Inset bottom: near-field intensity profile (arb. units).
(b) Flow and sound wave velocities after 13 cm propagation in a nonlocal
nonlinear medium with the same parameters obtained from numerical
integration of the NLSE [Eq. (1)].
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E0 �
ffiffiffiffiffiffiffiffiffiffi
ρ0�r�

p
exp�imθ� iϕ�r��, with Gaussian intensity enve-

lope ρ0�r��ρ0 exp�−2r2∕σ2� and radial phase ϕ�r��−2π
ffiffiffiffiffiffiffiffiffi
r∕r0

p
(which, upon propagation, will form a ring-shaped beam due to
the phase singularity at r � 0). The radial phase induces a flow,
vr�r� ∝ ∂ϕ

∂r � −π∕ ffiffiffiffiffiffir0r
p

. Figure 1(b) shows the same input beam
propagated over a distance of 13 cm by numerically solving
the NLSE using a split-step Fourier method (details of this
standard numerical method can be found in [4]). The oscilla-
tions and modifications on the beam observed in Fig. 1(b)
(e.g., small oscillations towards the center) are due to diffraction
effects related to the inward radial phase or, in the quantum fluid
language, are due to the inward flow accumulating towards the
center of the vortex.

From the flows and the metric in Eq. (5), one can then cal-
culate a set of quantities that are of central importance for estab-
lishing the validity of the fluid in terms of providing a correct
analog of sonic propagation on a curved background [41].
First, the analog surface gravity is a measure of the effective mass
of the black hole [19,20],

κ ≔
1

2
∂r�c2s − v2r �jhorizon: (6)

For the parameters used in Fig. 1, hκi ≃ 1.74 × 1013 ms−2, which
corresponds to phonons of wavelength λ � c2s ∕κ ≃ 1 mm that are
longer than the healing length of 300 μm, and hence, in the sonic
regime in which the spacetime description is valid. This parameter
also occupies a central role in the Hawking process for analog
black holes [42,43].

Second, in the Zel’dovich effect, the angular velocity of the
absorbing boundary (here represented by the horizon) is the most
relevant parameter, setting the frequencies of the most efficiently
amplified modes through

ωZ ≃
vθ�rH �
rH

, (7)

where rH is the location of the horizon (solid circle in Fig. 1).
Again, for the parameters of Fig. 1, we find hωZ i ≃ 2.03 ×
108 s−1, which corresponds to phonons with λ � 2πcs∕
ωZ ≃ 1 mm, well within the sonic regime.

Third, we estimate the time scale of the evolution of the sur-
face gravity as a measure of the evolution of the background
through the experiment,

τ−1 ≔
_κ

κ
≃
jκf − κij

Δt
1

hκi : (8)

Using the data of Fig. 1, we find τ−1 ≃ 1.04 × 109 s−1 correspond-
ing to a wavelength of λ � 2πcsτ ≃ 1 mm; shorter wavelength
phonons will perceive the background to evolve adiabatically.

Therefore, the window of modes for which the black hole is
adiabatically evolving while still being in the sonic regime is
λ � 0.3 − 1 mm, and this window overlaps with the set of effi-
ciently amplifying modes controlled by ωZ and mode conversion
at the horizon, which is controlled by κ.

3. EXPERIMENTS

The experimental layout is shown in Fig. 2: a broad CW laser
beam with Gaussian profile and vacuum wavelength λ �
532 nm that is launched through a diffractive phase mask on
a fused silica glass substrate, which is designed such that the first
diffracted order carries the desired phase ϕ � mθ − 2π

ffiffiffiffiffiffiffiffiffi
r∕r0

p

with m � 2 and r0 � 0.5 mm. The beam is then imaged shortly
after the phase mask by a 4f -imaging system onto the input facet
of the nonlinear sample, so that the �1 and −1 orders can be
selected by a pinhole in the far field of the first lens, thus selecting
an m � 2 radial ingoing flow (black hole) or m � −2 outgoing
flow (white hole). The sample consists of a cylindrical cell
with length L � 13 cm and radiusW � 1 cm filled with a dilute
methanol/graphene solution as a nonlinear medium [3]. Finally,
the near- and far-field intensities at the output facet of the non-
linear sample are recorded by a charge-coupled device (CCD)
camera. Methanol provides a thermal defocusing nonlinearity in-
duced by absorbed laser power Δn�r� � βΔT �r� with a thermo-
optic coefficient β � −4 × 10−4 1∕K while nanometric graphene
flakes are added to increase absorption to ≈25% along propaga-
tion in order to provide sufficient nonlinearity. As mentioned
above, heat diffusion in the transverse directions smears out
the photon–photon interaction with a spatial extent described
by the nonlocal length σ. By performing measurements after a
short 200 ms time delay from the opening of the laser shutter,
and with an exposure time of 20 ms on the camera, we effectively
observe the evolution of the beam with a sufficiently high non-
linearity measured ([4,44]) to be jγj � 4.4 × 10−7 cm2∕W with a
measured nonlocal length less than 166 μm, i.e., smaller than the
healing length, which can thus be ignored for the purpose of the
experiments presented here.

The photon fluid flow is proportional to the gradient of the
spatial phase and can be expressed as�

vx�r�
vy�r�

�
� c

n0k0
∇ϕ�r� � c

n0k0

�
K x�r�
K y�r�

�
: (9)

This expression highlights that the local flow can be measured by
recording the spatially resolved components K x,y�r� in the far
field. This is performed by isolating points of the beam in the

Fig. 2. (a) Experimental setup: a continuous-wave (CW) 532 nm laser
beam is launched onto a diffractive phase mask, which imprints the de-
sired phase. Diffracted orders are selected by a spatial filter in the focus of
a 4f -imaging telescope. A mechanical shutter shuts the beam on/off,
which is then launched through a 13 cm long tube filled with a nonlinear
methanol graphene solution. The near-field and far-field intensities are
imaged at the output facet of the sample onto a CCD camera. The spa-
tially resolved far field is recorded by selecting small areas of the near field
by an iris �∅ ≈ 200 μm� that is scanned across the beam diameter.
(b) Example of the spatially selected far field. The location �K x�x, y� 0�,
K y�x, y� 0�� of the spot, i.e., the central peak in the far field obtained
by filtering the near field with the iris for varying horizontal iris position
x at a fixed vertical position y � 0, is tracked during the scan to obtain
the flow velocity. (c) and (d) Lineouts of far-field images (b) along the
K y � 0 and K x � 0 axes (dotted white crosshair), respectively, as a
function of iris position x.
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near field with an aperture �∅ ≈ 200 μm� and measuring the lo-
cation �K x�r�,K y�r�� of the intensity peaks in the far field (focal
plane of a lens). The absolute values of the measured flows as well
as the speed of sound are shown in Fig. 3(a) for a rotating black
hole and Fig. 3(b) for a rotating white hole. An acoustic horizon
can be identified in both cases at the intersection of the radial flow
vr (blue squares) and speed of sound cs (solid black line) at
r ≈ 0.5 mm. The ergosphere is found at a larger radius than
the horizon where the total flow v2tot � v2r � v2θ intersects the
sound speed. These measurements therefore completely identify
the metric of the rotating photon fluid at the output plane. We
note that Fig. 1 shows simulations performed under the same con-
ditions as the experiment in Fig. 3(a) and shows a very good agree-
ment in both the overall geometries (fluid flows and sound speed)
and location of the horizon and ergosphere.

4. CONCLUSIONS

We have shown how, by shaping the input phase profile of a pho-
ton fluid, it is possible to create a rotating black-hole-like space-
time over a broad range of wavelengths. We have investigated in
detail the main features of the effective rotating spacetime metric
by comparing relevant length scales related to the surface gravity
and amplified/scattered frequencies. These are of the order of or
shorter than the length of the sample, hence indicating that much
longer propagation lengths would be required in order to perform
measurements of scattered wave amplitudes when these have
reached asymptotically flat spacetime regions, as required for a
full analogy with Penrose scattering. A tightly related process,
Zel’dovich scattering from the boundary of an absorbing cylinder
does not require such restrictions, and we can identify the absorb-
ing boundary of the rotating cylinder with the spacetime horizon
measured in the photon fluid. The close vicinity of the horizon
and ergosphere in our setting effectively implies the co-location of
the loss boundary (horizon) and energy extraction boundary
(ergosphere) as in the original Zel’dovich problem. These exper-
imental results therefore highlight how 2D� 1 spacetimes can be
readily created in photon fluids with applications such as the

study of Penrose-like and Zel’dovich amplification processes in
future experiments.
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