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a b s t r a c t

Management of steel slag (a major by-product of the steel industry) includes the treatment of highly
alkaline leachate (pH > 11.5) from rainwater infiltration of slag deposits to prevent adverse impact upon
surface or ground waters. This study aims to compare different treatment options for steel slag leachate
through a life cycle assessment (LCA). Five options were compared: active treatment by acid dosing (A-
H2SO4), active treatment by carbon dioxide dosing (A-CO2), active treatment by calcium chloride dosing
(A-CaCl2), passive treatment by cascade and reedbeds with pumping (P-P), and passive treatment by
cascade and reedbeds in a gravity-driven configuration (P-G). The functional unit was 1m3 of treated
leachate with pH< 9, considering 24 h and 365 days of operating, maintenance operations every year,
and service life of 20 years. Inventory data were obtained from project designers, commercial suppliers,
laboratory data and field tests. The environmental impacts were calculated in OpenLCA using the ELCD
database and ILCD 2011 method, covering twelve impact categories. The A-CaCl2 option scored worse
than all other treatments for all considered environmental impact categories. Regarding human toxicity,
A-CaCl2 impact was 1260 times higher than the lowest impact option (A-CO2) for carcinogenics and 53
times higher for non-carcinogenics (A-H2SO4). For climate change, the lowest impact was calculated for
P-G < P-P< A-H2SO4< A-CO2< A-CaCl2, while for particulate matter/respiratory inorganics, the options
ranked as follows P-G < P-P< A-CO2< A-H2SO4< A-CaCl2. The major contributor to these impact cate-
gories was the Solvay process to produce CaCl2. Higher uncertainty was associated with the categories
particulate matter formation, climate change and human toxicity, as they are driven by indirect emis-
sions from electricity and chemicals production. Both passive treatment options had better environ-
mental performance than the active treatment options. Potential design measures to enhance
environmental performance of the treatments regarding metal removal and recovery are discussed and
could inform operational management at active and legacy steel slag disposal sites.
© 2018 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Steel slags are a high volume by-product of steel production
with annual global production of about 170e250 million metric
nd Environmental Engineer-
University Park, Nottingham,

H.I. Gomes).

Ltd. This is an open access article u
tonnes/year (Ober, 2016). Long-established routes for re-use and
recycling of steel slag exist, predominantly as fill material or road
ballast in construction applications (Motz and Geiseler, 2001). In
Europe, between 70 and 80% of steel slag is currently reused, with
the remainder being stockpiled or landfilled (Euroslag, 2017).

During slag disposal, slag conditioning (weathering prior to
reuse to reduce lime content), and some after use situations (Banks
et al., 2006), there can be environmental issues associated with
highly alkaline leachates that are generated whenwater permeates
steel slag deposits (Mayes et al., 2008; Roadcap et al., 2005). Such
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leachates are generated by the dissolution of oxides of calcium and
magnesium, alongside hydrolysis of calcium aluminosilicate min-
erals within the slag (Gomes et al., 2016). The dissolution products
of these minerals can generate pH values up to 12.4; well outside
the pH range that will be acceptable for any receiving waters
(Mayes et al., 2008). At elevated pH, there are also potential issues
with high concentrations of some metals and metalloids; notably,
those that form oxyanionsmobile under alkaline conditions [e.g. Cr,
Mo, V: (Chaurand et al., 2007; Hobson et al., 2017; Matern et al.,
2013)]. The high pH and calcium loadings of the leachate can also
lead to high rates of calcium carbonate precipitation, when there is
contact with atmospheric CO2, which can smother benthic com-
munities in receiving waters (Hull et al., 2014; Koryak et al., 2002).

Given these potential chemical and physical pollution issues, pH
adjustment of highly alkaline waters is typically required by regu-
latory authorities at steel slag disposal sites either during operation
or post-closure, to ensure discharge waters meet ambient surface
water quality standards [typically less than pH 8.5 or 9.0 (USEPA,
2017)]. The neutralisation of the leachate also alleviates most of
the associated environmental issues associated with themobility of
potential ecotoxic metal(loid)s at high pH (Burke et al., 2013). Other
legacy discharges, such as drainage from abandoned coal andmetal
mines, have long-established technologies for, and mature engi-
neering guidance on treatment (e.g. PIRAMID Consortium, 2003;
Younger et al., 2002). However, the range of options for treating
highly alkaline steel slag leachate has not been systematically
appraised (Gomes et al., 2016). Treatment options for alkaline slag
leachates include direct neutralisation with refined inorganic acids
(usually H2SO4), and direct carbonation through aeration with
high-grade CO2 or air (Hall, 2008). Acid dosing has historically been
adopted for alkaline steel slag leachates both in-situ and ex-situ
(Mayes et al., 2008), and while very effective at pH control; it suf-
fers from potential health and safety issues associated with acid
handling. Direct CO2 dosing has been successfully applied for high
flow (>50 L s�1), short-term treatment of alkaline wastewaters
associated with construction and groundworks (Hall, 2008). Such
in-situ dosing units rely on dissolution of CO2 at pressure, which
precedes reactionwith the alkalinewater in a flocculator and drives
the pH buffering. Subsequently, secondary carbonate deposits and
fines are captured through settlement (Hall, 2008).

Alternatively, excess alkalinity can be removed from steel slag
leachates by the addition of a Ca salt (such as CaCl2) because these
slags contain sodium alkalinity from Na2CO3 used in the process.
These leachates are calcium-limited, so addition of Ca(2þ)

(aq) pro-
motes CaCO3 precipitation (Blue et al., 2017).

More recently passive treatment approaches encouraging
gravity-driven cascades and wetlands have been proposed as al-
ternatives for buffering alkaline steel slag leachates (Banks et al.,
2006; Gomes et al., 2017b; Mayes and Younger, 2006). With step-
ped cascade systems, flow of the leachate affected water over weirs
entrains air and induces mixing, which enhances CO2 dissolution.
Whereas in wetland systems, microbial respiration in the soil and
plant litter produces CO2, which contributes alongside dissolution
of atmospheric CO2 at the free surface to the buffering of alkaline
waters (Higgins et al., 2017; Mayes et al., 2009a). Passive treatment
options are characterised by an initial capital outlay, and while
regular maintenance of the systems is required (e.g. de-sludging,
vegetation management), there is no major operating expendi-
ture associated with energy input (e.g. to pump waters), or chem-
ical reagents (Younger et al., 2002).

The waste hierarchy prefers leachate prevention, and can be
achieved through conventional containing and capping slag de-
posits in a lined landfill, or through more novel approaches such as
slag coating and passivation [e.g. with bitumen or alum salts
(€Ozk€ok et al., 2016)]. However, at many current and former
steelworks sites tipping of material dates from a time before strict
environmental regulationwas imposed (Mayes et al., 2008). At such
sites, slag disposal is typically in unlined landfills while the
composition of historic production slags was more variable and did
not lend itself to widespread reuse (Motz and Geiseler, 2001). As
such, leachate generation represents an enduring problem and
poses a multi-decadal environmental pollution legacy at some lo-
cations (Riley and Mayes, 2015; Roadcap et al., 2005). Evaluation of
remediation options for such abandoned steelmaking sites and
those in the closing stages of their operational life cycle is partic-
ularly timely given the number of older steelmaking sites
approaching closure in Europe (Masrani, 2016; Neuhoff et al., 2014).

Life Cycle Assessment (LCA) provides a systematic framework
for appraising the environmental impacts of the various available
steel slag leachate treatment options. The full life cycle approach
espoused by LCA from raw material extraction, processing,
manufacturing, maintenance to ultimate disposal requires infor-
mation on all materials and processes used in any development to
assess the long-term, cumulative impacts of an activity on the
environment. LCA (Hengen et al., 2014), multi-criteria sustainability
assessments (Winfrey et al., 2015) have been applied in analogous
situations, including mine water treatment studies at abandoned
mining sites, and provided a useful tool, alongside direct Cost-
Benefit Analysis (CBA), to help inform sound environmental man-
agement. Other successful applications of LCA include assessments
of the impact on groundwater of municipal solid waste incineration
slags disposal on landfills, focusing on Cd2þ and Cu2þ impacts in
particular (Hellweg et al., 2005). Recent works also target resource
recovery from municipal solid waste incineration bottom ash
(Allegrini et al., 2015), but no study to date has focused on treat-
ment of alkaline drainage produced by steel slag. This study aims to
compare the full life cycle environmental impacts of a range of
implemented and potential remedial strategies for managing the
legacy of highly alkaline leachates at steel slag disposal sites.

2. Methods

2.1. Case study

The hypothetical study presented provides a comparative
assessment of passive and active treatment options for alkaline
steel slag leachate. It is based on data from research on mesocosm
scale on passive treatments of steel slag leachate (Gomes et al.,
2017b), laboratory-scale batch tests for active treatment dosing
(Fig. S1, Supplementary Information), information from stake-
holders on operational management, as well as ongoingmonitoring
of constructed reedbeds at pilot scale (Table 1).

Three active and two passive treatment options were consid-
ered (Table 2, Figs. 1 and 2). These all assume the treatment scheme
is designed to minimise pumping and to take advantage of the
terrain typically expected at steel disposal sites. All the treatments
were dimensioned for a 3 L s�1

flow thatmustmeet pH< 9 criterion
before discharge, in linewith prescribed regulatory limits. This flow
rate reflects an upper estimate of flow rates typical at steel disposal
sites in the UK (Mayes et al., 2008). The active treatment A-H2SO4
comprises of pumps (two parallel pumps, 3 kW, 3m head), a 500 L
mix tank made of high-density polyethylene (HDPE) with an
agitator (potency 0.25 kW), and a residence time of 3min. The
sulphuric acid dosing system has a dosing pump (0.18 kW) and a
14.3m3 double-walled XLPE (high-density cross-linked poly-
ethylene) tank with secondary containment basin. The dosage of
96% sulphuric acid is 3 L h�1 (determined by laboratory experi-
ments, Fig. S1 e Supplementary Information), and the annual re-
agent consumption is 26m3 per year. After the acid dosing, an
anionic flocculant based on acrylamide is added at a rate of



Table 1
Composition of the synthetic steel slag leachate considered and comparisonwith the range of values found in the UK (Hull et al., 2014; Mayes et al., 2008) and the values after
dosing with H2SO4, CaCl2 and CO2 and measured in the constructed reedbeds.

Determinant Synthetic slag leachate (average
values, n¼ 80)

Range of reported UK
leachate values

After H2SO4

dosinga (n¼ 3)
After CaCl2
dosinga (n¼ 3)

After CO2 dosinga

(n¼ 3)
After passive treatment with
reedbedsb (n¼ 141)

pH 11.2± 0.1 10.3e11.9 <9 <9 <9 <9
Major elements (mg L�1)
Ca 93± 24 11e239 37± 2 1592± 225 81± 0.2 2.4± 1.7
Mg 0.2± 0.2 1e12 0.005± 0.001 1.2± 0.05 2± 0.01 1.1± 1.0
K 143± 3 18e293 173± 1 143± 35 23± 0.3 109± 12
Na >1000 24e83 >1000 >1000 >1000 >1000
Al 1.4± 0.4 0.013e0.5 0.16± 0.1 0.05± 0.02 0.10± 0.002 1.2± 0.5
Si 3.6± 2.2 0.203e7.7 12± 2 3.9± 0.3 11± 0.04 9.9± 1.1
Sr 0.1± 0.1 0.2e4 2.11± 0.01 1.03± 0.004 0.05± 0.001 0.2± 0.01
Trace elements (mg L�1)
As <15 na <15 <15 <15 7± 11
Ba 25± 21 4.6e42.5 48± 5 61 ± 0.4 42± 0.3 5± 2
Cd <0.5 <0.1e0.3 <0.5 <0.5 <0.5 <0.5
Cr <1 <5-22 <1 <1 <1 <1
Cu <0.3 <5-70 <0.3 <0.3 <0.3 37± 39
Fe <0.6 54e920 <0.6 <0.6 <0.6 76± 130
Ga <2 na <2 <2 <2 22± 25
Li 5± 2 4.4e822 4± 2 170± 2 15± 0.1 182± 23
Mn <0.1 5.4e160 <0.1 <0.1 <0.1 <0.1
Mo <3 2.8e45 <3 <3 <3 <3
Ni <2 0.3e70 <2 <2 <2 <2
Pb <9 <5-70 <9 <9 <9 <9
V 456± 64 1.6e120 230± 6 92 ± 5 402± 0.4 67± 34
Zn <2 2e40 <2 <2 <2 <2

n e number of samples; na e not available.
a Results from laboratory experiments with synthetic steel slag leachate produced as described in (Gomes et al., 2017b; ).
b Results from pilot reedbeds at British Steel, Scunthorpe.

Table 2
Treatment options abbreviations and process descriptions.

Abbreviation Description

A-H2SO4 Active treatment with acid dosing (H2SO4)
A-CO2 Active treatment with carbon dioxide dosing (CO2)
A-CaCl2 Active treatment with calcium chloride CaCl2 dosing
P-P Passive treatment with cascade and reedbeds with pumping
P-G Passive treatment with cascade and reedbeds gravity driven
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0.1mg L�1 using an automatic liquid polymer preparator with a
0.25 kW dosing pump and a 0.55 kW mixer. For solids removal, the
influent will go to a stainless steel Lamella clarifier with a 20m2

effective settlement area, and a 50m3 polishing pond
(10m� 5m� 1m, 1.5mm HDPE membrane with protective geo-
textile) for pH adjustment before discharging to the receiving
environment. Residence time is estimated to be 5 h. The thickened
sludge from the clarifier is filtered and pressed (filter area 1.4m2,
3 kW).

The other active treatments have similar configurations (Fig. 1),
but the chemical and dosing system are different. For the A-CO2
option, two industrial cylinders VK/LK with 34 kg of 99.8%CO2 dose
the gas at 0.4 g L�1 (Siltbuster, 2017). An integrated probe and pH
controller monitors the pH levels of the water, automatically con-
trolling the CO2 dose rates. The treatment also includes two mixers
(2.2 kW each), a heater (1.0 kW), a sludge pump (0.75 kW) and a
feed pump (2.2 kW). No flocculant addition is needed for this op-
tion. For the A-CaCl2, a dosing rate of 1.011 kg per m3 of leachate
was determined in laboratory experiments (Fig. S1, Supplementary
information). The CaCl2 is stored in a 30m3 silo, and the treatment
is similar to the A-H2SO4, except for the CaCl2 storage and dosing.

The passive treatment (Fig. 2) consists of a stepped aerated
cascade 10m high and 3m wide, with 0.5m steps, followed by a
concrete settlement basin (20m3) and two surface flow reedbeds.
Each reedbed has a retention time of 24 h (300m3) and is lined
with 1.5mm HDPE membrane with protective geotextile. The beds
have a 20 cm layer of gravel and 50 cm layer of compost. Phragmites
australis (common reed) plants fill both beds. The difference be-
tween the two options P-P and P-G is in the first step of the
treatment; with P-G it is assumed that site topography allows the
system to be gravity fed with leachate, so it does not require
pumping.
2.2. Goal and scope definition

This LCA aims to evaluate the environmental impacts associated
with the construction, operation and maintenance of five different
treatment options for steel slag leachate (Table 2), using a conse-
quential model, as recommended for flows into the environment
(Ekvall et al., 2016). All options aim to lower the pH of the alkaline
leachate to reach the regulatory limits for discharge and aquatic life
(<9), simultaneously removing some metals through precipitation.

The life cycle assessment was conducted with the OpenLCA v1.7
software (Green Delta, Germany) and the ELCD (European refer-
ence Life Cycle Database) v3.2, following the recommended Inter-
national Reference Life Cycle Data System (ILCD) methodology
developed by the European Joint Research Council (European
Commission et al., 2010; European Commission et al., 2011;
Hauschild et al., 2013; Owsianiak et al., 2014).

The functional unit for this study is 1m3 of treated leachatewith
pH< 9, considering both the quantity and quality of the treated
leachate, assuming 24 h and 365 days of operating, maintenance
operations every year, and a service life of 20 years (conservative
estimate typical for treatment plants) (Cornejo et al., 2016;
Machado et al., 2007; Rahman et al., 2016). This functional unit is
relevant, as the main concern for the leachate treatment is to
neutralise acidity and secure that the pH after treatment is below
the regulatory levels for discharge of treated effluent and ambient
aquatic life limits (pH¼ 9). Trace metals of most environmental
concern associated with steel slag leachate are those potentially



Fig. 1. Schematic diagram of steel slag leachate treatment for the active treatment options. Figures not drawn to scale.
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soluble at high pH, because they form oxyanions (e.g. As, Cr, Mo, Se
and V), which can be very mobile as they sorb weakly to soils and
sediments (Cornelis et al., 2008; Mayes et al., 2011). Lowering pH
during the leachate treatment will allow removal of metals through
precipitation. The generation of steel slag leachate in legacy sites is
known to persist for more than 30 years, making the timescale of
our analysis reasonable (Mayes et al., 2008; Riley and Mayes, 2015).
The geographic coverage of the study is Great Britain, but it can be
representative for the rest of Europe, making adjustments for the
energy mix and the transportation modes.
The system boundaries are presented in Fig. 3, and comprise all

essential components and processes used in each of the treatment
options to ensure a realistic and transparent comparative analysis
between treatments. These components and processes encompass
raw materials (including extraction and processing for mined ma-
terials), transportation, construction (including excavation and
installation of the equipment), and process energy required for
pumping and treatment. Impacts associated with human labour



Fig. 2. Schematic diagram of steel slag leachate treatment for the passive treatment option P-P. In the option P-G there is no pumping, and the water is gravity driven to the cascade
step aerator. Figure not drawn to scale.
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associated with the installation and continued running of the
treatments have not been included, neither has equipment for
building and transport. The decommissioning of the treatment
plants after the 20 year design life (Fig. 1) was also excluded, as the
impacts associated are considered negligible compared with the
construction and operation phases (Bonton et al., 2012; Vince et al.,
2008), and is also uncertain depending on material recycling
measurements (Jeong et al., 2018).
2.3. Life cycle inventory

2.3.1. Construction phase
The materials for the construction of each treatment option

were obtained from commercial suppliers. The materials quantities
(e.g. volume of concrete and steel) were normalized to a m3 of
treated leachate by dividing with total volume of water treated in
its lifetime of 20 years. Plastics (XLPE, HDPE, PVC and PP) are
modelled using the raw materials from the ELCD database and the
energy needed for moulding (Elduque et al., 2015), assuming an
articulated lorry transport 40 t total weight, 27 t max payload of
1.5E-6 t km (standard distance). The excavation uses a 100 kW
excavator (ELCD 3.2 database). The concrete used for construction
was modelled with Portland cement, sand, aggregate, water and
energy (Sjunnesson, 2005). Materials used in the tubing were not
included in the analysis, as they would be similar for all options.
Transportation of the plants and compost used in P-P and P-G are
included, but no other burdens were attributed to them. This zero
burden assumption for the compost, and the use of locally-sourced
populations of reeds is recommended for use in passive treatment
systems (PIRAMID Consortium, 2003). Table S1 (Supplementary
Information) gives details of the inventory and summarise the
sources of information used in this study.
2.3.2. Operation phase
The detailed description of the treatment processes and

equipment can be found in Section 2.2. The electrical consumption
of active systems is calculated from unit power, efficiency and
operating time. All equipment needs low voltage electricity (be-
tween 220 V and 400 V), using the Electricity Mix, consumption
mix, at consumer, AC, 230e240 V - GB. The consumption of
chemicals is based on laboratory tests to lower the pH below 9 and
the treated flow volume during the design lifetime (Fig. S1,
Supplementary Information). The sludge produced in all options
is used as a soil amendment (as a lime substitute), and the emis-
sions to agricultural soil were estimated based on the mass balance
calculation applied to the leachate quality samples (Table S2,
Supplementary Information). Elements with concentrations
below the limit of detection were not included in the LCI model.
Furthermore, for the passive treatment options, we used data from
wetland field sites to assess sediment quality and accumulation
rates (Mayes et al., 2008, 2009b; Mayes and Younger, 2006). Field
data suggests consistent sludge accumulation rates of ~0.9 g/m2/
day (range: 0.3e1.8 g/m2/day) in monitored wetlands receiving
alkaline steel slag leachate (Mayes and Younger, 2006). Composi-
tion of sludge is taken from Mayes et al. (2008; 2009a, b) which
generally shows the sludge to be dominated by secondary car-
bonate deposits with relatively low trace element concentrations.

The chemicals needed for the active treatment (H2SO4, CO2,
CaCl2 and acrylic acid for the flocculant) are not included in the
ELCD database and were modelled using the Ecoinvent information
available for their fabrication (Althaus et al., 2007).

The transport distance during operation is 50 km, with the
transport performed by smaller vehicles (small lorry transport,
Euro 0, 1, 2, 3, 4 mix, 7,5 t total weight, 3,3 t max payload - RER) and
by a diesel passenger vehicle (fleet average 2010) (Spielmann et al.,
2007).

Land occupation (Occupation, industrial area, built up, m2.a)
was considered for all treatment options (Table S1, Supplementary
Information), according to the dimensions of the unit operations
described in Section 2.2.

The outflow composition considered to estimate the pollutant
emissions into water for the LCI model was measured in the lab
tests and pilot reedbeds (Table 1). The elements with concentra-
tions below the limit of detection were not included in the LCI
model.
2.3.3. Maintenance phase
The maintenance in the active treatment options comprises

predictive electromechanical maintenance (to control the condi-
tion of equipment operations, to prevent breakdowns, and carry
out a rapid repair following a failure), as well as metrological
maintenance (regular calibration and adjustments to continuous
measurement equipment and facilities' instrumentation). It is
modelled as a visit to the treatment plant every three months and
includes the transportation in a diesel passenger vehicle (fleet
average 2010). The maintenance of the passive treatment systems
includes vegetation management every two years (transportation
in a diesel passenger vehicle) and the sludge removal from the
concrete settlement basin after the cascade every five years
(excavation and transport), which is consistent with operational
experience. The excavation uses a 100 kW excavator (ELCD 3.2
database).
2.4. Life cycle impact assessment

The impact assessment was modelled using ILCD 2011 impact



Fig. 3. System boundaries for the LCA (dotted line), showing background and foreground systems, processes and flows (emissions and natural resources) considered in the study.
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assessment method. Midpoint and endpoint categories were
selected to quantify the types of impact that are associated with
and relevant to the case study, focusing on water quality, human
health and global environmental problems (Baxter, 2015;
Corominas et al., 2013; Niero et al., 2014). The midpoint metrics
were climate change (kg CO2 eq), respiratory/particulate matter (kg
PM2.5 eq.), human health e human toxicity both carcinogenic and
non-carcinogenic [Comparative Toxic Unit for human (CTUh)],
freshwater ecotoxicity [Comparative Toxic Unit ecosystems
(CTUe)], land use (kg C deficit) and eutrophication [freshwater (kg P
eq), marine (kg N eq) and terrestrial (molc N eq)]. The categories
excluded were acidification; ionizing radiation; mineral, fossil and
renewable resource depletion; ozone depletion; photochemical
ozone formation; and water resource depletion due to lack of
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reliable life cycle data. The selection of impact categories is
consistent with the goal and scope of the study and reflects a
comprehensive set of environmental issues related to the treat-
ment of alkaline leachate from steel slag (Mayes et al., 2009a,
2009b). Hengen et al. (2014) used a ‘Hierarchist’ perspective to
address key environmental impact metrics associated with their
case study on acid mine drainage and showed that climate change,
human toxicity, particulate matter formation, and fossil depletion
contributed more than 10% to the total endpoint impact categories.

The ILCD endpoint categories considered are: damage to human
health (DALY - Disability Adjusted Life Years); damage to ecosys-
tems (predicted loss of species on different ecosystems as a result of
the activities undertaken); and loss of materials/minerals or non-
renewable resources (quantified in US dollars, as the sum of the
total resources lost and a relative comparative unit to avoid use of
absolute values).
3. Results

3.1. Midpoint analysis

3.1.1. Human toxicity
Fig. 4 and Table 3 present human toxicity potentials (carcino-

genics and non-carcinogenics impact categories) for each treat-
ment option, expressed in comparative toxicity units (CTUh). The
option A-CaCl2 has the highest (3.92E-07 CTUh) carcinogenic im-
pacts, due to the Solvay process for the manufacture of CaCl2
(2.87E-7 CTUh, which is related to chromium emissions). Similarly,
for non-carcinogenics and A-CaCl2, the production of chemicals is
responsible for 3.28E-7 CTUh (emissions of mercury, lead, and
cadmium), energy and heat by 2.19E-7 CTUh (metal emissions to
air, water, and soil), while the leachate treatment is responsible for
2.80E-8 CTUh (vanadium emissions to soil), 1.78E-8 CTUh (vana-
dium emissions to water), 5.99E-9 CTUh (barium emissions to
Fig. 4. Midpoint results for the active and passive treatment options and relative contributio
CTUh), b) climate change (kg CO2 eq.), c) particulate matter formation (kg PM2.5 eq.) and d)
Monte Carlo simulation (black square), and 95% confidence interval (error bars). The error b
Confidence intervals and categories may be smaller than symbols. The contributions were a
gas, diesel mix), Construction materials (needed for the leachate treatment), Transport, Ch
presented in a logarithmic scale.
water) and 1.47E-9 CTUh (barium emissions to soil). For non-
carcinogenics, the treatment options that have lowest values for
human toxicity (Fig. 4, Table 3) are A-CO2 and A-H2SO4. The passive
treatments are 10 times higher, due to the arsenic (1.91E-7 CTUh)
and vanadium emissions to water (1.30E-8 CTUh), together with
vanadium (7.00E-8 CTUh) and barium (2.46E-8 CTUh) emissions to
agricultural soil. Regarding human toxicity carcinogenics, in the
passive treatment options, arsenic water emissions are responsible
for 2.58E-9 CTUh.

3.1.2. Climate change
The impact on climate change is also much higher for A-CaCl2

(Fig. 4, Table 3) with the major contributors being the energy and
heat consumption for the Solvay process (89 kg CO2 eq). The active
treatments A-H2SO4 and A-CO2 show similar values, higher than
passive treatments due to the energy consumption in the operation
phase and the transport during the maintenance phase. The most
environmentally friendly treatment option regarding climate
change is P-G, where the main contributors are the construction
materials (0.009 kg CO2 eq).

3.1.3. Particulate matter
Out of the treatment options analysed, A-CaCl2 is the highest

contributor to the emissions of particulate matter <2.5 mm (PM2.5),
once more due to the Solvay process for the production of CaCl2
(0.023 kg PM2.5 eq.) and the use of NaCl for PVC production
(0.03 kg PM2.5 eq.). Particulate matter emissions are lowest with
the passive treatments and the main contributors are construction
materials (1.48E-06 kg PM2.5 eq.) and transport (6.69E-07 kg
PM2.5 eq.).

3.1.4. Freshwater ecotoxicity
As the treatment scenarios compared in this study aim to reduce

the metals emissions from steel slag leachate, this category is
ns of the processes considered: a) human toxicity (carcinogenic and non-carcinogenic e
freshwater ecotoxicity [Comparative Toxic Unit ecosystems (CTUe)], mean coming from
ars indicate that in 95% of the cases the characterised LCIA would fall within the range.
ggregated in the categories Energy consumption (includes the electricity mix, natural
emicals, Treated leachate release and Emission to soil, when applicable. The plots are



Table 3
Summary of midpoint impact category results.

Impact category Unit A-H2SO4 A-CO2 A-CaCl2 P-P P-G

Human toxicity, cancer effects CTUh 3.56E-10 3.11E-10 3.92E-7 2.89E-9 2.88E-9
Human toxicity, non-cancer effects CTUh 5.33E-8 8.35E-8 2.81E-6 2.99E-7 2.99E-7
Climate change kg CO2 eq 6.08E-2 7.16E-2 1.34Eþ2 1.77E-2 1.44E-2
Particulate matter kg PM2.5 eq 2.07E-5 1.44E-5 6.07E-2 3.82E-6 3.19E-6
Freshwater ecotoxicity CTUe 2.72Eþ1 4.55Eþ1 5.03Eþ1 3.94Eþ1 3.94Eþ1
Land use kg C deficit 3.71E-2 4.29E-2 2.02Eþ0 1.65E-3 1.76E-5
Freshwater eutrophication kg P eq 1.06E-8 8.40E-3 1.13E-2 1.00E-3 1.00E-3
Marine eutrophication kg N eq 5.62E-5 6.24E-5 9.01E-2 1.84E-5 1.56E-5
Terrestrial eutrophication molc N eq 6.15E-4 6.82E-4 5.29Eþ0 2.01E-4 1.71E-4
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particularly relevant. Comparing the active treatments, dosing with
CaCl2 (A-CaCl2) has most impact, due to the vanadium emissions to
surface water (10.4 CTUe) and agricultural soils (11.7 CTUe). For A-
H2SO4, vanadium is also the major contributor with 26.0 CTUe
(water emissions) and 1.2 CTUe (agricultural soils emissions), In the
treatment option A-CO2, vanadium water emissions are the major
responsible (45.4 CTUe). The two passive treatment scenarios have
the same impact, slightly higher than A-H2SO4 due the vanadium
emissions to water (29.2 CTUe) and agricultural soil (29.2 CTUe), as
well as Cu emissions to water (2.0 CTUe).
3.1.5. Land use
Passive treatment options show the best performance in this

impact category (Fig. 5). The difference between the two passive
treatment options is due to the energy consumption for pumping in
P-P. The energy consumption was also the major determinant for
this impact category. In the active treatments, energy consumption
was responsible by 2 kg C deficit for A-CaCl2, 0.3 kg C deficit for A-
CO2, and 0.2 kg C deficit for A-H2SO4.
3.1.6. Eutrophication (freshwater, marine, terrestrial)
Regarding freshwater eutrophication, A-H2SO4 was the
Fig. 5. Midpoint results for the active and passive treatment options and relative contributio
(kg P eq), c) marine eutrophication (kg N eq), and d) terrestrial eutrophication (molc N eq),
(error bars). The error bars indicate that in 95% of the cases the characterised LCIA would fall
were aggregated in the categories Energy consumption (includes the electricity mix, natural
Chemicals, Treated leachate release, and Emission to soil, when applicable. The plots are p
treatment option with lower impacts, followed by A-CO2 in which
the phosphorus emissions to soil contributed with 0.008 kg P eq.
Phosphorus emissions to agricultural soils of the passive treatment
options are also the major contributors (0.001 kg P eq). The worst
performance of A-CaCl2 is due to the emissions to water associated
with the Solvay process (0.009 kg P eq). The emissions to water for
all treatment options are below the 1% cutoff of impact associated
with eutrophication. For both marine and terrestrial eutrophica-
tion, the treatment options ranked as follows: P-G< P-P< A-
H2SO4<A-CO2<A-CaCl2. Emissions of ammonia to air from the
Solvay process associated with A-CaCl2 are responsible for 4.65
molc N eq, contributing to terrestrial eutrophication, while emis-
sions to air of nitrogen dioxide contribute with 0.04 kg N eq for
marine eutrophication. For A-H2SO4, the major contributor to the
eutrophication impact categories is energy consumption, while in
A-CO2, besides energy consumption, phosphorus emissions to
agricultural soils contribute with 0.008 kg P eq.
3.2. Endpoint analysis

Table 4 summarises the results of the endpoint impact category
considered. The active treatment with CaCl2 dosing has the highest
ns of the processes considered: a) land use (kg C deficit), b) freshwater eutrophication
mean coming from Monte Carlo simulation (black square), and 95% confidence interval
within the range. Confidence intervals may be smaller than symbols. The contributions
gas, diesel mix), Construction materials (needed for the leachate treatment), Transport,
resented in a logarithmic scale.



Fig. 6. Relative results for the a) midpoint and b) endpoint analysis for the active and
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impact in all categories (damage to human health, damage to
ecosystems and loss of materials/minerals on non-renewable re-
sources). The fossil fuel intensive Solvay process and the manu-
facture of PVC are the main responsible for all impact categories.
Regarding damage to human health, measured in DALY (Disability
Adjusted Life Years), the two other active treatment have similar
values and the major contributors are the energy consumption
(electricity mix; 8.10E-9 DALYand 1.04E-8 DALY for A-H2SO4 and A-
CO2, respectively) in the operation phase and the metal emissions
to surface water (1.56E-9 and 2.10E-8 DALY for A-H2SO4 and A-CO2,
respectively). The passive treatment options have lower impact on
damage to human health, and the primary contributor are the va-
nadium emissions to water and agricultural soils.

Concerning damage to the ecosystems, the active treatments
rank as A-CaCl2>A-CO2> A-H2SO4 due to the consumption of fossil
fuels in the production of materials and electricity. The difference
between the passive treatments is also due to the energy con-
sumption (7.13E-12 species*year in P-P). In these options, the major
contributors are the HDPE (4.29E-11 species*year) and the phos-
phorus emissions to surface waters (3.11E-11 species*year).

P-G is the treatment option with the lowest resource depletion
(Table 4), followed by P-P, A-CO2, A-H2SO4 and A-CaCl2. In this
category, the use of fossil fuels for the fabrication of plastics,
extraction of raw materials and the electricity production are the
main contributors to the environmental impact.

Fig. 6 summarises the relative indicator results of each treat-
ment options, for both midpoint and endpoint indicators. For each
indicator, the maximum result is set to 100%, and the results of the
other variants are displayed in relation to this result. It is clear that
the active treatment A-CaCl2 was the onewith highest values for all
impact categories, except freshwater toxicity. This result is due to
the high dose of CaCl2 needed to neutralise the steel slag leachate
(Fig. S1, Supplementary information) and subsequent impact
associatedwith the energy-intensive Solvay process. The use of PVC
in the materials needed for this option also is the major contributor
to the impact categories considered.
passive treatment options.
3.3. Uncertainty analysis

Only parametric uncertainty in both background and fore-
ground processes (variation and stochastic errors of the input) was
considered in this study, excluding model uncertainty and other
types of uncertainty (e.g. derived from setting system boundaries,
time horizon and other choices). Parametric uncertainty was rep-
resented by a lognormal probability distribution using the semi-
quantitative Pedigree Matrix approach that relates quality in-
dicators to uncertainty ranges (Pintilie et al., 2016). Five indepen-
dent characteristics: reliability, completeness, temporal correlation,
geographical correlation, and further technological correlation
were quantified for each vector included in the inventory for
background and foreground processes. For the outputs of each
treatment option, namely water and soil emissions, a triangular
distribution was assumed using the range of values reported in the
UK (Table 1 and Table S2). Temporal, geographical and technolog-
ical correlation of foreground processes were not considered in the
analysis. For the shared background processes; e.g., production of
Table 4
Summary of endpoint impact category results.

Impact category Unit A-H2SO4

Human health Disability Adjusted Life Years (DALY) 8.08E-09
Ecosystems species*year 9.82E-11
Resource depletion $ 1.99E-03
chemicals, electricity, transport; the unit process data were iden-
tically randomised for each Monte Carlo simulation (Nhu et al.,
2016). To perform uncertainty analysis, Monte Carlo simulation
was carried out (Hertwich et al., 2000; Huijbregts et al., 2003),
using 10000 iterations and 95% confidence interval.

Monte-Carlo analyses results are shown in terms of 5th and 95th
percentiles of the category midpoints for each treatment option
(Fig. 4). The results reveal that the impact values calculated are
within the 95% confidence interval calculated in the Monte Carlo
simulation (Fig. 4). The impacts associated with energy consump-
tion (particulate matter formation, climate change and human
toxicity) have the highest uncertainty, as they are driven by indirect
emissions from electricity and chemicals production, collected
from limited available literature and, in this case, the information
about the Solvay process was added from a different database. Also,
uncertainty in emissions from background unit processes has a
more pronounced effect when toxicity impacts are characterised
(Rahman et al., 2016). Freshwater ecotoxicity shows the lowest
A-CaCl2 A-CO2 P-P P-G

7.0E-07 1.04E-08 5.87E-10 �5.45E-12
3.3E-08 1.24E-10 6.99E-12 �6.48E-14
9.0E-01 2.49E-03 1.40E-04 �1.30E-06
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deviation from the mean and the narrowest confidence intervals.
This is directly associated with the statistical distribution of this
emission using the range of values found in the UK (Table 1).

4. Discussion

Although this is the first study focusing on assessing options for
alkaline leachate treatment, the results are comparable with other
studies using constructed wetlands (Garfí et al., 2017; Hengen et al.,
2014). The results show that passive treatments have a consistently
lower environmental footprint for the treatment of alkaline steel
slag leachates than active treatment, which is similar to the find-
ings for acid mine drainage treatment comparisons (Baxter, 2015;
Hengen et al., 2014). These patterns are largely driven by the more
modest requirements for materials in the construction of the pas-
sive schemes, even though the required land area is greater (which
is often a key issue in traditional Cost Benefit approaches: PIRAMID
Consortium, 2003). Interestingly, even with the requirement for
pumping of water in one of the passive options (P-P), the impacts
are less than active treatment in most categories. Given that many
steel working sites in Europe are located in relatively flat and
coastal areas (Mayes et al., 2008), getting sufficient hydraulic head
to drive aeration cascades will typically require pumping.

This study is unable to encompass the entire life cycle of the
leachate treatment, as there are limitations related to the influent
and effluent composition in each treatment option. For the active
treatment options, both the amounts of chemicals needed for
dosing and the emissions to water after treatment were deter-
mined with laboratory scale tests using a synthetic steel slag, while
for the passive treatments there were data available at a pilot scale,
with a higher number of samples (Table 1, n¼ 3 vs n¼ 141).
However, in all treatment options, the inflow quality of the leachate
was considered as well as the treatment efficiencies, and both
synthetic and industrial leachates had similar composition
reflecting UK slag disposal situations (Mayes et al., 2008). Also,
more detailed information was available from previous studies on
the composition of the sludges from passive treatments, while for
active ones, the emissions for agricultural soil were calculated after
a mass balance of three samples.

The ELCD database did not include data on the chemicals
(H2SO4, CO2, CaCl2 and the flocculant acrylic acid) used for the
active treatment of the leachate. To complement the ELCD data,
those chemicals were modelled using available Ecoinvent data
(Althaus et al., 2007). Use of different databases should be trans-
parent and justified LCA (Steubing et al., 2016), it allows crucial data
to be included in the model, as was done here. Given the dominant
signal of CaCl2 produced via the Solvay process in many of the
categories, it would be informative if a broader selection of input
data were available for some of these chemicals to test model
sensitivity. The uncertainty analysis presented does however show
that the values are within the 95% confidence interval of the Monte
Carlo simulation and that the highest uncertainty is associated
human-health toxicity impact categories, as is typical in LCA
(Rahman et al., 2016).

Despite these potential limitations, the LCA process is infor-
mative in highlighting how the different treatment options could
be improved to minimise their environmental impact. For example,
both the active options (A-H2SO4 and A-CO2) could have an even
better performance if the treatment efficiently removed barium,
which would lower the freshwater ecotoxicity value, with which
the bulk of this residual impact is associated. As Ba can be removed
by precipitating as carbonate (Parks and Edwards, 2006), ways to
increase bicarbonate (HCO3

�
(aq)) concentration in water could

enhance barium removal. The use of cascades (Gomes et al., 2017b)
and other aeration methods could lower Ba emissions [which is
incorporated in precipitated carbonates (Rogerson et al., 2008)] and
thus the freshwater ecotoxicity of the discharged effluent.

Active treatment via CO2 dosing (A-CO2) performed better in
midpoint and endpoint analyses than CaCl2 (A-CaCl2) dosing and
performed similarly to H2SO4 dosing (A-H2SO4) in most categories
(Tables 3 and 4). Given acid dosing is often the prevalent remedial
strategy particularly for operational or short-lived alkaline dis-
charges (e.g. Mayes et al., 2008; Mayes et al., 2011), it is quite
revealing that there is a similarly impactful active treatment
alternative that is only sparingly deployed currently (Hall, 2008;
Roadcap et al., 2005). The major environmental impact associated
with the active treatment A-CO2 is that of freshwater ecotoxicity,
and this could be minimised if the treatment incorporated associ-
ated processes to remove vanadium from the leachate, such as ion
exchange resins (Gomes et al., 2017a). The high residual vanadium
concentrations are consistent with the control on vanadium solu-
bility by calcium vanadate species at high pH (Cornelis et al., 2008;
Hobson et al., 2017) and where Ca is rapidly removed from solution
in precipitated carbonates, residual vanadium levels can remain
elevated in the water column. The use of ion exchange resins also
has the advantage that vanadium could be recovered and reused,
adding value to the treatment and possibly offsetting some of the
treatment costs. If, instead of commercial liquid CO2, this treatment
was implemented using the gas effluent of the steelworks (Zhang
et al., 2013; Mayes et al., 2018), then GHG emissions would be
lower and consequently the impact on climate change, as well as all
the impacts associated with commercial CO2 manufacture after
monoethanolamine (Althaus et al., 2007). Similarly, in the passive
treatments, we did not account for the atmospheric CO2 seques-
tration that occurs when calcium in the leachate precipitates as
carbonates which could add considerable environmental benefits if
fully-accounted in the process (Renforth et al., 2009). Furthermore,
the passive treatments do not account for the potential benefits of
creation of reedbed habitat, which is considered a priority habitat
in the European Union (Habitats Directive, European Commission,
1992), with studies of analogous systems highlighting biodiver-
sity benefits of treatment wetlands (e.g. Batty et al., 2005; European
Commission, 1992).

In all the modelled options, the energy mix used in the opera-
tion phase was the same and assumed constant for the 20 years of
service life of the treatment plants. However, it is predictable that
electricity generation in the UK will be decarbonised in 2030 and
nearly carbon neutral in 2050 (Sithole et al., 2016), which would
improve the environmental footprint of all options, except for P-G.
Considering themidpoint categories, lower impact values would be
obtained for climate change, human toxicity and particulate matter.
In the endpoint categories, resource depletion would be the most
reduced. All options would also benefit from the minimisation of
transport distances. Additional design optimisation measures are
sourcing local materials, use of materials with a low degree of
processing, and minimising pumping energy (Hengen et al., 2014),
which could all be incorporated in site-specific operational
management.

5. Conclusions

This study compared five different options for the treatment of
alkaline drainage resulting from steel slag management practices.
The results show that gravity-fed passive treatment results in lower
environmental impacts for the neutralisation and treatment of steel
slag leachate. Whenever possible, considering required area, land
availability and hydrochemistry of the leachate, these systems
should be adopted. Even if pumping is required, the environmental
footprint is lower than the active treatments studied. However, all
treatments could have lower environmental impacts if higher
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metal removal and subsequent recovery was achieved, and also if
the energy mix used during the operation phase incorporated a
higher percentage of renewable energies. The LCA methodology
demonstrated how it could be a valuable tool for design engi-
neering and optimisation of alkaline leachate treatment processes.
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