
 

 
 
 
 
 

Carmona, R., Ariza, L., Cañete, A. and Muñoz-Chápuli, R. (2018) Comparative 
developmental biology of the cardiac inflow tract. Journal of Molecular and Cellular 
Cardiology, 116, pp. 155-164. (doi:10.1016/j.yjmcc.2018.02.004) 

 
   
There may be differences between this version and the published version. You are 
advised to consult the publisher’s version if you wish to cite from it. 
 
 
 

http://eprints.gla.ac.uk/167529/  
      

 
 
 
 
 

 
Deposited on: 11 October 2018 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Enlighten – Research publications by members of the University of Glasgow 
http://eprints.gla.ac.uk 

http://eprints.gla.ac.uk/167529/
http://eprints.gla.ac.uk/
http://eprints.gla.ac.uk/


1 
 

Comparative developmental biology of the cardiac inflow tract 

Carmona, R., Ariza L., Cañete, A., Muñoz-Chápuli, R. 

Department of Animal Biology, Faculty of Science, University of Málaga, 29071 Málaga (Spain) 

and Andalusian Center for Nanomedicine and Biotechnology (BIONAND), Malaga, Spain. 

Abstract 

The vertebrate heart receives the blood through the cardiac inflow tract. This area has 

experienced profound changes along the evolution of vertebrates, changes that have a 

reflection in the cardiac ontogeny. The development of the inflow tract involves dynamic 

changes due to the progressive addition of tissue derived from the secondary heart field. The 

inflow tract is the site where the cardiac pacemaker is established and where the 

proepicardium develops. Differential cell migration towards the inflow tract breaks the 

symmetry of the primary heart tube and determines the direction of the cardiac looping. In air-

breathing vertebrates an inflow tract reorganization is essential to keep separate blood flows 

from systemic and pulmonary returns. Finally, the sinus venosus endocardium has been 

recently recognized as playing a role in the constitution of the coronary vasculature. Due to 

this developmental complexity, congenital anomalies of the inflow tract can cause severe 

cardiac diseases. We aimed to review the recent literature on the cellular and molecular 

mechanisms that regulate the morphogenesis of the cardiac inflow tract, together with 

comparative and evolutionary details, thus providing a basis for a better understanding of 

these mechanisms.   

Keywords: Cardiac inflow tract, sinus venosus, secondary heart field, proepicardium, cardiac 

pacemaker 
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Introduction 

The heart is the first functional organ in the development of vertebrates, and it must grow and 

self-organize keeping steadily its function as a blood pump. When the heart starts to beat, it is 

constituted of a simple myocardial tube internally invested by the endocardium. Later, the 

heart tube folds, their chambers develop, sets of valves preventing backflow between 

chambers appear, the epicardium externally covers the myocardium and gives rise to vascular 

and connective tissue progenitors and it becomes eventually septated in air-breathing 

vertebrates. During all these processes, the blood enters the heart at the venous pole through 

the inflow tract, but this anatomical inlet of the heart does not retain the same nature along its 

development as it experiences important anatomical changes and remodeling.  

The changing nature of the inflow tract is mainly due to the progressive addition of 

tissue to the venous pole, a process that also occurs in the outflow tract. The cell populations 
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incorporating to both poles of the primary heart tube proceed from the secondary heart field 

(SHF), a domain of pharyngeal mesoderm placed dorsally to the heart tube. The anterior SHF 

gives rise to the right ventricle and outflow tract, while the posterior SHF constitutes a main 

part of the atrium and the central chamber of the sinus venosus (SV) (reviewed in Zaffran and 

Kelly, 2012). Thus, the primitive heart tube, derived from the first heart field (FHF), gives rise 

principally to the left ventricle. The development of the inflow tract is further complicated by 

the incorporation of an additional cell population that migrates from the lateral and ventral 

part of the cardiogenic area. This population has been called “tertiary heart field” (Bressan et 

al., 2013), a term that we will herein discuss. This population gives rise to the myocardium of 

the right and left horns of the SV that constitute the anatomical connections with the return 

pathway of the venous blood. 

The inflow tract is also important for cardiac development since in this segment of the 

heart the cardiac pacemaker (sinoatrial node, SAN) develops from a restricted set of 

cardiomyocytes located in the sinus horns. SAN cells retain their ability to spontaneous, 

rhythmic depolarization and transmit regularly the stimulus for contraction to the surrounding 

working myocardium. The control of this restriction to a discrete and isolated population is of 

capital importance since ectopic foci of nodal tissue out of the SAN can trigger arrhythmias 

that may be clinically relevant. 

A radical remodeling of the inflow tract is necessary in air-breathing vertebrates since 

the blood arriving to the heart originates from two sources, the venous blood from the 

systemic return and the oxygenated blood from the pulmonary veins that must be separated 

from the venous blood in its route throughout the heart. Thus, the single entry of the blood in 

the inflow tract shifts to a system for double blood inlet. This remodeling usually entails a 

strong reduction of the SV that becomes incorporated to the wall of the atrium, a chamber 

that also becomes divided by a septum. Developmental anomalies in the process of formation 

of the double inlet or the atrial septation can generate severe congenital medical conditions, 

as described in the last section of this review. 

The SV has also been focus of attention in recent years since the endocardium of this 

embryonic cardiac chamber could be the source of a part of the coronary endothelium (Red-

Horse et al., 2010). However, the precise contribution of the SV endocardium is still 

controversial. Furthermore, the outer surface of the SV is the site where the proepicardium 

(the epicardial primordium) develops, making up another potential source of coronary 

progenitors (Cano et al., 2016). 

For these reasons, the development of the inflow tract has generated in the last 

decade a high number of studies providing new information with both, basic and translational 

significance. We aim to provide herein a review of the cellular and molecular mechanisms 

regulating the development of the inflow tract, together with comparative and evolutionary 

details, thus providing a basis for a better understanding of these mechanisms.   



3 
 

The cardiac inflow tract. Comparative anatomy and development 

The basic bauplan of the vertebrate heart consists of four muscular chambers sequentially 

arranged, SV, atrium, ventricle and conus arteriosus. This basic layout is present in fish 

embryos and larvae (Figure 1). The limits between chambers are set by transversal grooves. 

The conus arteriosus develops valves to prevent backflow from the aorta, where blood 

pressure reaches its highest level. The thick-walled ventricle is responsible of generating the 

pressure for the circulation of blood. The thickness of the ventricular wall makes necessary the 

atrium to fill the ventricle. Finally, the function of the SV in the cardiac cycle is basically to 

constitute a blood reservoir for atrial filling (Jensen et al., 2014a). The high returning blood 

pressure of birds and mammals makes useless this reservoir function of the SV, that finally 

incorporates to the atrium.  

Thus, the adult cardiac inflow tract in fish consists of a SV, receiving blood through the 

cardinal veins and from the liver (Figure 1A). The myocardial component of the SV is highly 

variable among fish species (Jensen et al., 2014a,b). In the hagfish (agnathans), the SV wall is 

mostly collagenic, with sparse myocardial fibers close to the sinoatrial (SA) junction (Icardo et 

al. 2016). In the dogfish shark the SV is completely muscular, and shows abundant 

subendocardial neural tissue and a fenestrated endocardium, suggesting some kind of 

secretory role (Muñoz-Chápuli et al 1994). The zebrafish SV virtually lacks of myocardium 

(Jensen et al., 2014a). In the air-breathing fish Protopterus, the SV shows myocardial walls and 

it is located medially and dorsally, opening in the right part of the atrium. A pulmonary vein 

runs across the dorsal SV carrying oxygenated blood towards the left ventricle, bypassing the 

SV and atrium (Icardo et al., 2005).  

Adult amphibian and amniotes show in general a reduced SV with right and left 

anterior sinus horns receiving blood from the head and forelimbs and a right posterior sinus 

horn that collects blood from the posterior part of the body and the liver (Figure 2). The SV of 

adult mammals forms the smooth-walled portion of the right atrium, comprised between the 

crista terminalis (derived from the right SA valve) and the atrial septum (Figure 2) (Jensen et 

al., 2014a). In humans, the left horn of the SV forms the coronary sinus receiving the blood 

from the coronary veins. The origin of the coronary sinus in mice embryos is less clear, as it has 

been related with the left upper cava vein (Ciszek et al., 2007), or it could be formed by an 

outgrowth of the SV endocardium, as described below. Both, the Eustachian valve of the 

inferior vena cava and the Thebesian valve of the coronary sinus derive from the inferior rim of 

the right SA valve. Sizarov et al. (2010) described the development of the SV in humans, 

showing the similarities with the development in mice. 

The SV of the lamprey embryos derives directly from the right cardinal vein at the level 

of the pronephros (Figure 1B). The SV of the dogfish shark embryos is muscular and relatively 

thick (Figure 1C) (Ramos and Macias, 1998). The muscular SA valves develop in this species by 

lateral infolding of the cardiac wall, being the left fold deeper than the right (Gallego et al., 

1997). The SV in bony fish embryos is large and shows very thin walls (Figure 1D,E).  
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In embryos of the amphibian Xenopus, systemic cardinal veins flow into a SV 

demarcated from the atrium by a SA ridge. The pulmonary vein connects with the left atrial 

side, defining a sinopulmonary fold. In later stages an interatrial ridge develops in the atrial 

roof and fuses with the sinopulmonary fold forming the atrial septum. Labelling of the 

blastomeres at the two cell stage shows that both, pulmonary vein and atrial septum originate 

from the left half of the body (Jahr and Manner 2011).  

In chick embryos, the SV horns are continuous with the lateral vitelline veins, and they 

merge medially with the systemic veins to form the central part of the SV (Jensen et al., 2014a) 

(Figure 2). The atrium shows three expansions, the future right and left atria and the medial 

atrial inflow which is connected with the SV. The atrial inflow develops bilateral pulmonary 

pits, but only the left one connects with the developing pulmonary vein at the left of the 

developing atrial septum. The right part of the atrial inflow together with the SV is 

incorporated to the right atrium, while the left atrial inflow becomes incorporated to the left 

atrium (Manner and Merkel, 2007). A 3D reconstruction of the development of venous pole 

and pulmonary veins in chick was published by Van der Berg et al. (2011). 

The development of the SV in mammals, including humans, has been extensively 

described. The embryonic SV is composed of a medial chamber connected with the common 

cardinal, vitelline and umbilical veins through the sinus horns (Figure 3). After anastomosis and 

regressions of these veins, the SV receive the systemic blood through the upper and lower 

cava veins, derived from the right anterior cardinal vein and the right hepatocardiac channel, 

respectively (Figure 2). Cardiomyocytes derived from the right SV horn, surround the caval 

outlets (Jensen et al., 2014a). 

The pulmonary veins (one in mice, four in humans) forms in the pulmonary 

mesenchyme by vasculogenesis and flow into the left atrium. They become surrounded, close 

to their atrial connection, by a sleeve of myocardial cells whose origin will be discussed in the 

next section. A general overview of the development of the mammalian venous pole was 

published by Douglas et al. (2011).  

IFT cell lineages and heart fields 

During gastrulation, cardiac progenitor cells ingress through the primitive streak and migrate 

to form the cardiac crescent. The first heart field progenitors are located in the anterior and 

lateral areas of the cardiac crescent, while the secondary heart field progenitors occupy the 

medial and posterior areas and remain in a proliferative progenitor state until they enter the 

heart (Kelly et al., 2012). In mouse embryos, the FHF expresses Nkx2.5 (a key transcription 

factor for cardiac development) and Islet1 by E7.5, while the SHF is characterized by the 

expression of Isl1 since Nkx2.5 is downregulated very soon. The FHF territories fuse in the 

midline, downregulate Islet1 keeping the Nkx2.5 expression, display the myocardial marker 

MF20 and form the primary cardiac tube by E8.0. By this time, the SHF becomes localized at 

the dorsal wall of the pericardial cavity and at the inlet and outlet of the cardiac tube. The SHF 
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progenitors are progressively added to both extremes of the cardiac tube, upregulating 

Nkx2.5, downregulating Islet1 and differentiating into myocardium (Figure 4). The anterior  

SHF progenitors, but not those contributing to the IFT, are marked by expression of genes such 

as Fgf10 and Mef2c (Zaffran and Kelly, 2012). The process of addition is continuous and the 

expression of molecular markers of the territories is highly dynamic, so it is difficult to 

establish precise limits between FHF and SHF. This process is evolutionarily conserved, as 

evidence of a SHF contributing to both ends of the cardiac tube has been shown in zebrafish 

(De Pater et al., 2009; Lazic and Scott, 2010).  

As mentioned above, Islet1 is expressed throughout the SHF. Its expression is 

dependent on canonical Wnt signaling, and it is essential for the survival, proliferation and 

migration of SHF progenitors (Cohen et al., 2008). Isl1 loss of function in mice is lethal at E10.5 

due to defective development of both, OFT and IFT, lack of right ventricle and hypoplasic atria 

(Cai et al., 2003). However, in zebrafish, Isl1 is required in the venous pole only for 

cardiomyocyte differentiation. The Isl2 paralogue of zebrafish has two isoforms that have 

acquired distinct functions, Isl2a morphant embryos shows defective looping while Isl2b 

participates in OFT development (Witzel et al., 2017) 

On the other hand, Tbx1, a T-box transcription factor, coordinates the proliferation 

and expansion of SHF progenitors, and the loss of function of this factor provokes failure in the 

expansion of the dorsal pericardium and defects in both cardiac poles. The posterior boundary 

of the SHF is determined by a gradient of retinoic acid (RA), which antagonizes Tbx1 

(Ryckebusch et al., 2008) and repress FGF8, an inducer of Islet1 expression (Sirbu et al., 2008; 

Kumar and Duester, 2014). In this way, RA signaling, promoted by RALDH2 expression in the 

posterior lateral mesoderm, controls the extension of the venous pole of the heart. RA 

treatment in chick and zebrafish leads to an expansion of the atrial/SV domain while blockade 

of RA signaling causes reductions in inflow tract size (Zaffran et al., 2014). In the IFT, the lack of 

Tbx1 leads to abnormal dorsal mesenchymal protrusion (DMP) and partially penetrants defects 

in the AV septation (Rana et al., 2014). The DMP is a population of mesenchymal cells that 

migrates through the dorsal aspect of the IFT and contributes to atrial septation. BMP signaling 

is essential for proliferation of DMP, as demonstrated by conditional deletion of the receptor 

Alk3 in SHF, that provokes impaired DMP and ostium primum defect (Briggs et al., 2013). 

Another T-box transcription factor, Tbx5, is expressed in the posterior SHF where it is activated 

by RA signaling and required for atrial septation (Xie et al., 2012)  

The fate of SHF progenitors is controlled by many different signaling pathways that 

regulate stemness, proliferation and differentiation of the SHF progenitors, including BMPs, 

Hedgehog, Notch and non-canonical Wnt signals (Tian et al., 2010; Vincent and Buckingham, 

2010; Kelly 2012; Xie et al., 2012). Epigenetic factors and microRNAs also play important roles 

in the differentiation of SHF progenitors to cardiomyocytes and other cardiac cell types (Liu 

and Olson, 2010). The non-canonical planar cell polarity pathway is also involved in 

development of the SHF. Overexpression of Wnt5a in the Isl1+ territory shortens the OFT and 
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can rescue the phenotype of the Wnt5a knockout mouse embryo (Li et al., 2016). 

Unfortunately, the IFT phenotype is not described in this paper. This gain of function impairs 

the migration of the cardiac progenitors, that remain in the SHF. Wnt11, another element of 

the planar cell polarity pathway, is involved in proliferation of the SHF mesenchyme, and its 

loss of function impairs OFT, IFT and DMP development (Van Vliet et al., 2017). A review on 

the Wnt signaling pathways in cardiac development has been recently published (Ruiz Villalba 

et al., 2016).  

The SHF progenitors contributing to the IFT express PDGFR. Loss of function of this 

receptor provokes hypoplasia of the atrium and SV (Bax et al., 2010). Other alterations of the 

signaling mediated through PDGFR also induce IFT anomalies, including a low penetrance of 

total anomalous pulmonary venous return (TAPVR) (Bleyl et al., 2010). Ablation of the Notch 

signaling pathway (through targeting of RBPJk) leads to premature myocardial differentiation 

of the sinus horns and also to ectopic myocardialization into the proepicardium (Del Monte et 

al., 2011). Finally, the orphan receptor CoupTFII is also strongly expressed in the posterior SHF, 

and its loss of function causes a strong reduction of the SV and part of the atrium,but the 

molecular mechanisms related with this receptor in cardiac development are unknown 

(Pereira et al., 1999).  

The migration of cells from the posterolateral, ventral areas of the splanchnic 

mesoderm will constitute the posterior part of the SV, the sinus horns and the proepicardium 

(Figure 4). These cells downregulate both, Nkx2.5 and Islet1 very soon (by E7.5 in mouse and 

HH4 in chick), and express Tbx18, which is essential for the expansion and differentiation of 

these progenitors (Christoffels et al., 2006; Vicente-Steijn et al., 2010, Mommersteg et al., 

2010, Christoffels et al., 2010). As described below, only an area of the right sinus horn, where 

prospective SAN will develops, keeps coexpression of Tbx18 and Islet1. Thus, the progenitors 

of this part of the venous pole segregate very soon from the SHF, and in this sense it has been 

proposed the existence of a tertiary heart field (Mommersteg et al., 2010; Bressan et al., 

2013). However, other authors have considered these progenitors as a sublineage of the 

posterior SHF, on the basis of retrospective clonal analysis (Lescroart et al., 2012; Meilhac et 

al., 2014). This population is maintained by canonical Wnt signaling. When -catenin is 

conditionally deleted in Tbx18+ cells the dorsal aspect of the sinus horns does not become 

myocardialized, although the SAN is not affected. The gain of function through stabilization of 

-catenin leads to the formation of undifferentiated cell aggregates (Norden et al., 2011).  

The Wilms’ tumor suppressor gene (Wt1) is expressed in the proepicardium, as 

described below, and also in the pleuropericardial membranes, where Tbx18 is also expressed. 

Wt1-null mice show anomalies in the development of the sinus horns, whose 

myocardialization is not completed. This has been attributed to a failure in the formation of 

pleuropericardial membranes, since these authors found no expression of this transcription 

factor in sinus horns myocardium or their progenitors (Norden, 2010, 2012). We have 

observed that a minor part of the SV cardiomyocytes and other myocardial populations 
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express Wt1 (Villa del Campo et al., 2016), but the amount of Wt1+ cardiomyocytes in the SV 

seems too small to account for the defects in the sinus horns (Figure 5). Non-myocardial Wt1+ 

cells of the IFT strongly express RALDH2 (Figure 5), contributing to the RA signaling pathway. In 

fact, Wt1 is a transcriptional activator of RALDH2 (Guadix et al., 2010). Thus, the function of 

Wt1 in the non-myocardial mesenchyme surrounding the cava veins and the sinus horns would 

be necessary for the development of the most posterior structures of the heart.  

As stated above, the pulmonary veins connected to the left atrium show myocardial 

sleeves whose embryological origin was debated. Clonal studies have shown that this 

myocardium has not a different origin than that of the atrial myocardium (i.e. SHF), since their 

progenitors express Nkx2.5, Islet1, and Tbx3 but not Tbx18 (Lescroart et al., 2012).  

L-R asymmetry of the IFT 

The IFT becomes asymmetrical during its development (Figure 3). The transcription factor Pitx2 

confers left identity to the myocardium of the left SV and atrium. Loss of function of Pitx2 

provokes right atrial isomerism and double SAN. Pitx2 prevents expansion of the nodal tissue 

in the left sinus horn blocking the program leading to differentiation of the SAN, as described 

in the next section (Ammirabile et al., 2012). Tbx18 is asymmetrically expressed in the right 

side, and ectopic expression of this factor at the left atrium represses Pitx2. However, the loss 

of function of Pitx2 does not affect to the rightward cardiac looping (Greulich et al., 2016).  

The SHF contributes asymmetrically to the IFT, with a larger contribution from the right 

side (Dominguez et al., 2012; Le Garrec et al., 2017). This asymmetry is connected with the 

mechanisms regulating cardiac looping. In zebrafish, the transcription factor Prrx1 is expressed 

asymmetrically in the lateral plate mesoderm, with a higher expression at the right side (Ocaña 

et al., 2017). Prrx1 loss of function leads to looping failure, mesocardia (symmetric heart tube 

in the midline) and defective IFT. The higher contribution of the right progenitor population 

shifts the venous pole at the left, thus promoting rightward looping. In chick embryos, both 

Prrx1 and another transcription factor related with epithelial-mesenchymal transitions, Snail1, 

show higher expression at the right side and are required to shift the venous pole to the left. 

Loss of function of any of them lead to mesocardia or randomization of looping. In mouse 

embryos Snail1 appears in the lateroventral mesenchyme instead of Prrx1, and its loss of 

function leads to looping defects. Prrx1 and Snail1 expression is induced in the right side by 

BMP signaling, repressing the Pitx2 pathway and providing instructive information for 

rightward cardiac looping (Ocaña et al., 2017). 

Origin and development of the SAN 

Pacemaking function is essential for a coordinated and rhythmic contraction of the cardiac 

muscle. In the early cardiac tube all cardiomyocytes show pacemaker potential. Along the 

development, the working myocardium of the chambers loses this potential, which is kept in 

the SAN, atrioventricular node (AVN) and conduction system, tissues in which the 

differentiation program of the working myocardium is repressed (Christoffels et al., 2010; 
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Bakker et al., 2010). An excellent review on this issue has been recently published (Liang et al., 

2017).  

 In zebrafish and in other teleosts where the adult SV is collagenic, the pacemaker is 

located in a ring-like region of the SA junction. Differently to mammals, where the pacemaker 

is characterized by the coexpression of Islet1 and Tbx3, the zebrafish pacemaker expresses Isl1 

and Tbx2b, but in both groups Shox2 is essential for its development. Loss of function of Isl1 

results in pacemaker dysfunction (Tessadori et al., 2012), while targeted mutation of Shox2 

results in bradycardia (Blaschke et al., 2007) that can be rescued by Islet1 expression (Hoffman 

et al., 2013).  

 In chick embryos, the SAN progenitors are localized by the stage HH8 in a specific area 

of the right lateral plate mesoderm, posterior to the Nkx2.5+ and Islet1+ territory, i.e. outside 

from the FHF and SHF. This area also contributes to the atrium, AV junction and 

proepicardium. The pacemaker fate is promoted by canonical Wnt signaling (Bressan et al., 

2013). The early pacemaker activity is initially bilateral at both SV horns, then becoming 

restricted to the right SV, within an Nkx2.5- area expressing the ionic channel HCN4, and Isl1 

and Tbx18 in an heterogeneous fashion (Vicente-Steijn et al., 2010, 2011). Part of the 

myocardium with these characteristics incorporates to the atrioventricular canal, where 

probably contributes to the AV node (Kelder et al., 2015). 

 There is a network of interactions in the mouse inflow tract that restricts the 

pacemaker activity to a very precise area (Figure 6) (Christoffels et al., 2010, reviewed in Ye et 

al., 2015). HCN4 is symmetrically expressed in the developing SV of mice from E8.0, although 

the actual pacemaker activity is first located at the left IFT by E8.5. Later, HCN4 expression 

extends to the right sinus horns and dorsal wall of the right atrium, being progressively 

restricted to the junction of the superior vena cava with the right atrium, where the 

pacemaker activity is located by E12.5 (Figure 5) (García Frigola et al., 2003; Christoffels et al., 

2010). This change of the pacemaker activity from left to right involves also a change between 

two different cardiac domains (Figure 6). While the first pacemaker locates in a 

Nkx2.5+/Tbx18- domain of the posterior SHF, the definitive SAN head (see below) develops 

into a domain of Nkx2.5-/Tbx18+ myocardial cells (the sublineage of the posterior SHF) 

characterized by the expression of Shox2 and Tbx3. This is concomitant with a downregulation 

of the HCN4 expression in the SHF, and its upregulation in the Tbx18+ domain. Loss of Islet1 

expression results in hypoplasic SAN lacking Shox2, Tbx3 and HCN4 expression (Liang et al., 

2015). The SAN is composed of a head and a tail that extends through the crista terminalis. The 

head is derived from Tbx18+ progenitors, as described above, while the tail derives from SHF 

progenitors (Islet1+/Tbx18-). Deletion of Tbx18 does not affect to pacemaker activity since the 

SAN tail can replace the head for this function (Wiese et al., 2009).  

Shox2 is essential for SAN development in mice, as described above for zebrafish, and 

its loss of function causes hypoplasia of SAN, leading to a lethal bradycardia. The role of Shox2 

is related with direct repression of Nkx2.5, activation of Islet1 and Tbx3 (Liu et al., 2012, 
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Hoffman et al., 2013). Shox2 is induced by Tbx5 and repressed by Pitx2 in the Tbx18+ domain 

(Poskaric et al., 2010; Wang et al., 2014). Ectopic expression of Nkx2.5 blocks development of 

the SAN, while ectopic expression of Shox2 in the working myocardium leads to cardiac 

malformation, but not ectopic SAN, suggesting that Shox2 is necessary but not sufficient to 

display the SAN program (Espinoza-Lewis et al., 2011). Conditional deletion of Shox2 only in 

the SAN tail/periphery (where Nkx2.5 is expressed) using an Nkx2.5-Cre driver results in 

downregulation of Tbx3, HCN4 and Isl1, and ectopic Cx40 activation (Hoffman et al., 2013; 

Liang et al., 2017). These adult mutant mice exhibit sick sinus syndrome, i.e. severe 

bradycardia, arrhythmia and SA block.  

Tbx3 represses the working myocardium program in SAN and conduction system 

(Bakker et al., 2010) and its loss of function is lethal by midgestation. The mutant embryos 

show normal SAN size, HCN4 expression and cardiac rhythm, but ectopic Cx43, Cx40 and Nppa 

expression in the SAN (Hoogars et al., 2007). Even Tbx3 hypomorphs suffer of lethal 

arrhythmias  (Frank et al., 2012). When Tbx3 is ectopically expressed in the atrium with a 

Nppa-Cre driver, ectopic pacemaker foci appear (Hoogars et al., 2007), but overexpression in 

adult myocardium does not cause the same effect, although it downregulates working 

myocardium genes (Bakker et al., 2012) 

 Thus, the myocardium derived from the Islet1+/Tbx18+/Nkx2.5- mesenchyme, is 

essential for the setting of the definitive pacemaker in mammals. Forced expression of Tbx18 is 

able to reprogramming ventricular cardiomyocytes in rat and pig towards a SAN phenotype. 

However, in mouse, misexpression of Tbx18 under control of a Myh6 promoter causes dilated 

atria with thickened walls, reduction of the right ventricle, septal defects and lethality, but not 

ectopic expression of SAN markers. The working myocardium program results only partially 

inhibited. Thus, Tbx18 inhibition is necessary for working myocardium development but its 

expression does not revert this myocardium towards a SAN phenotype (Greulich et al., 2016). 

In the myocardium of the pulmonary veins, expression of Shox2 inhibits Nkx2.5. This 

myocardium expresses HCN4 and when isolated in culture show pacemaker activity. Deletion 

of Shox2 in pulmonary vein myocardium leads to downregulation of HCN4, but not in an 

Nkx2.5 hypomorph, that rescues the requirement of Shox2 for HCN4 expression (Ye et al., 

2015). These observations are clinically relevant by the implication of the pulmonary vein 

myocardium in the generation of arrhythmias and atrial fibrillation, as described below. 

The proepicardium, the SV endocardium and the origin of the coronary vessels 

The proepicardium is a cluster of coelomic epithelium and mesenchymal cells that migrate 

over the myocardium and constitute the epicardium (Figure 3). Mesenchymal cells derived 

from the epicardium invade the myocardium and contribute to cardiac vascular and 

connective tissue. The proepicardium and the Tbx18+ myocardial progenitors of the SV share a 

common lineage. The proepicardial or myocardial fate of this lineage is regulated by FGF and 

BMP signaling, respectively (Van Wijk et al., 2009), and also by Notch signaling, as described 



10 
 

above. The epicardial formation depends on Cdc42 expression, that regulates trafficking of FGF 

receptors to the cell membrane of proepicardial and epicardial cells (Li et al., 2017). 

The smooth muscle of the coronary arteries is derived mainly from mesenchymal cells 

derived from the embryonic epicardium (Dueñas et al., 2017), with a minor contribution of 

neural crest cells in the proximal areas (Jiang et al., 2000). However, the origin of the coronary 

endothelium has been more controversial. Both, proepicardial and ventricular endocardial 

cells have been claimed as contributors to the endothelium of the coronary vessels (Katz et al., 

2012; Wu et al., 2012; Tian et al., 2013; Zhang et al., 2016), but a key issue is the contribution 

of the SV endocardium to the coronary endothelium. The SV could produce angiogenic sprouts 

that would dedifferentiate giving rise to arteries and capillaries within the ventricles, and 

surface veins (Red Horse et al., 2010). Angiogenic sprouts induced by VEGFc secreted by the 

epicardium would vascularize the dorsal and lateral aspects of the ventricles, while the ventral 

aspect and the interventricular septum become vascularized by endocardial cells (Chen et al., 

2014). Other report has described heterogeneity in the endocardium of the SV and the 

dependence of the cardiac veins (not the arteries) on angiopoietin-1. Cells negative for apelin 

receptor (APJ) would give rise to veins, in an angiopoietin-1 dependent fashion (Arita et al., 

2014). A recent study using a driver that is active in the proepicardium shows that 

proepicardial cells give rise to a fraction of the coronary endothelium (about 20%) (Cano et al. 

2016). Thus, either through the SV endocardium or through the proepicardium the IFT plays a 

role in the emergence of the coronary endothelium. 

The emergence of vessels from the SV endocardium during development might be 

related with the peculiar evolution of the cardiac vascularization. In small and less active 

fishes, the heart lacks of compact myocardium, and the blood flows throughout the 

intertrabecular sinusoids. A primitive mechanism to improve the blood supply to this 

myocardium is the connection of these sinusoids to a network of subepicardial vessels flowing 

into the SV (Figure 7) (De Andrés et al., 1993). In larger and more active fish, a compact 

ventricular myocardium develops, but it requires oxygenated blood, and this can only be 

provided by hypobranchial branches from the efferent branchial arteries. Thus, as shown for 

the dogfish shark development, cardiac veins develop independently of the coronary arteries 

as SV outgrowths (De Andrés et al., 1993). This origin of arteries and veins might explain the 

heterogeneous origin of the coronary endothelium.  

Developmental anomalies of IFT and disease 

The high complexity of the IFT development is related with a number of congenital anomalies 

of clinical relevance. We will briefly describe the main features of these anomalies and their 

relation with the development of the IFT.  

The systemic blood return is normally performed through the cava veins, connected with 

the right atrium through the remains of the right sinus horn. According to Mazzuco et al. 

(1990), anomalies can consist of left upper cava connected to the coronary sinus or to the left 
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atrium, right superior vena cava or inferior vena cava draining into the left atrium or total 

anomalous systemic venous connection to the left atrium, which is usually combined with 

atrial isomerism. 

The anomalies in the development of the pulmonary veins have been reviewed by Douglas 

(2011). These anomalies can be related with IFT maldevelopment in the case of right atrial 

isomerism (with inhibition of left atrium features), or defective development of the DMP, 

leading to a rightward shift of the pulmonary veins, that would drain into the SV. We will 

describe below that defects in atrial septation are frequently associated to anomalous 

connection of pulmonary veins. We have also described above that alterations of 

PDGFRsignaling induce IFT anomalies and TAPVR (Bleyl et al., 2010).  

Cor triatriatum dexter is an extremely rare condition that has been considered as an 

anomalous venous connection, but it is caused by the persistence of the embryonic right SV 

valve. Thus, the right atrium is abnormally divided by a fibromuscular septum. This 

malformation increases the risk of arrhythmias, including atrial fibrillation (Choudhary et al., 

2013). When the valve appears in adults as a highly fenestrated membrane, not impeding 

blood flow, it is known as the Chiari network, that appears in 2% of the population.  

Atrial isomerism is normally associated to heterotaxy, the abnormal arrangement of the 

internal organs across the left-right axis of the body. Within heterotaxy we can distinguish 

isomerism of the right atrium or of the left atrium, usually associated to asplenia or 

polysplenia. The IFT defects found in heterotaxy can include single atrium/atrial septal defect, 

total/partial anomalous pulmonary venous return and multiple sinus nodes (Anderson et al., 

2015).  

The atrial septal defect (ASD) is the most common congenital heart defect, accounting for 

up to 15% of all adult cases of these anomalies. There are different types of ASD, some of them 

are related with the process of septation on the atrium (ostium primum and ostium secundum 

atrial septal defects and patent foramen ovale). Haploinsufficiency of Tbx5 causes the Holt-

Oram syndrome, characterized by multiple abnormalities including atrial septal defects 

(Bruneau et al., 1999). SV atrial septal defect is a deficiency of the wall between the superior 

vena cava and the right-sided pulmonary veins. This defect is almost always associated with 

partial anomalous return of the pulmonary veins. The lest common form of ASD involves 

unroofing of the coronary sinus, which results in shunting into the left atrium (Briggs et al., 

2012; Anderson et al., 2015; Jensen et al., 2017).  

Human SAN dysfunction or sick sinus syndrome, is a group of disorders of the cardiac 

rhythm, characterized by episodes of sinus bradycardia or tachycardia and SA arrest/block. Its 

pathophysiology is unclear, but a number of murine models have shown similarities with this 

condition after alteration of the genetic network leading to SAN development as described 

above (Liang et al., 2017).  
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Ectopic foci of pacemaker activity can develop in myocardial derivatives of the IFT, 

basically the myocardial sleeves of the pulmonary veins and the superior cava vein. Defects in 

the development of these myocardial areas can be related with this ectopic activity that can 

produce atrial fibrillation (De Simone et al., 2012).   

Concluding remarks 

The even increase in the number of papers on the IFT development published in recent years 

highlights the interest of the scientific community to this issue. The cardiac IFT experiences a 

complex and highly dynamic development, and it is involved in different functions related with 

cardiac performance, L-R asymmetry, chamber septation, electrical activity and formation of 

non-myocardial tissues. Despite this intensive research, many questions remain unanswered, 

particularly those related with the different cell lineages contributing to the IFT. We think that 

comparative approaches can be valuable to understand these fascinating developmental 

processes. 
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Figure legends 

 

Figure 1. A. General organization of the four-chambered vertebrate heart. The sinus venosus 

(blue pattern) is composed of a central chamber and two lateral horns connected to the 

cardinal veins. 1-2 hepatic veins or a wide hepatic sinus also flow into the sinus venosus. B. 

Sinus venosus in the larva of a lamprey (Petromyzon). The large sinus venosus (SV) is located at 

the right of the atrium (A) and receives blood from the right cardinal vein. Both cardinal veins 

(CCVV) are connected in the dorsal parte of the peritoneal cavity. The pronephros (PN) is 

located inside the cardinal veins in this species. C. Sagittal section of the heart of a dogfish 

shark embryo (Scyliorhinus) showing the four cardiac chambers typical of the vertebrate 

cardiac bauplan. The sinus venosus shows myocardial walls thinner than those of the atrium 

(A), ventricle (V) or conus (CO). D. Sagittal section of the heart of a zebrafish embryo 

(Brachydanio) showing the wide sinus venosus, the atrium and the conus. The ventricle is 

located at the right of the section plane. Note the lack of endothelial cells in the open space 

between endoderm (EN) and ectoderm (EC). LI: liver; YS: yolk sac.  
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Figure 2. Anatomy of the sinus venosus in adult tetrapods. The sinus venosus (stripped 

pattern) is a well-defined chamber in amphibians, reptiles and birds, receiving blood from the 

left and right anterior cardinal veins (LAC, RAC) and from the liver through the hepatic vein 

(HV). The left posterior cardinal vein can connect directly with the sinus venosus, but in many 

animals is captured by the hepatic return. In mammals the sinus venosus is incorporated to the 

atrial wall and the left anterior cardinal disappears or it can give rise to the coronary sinus 

(cardiac venous return). The hepatic and systemic return from the posterior part of the body 

arrives to the heart through the lower cava vein (LCV), while the anterior systemic return goes 

through the upper cava vein (UCV)derived from the right cardinal vein.  

 

 

Figure 3. Transverse serial sections of the sinus venosus of an E9.5 mouse embryo (G2-

GATA4Cre;R26REYFP). In this transgenic model, the enhancer G2 of the Gata4 gene is activated in 

the lateral splanchnic mesoderm, and this cell lineage is labelled by the fluorescent protein 

EYFP. The sinus venosus shows a clear asymmetry, with a larger contribution at the right side. 

Note the lack of MF20 expression, since the myocardialization of the sinus venosus is not yet 

achieved. The proepicardium (PE) and the early epicardial cells (EP), but not the ventricle (V), 

belong to the same cell lineage. LSH, RSH: right and left sinus horns.  
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Figure 4. Derivatives of the secondary heart field. The pharyngeal mesoderm located on the 

dorsal pericardial wall migrates towards the anterior and posterior poles of the heart 

contributing to the outflow tract (OFT), and most of the right ventricle (RV), atria (A) and sinus 

venosus (SV) (stripped pattern). The posterior wall of the sinus venosus as well as the 

proepicardium (PE) derives from progenitors located more lateral and posteriorly (crossing 

diagonal pattern). LV: left ventricle.  

 

Figure 5. Wt1 expression in the cardiac inflow tract. A: Myocardial cells derived from a Wt1-

expressing lineage (Wt1Cre;R26REYFP murine model, E13.5 embryo) are located in the left sinus 

venosus horn (see insert) and interventricular septum (IVS), but they are not present in the 

cardiac pacemaker (CPM) identified by HCN4 expression (red). B: Wt1GFP, E11.5 embryo. This is 

a reporter model for actual WT1 expression . Wt1 is expressed throughout the coelomic 
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epithelium, including the epicardium) and walls of the cardinal veins where it colocalizes with 

Raldh2 expression. The asterisk shows the mesenchyme surrounding the wall of the upper left 

cardinal vein (see also insert at higher magnification). LA: left atrium; LV: left ventricle; RA: 

right atrium; RV: right ventricle; SV: central part of the sinus venosus incorporated to the atrial 

wall.  

 

 

Figure 6. Pacemaker activity (stripped pattern) changes during development. The early 

pacemaker activity is located in the Tbx18-/Nkx2.5+ domain of the inflow tract (IFT), but it 

shifts by midgestion from a to a Tbx18+/Nkx2.5- domain of the right sinus horn (RSH), and 

finally it is restricted to the junction of the upper cava vein (UCV) with the right atrium (RA). 

The cartoon also shows the network of molecular interactions leading to sinoatrial node 

development and formation of the limits with the working myocardium of the atrium (based in 

Christoffels et al., 2010). LA: left atrium; LCV: lower cava vein; PV: pulmonary vein. 
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Figure 7. Model for the independent evolutionary origin of coronary arteries and cardiac veins. 

The cartoon shows the actual process of development of the cardiac vessels in the dogfish 

shark (Scyliorhinus) (De Andrés et al., 1993). Cardiac veins (CV) arise as sprouts of the sinus 

venosus (SV) endocardium, cover the ventricle and connect with the intertrabecular sinusoids 

(S) allowing for circulation of blood through the cardiac wall. Later, the hypobranchial artery 

(HA) gives rise to the coronary arteries (CA) that run over the conus arteriosus (CO) and supply 

oxygenated blood to the myocardium. The arrows show the direction of the blood flow. A: 

atrium; BA: Branchial arches; DC: Ducts of Cuvier; HV: Hepatic vein; V: ventricle.  

 

 

 


