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SUMMARY

Human cytomegalovirus (HCMV) is an important
pathogen with multiple immune evasion strategies,
including virally facilitated degradation of host anti-
viral restriction factors. Here, we describe a multi-
plexed approach to discover proteins with innate
immune function on the basis of active degradation
by the proteasome or lysosome during early-phase
HCMV infection. Using three orthogonal proteomic/
transcriptomic screens to quantify protein degrada-
tion, with high confidence we identified 35 proteins
enriched in antiviral restriction factors. A final screen
employed a comprehensive panel of viral mutants to
predict viral genes that target >250 human proteins.
This approach revealed that helicase-like transcrip-
tion factor (HLTF), a DNA helicase important in DNA
repair, potently inhibits early viral gene expression
but is rapidly degraded during infection. The func-
tionally unknown HCMV protein UL145 facilitates
HLTF degradation by recruiting the Cullin4 E3 ligase
complex. Our approach and data will enable further
identifications of innate pathways targeted by
HCMV and other viruses.

INTRODUCTION

Human cytomegalovirus (HCMV) is a ubiquitous herpesvirus that

persistently infects the majority of the world’s population

(Mocarski et al., 2013). Following primary infection, HCMV es-

tablishes a lifelong latent infection under the control of a healthy

immune system (Reeves et al., 2005). Reactivation from viral

latency to productive infection causes serious disease in immu-
Cell Host & Microbe 24, 447–460, Septe
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nocompromised individuals, particularly transplant recipients

and AIDS patients (Nichols et al., 2002). Primary infection and

reactivation in utero are leading causes of deafness and mental

retardation in newborns, affecting approximately 1 in 200 preg-

nancies (Mocarski et al., 2013).

Susceptibility to viral infection and disease is determined in

part by antiviral restriction factors (ARFs) and the viral proteins

that have evolved to degrade them (Duggal and Emerman,

2012). Small-molecule disruption of the interaction between an

ARF and a viral antagonist can enable endogenous inhibition of

viral replication (Nathans et al., 2008). The identification and

characterization of ARFs therefore has important implications

for antiviral therapy, and is particularly important for HCMV, for

which only a few drugs are available.

HCMV is a paradigm for viral immune evasion, encoding at

least 14 proteins that inhibit natural killer (NK) or T cell activation.

A common final pathway for many host protein targets is protea-

somal or lysosomal degradation (reviewed in Halenius et al.,

2015). HCMV also modulates intrinsic immunity to facilitate viral

replication, degrading components of cellular promyelocytic

leukemia nuclear bodies (PML-NB) Sp100, MORC3, and DAXX

that act as restriction factors (Kim et al., 2011; Schreiner and

Wodrich, 2013; Sloan et al., 2016; Tavalai et al., 2011). We

previously published a systematic temporal analysis that

detailed how HCMV orchestrates the expression of >8,000

cellular proteins over the whole course of infection (Weekes

et al., 2014). However, >900 proteins were downregulated

>3-fold, making challenging the prediction of which molecules

aremost likely to perform functions in adaptive and innate immu-

nity. Similarly high numbers of protein targets have subsequently

been observed in systematic studies of infections by other

viruses, for example Epstein-Barr virus (Ersing et al., 2017) and

HIV (Matheson et al., 2015).

Here, we describe a multiplexed proteomic approach to

identify molecules of key functional importance in innate immu-

nity, on the basis of their active proteasomal or lysosomal
mber 12, 2018 ª 2018 The Authors. Published by Elsevier Inc. 447
er the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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Figure 1. Identification of Proteins Targeted for Proteasomal or Lysosomal Degradation by HCMV Using an Inhibitor-Based Proteomic

Screen

(A) Schematic of the experimental workflow. Three similar experiments were conducted, examining 12, 18, and 24 hr of HCMV infection; the workflow il-

lustrates the 12-hr analysis. The HFFF-TERT cells used for this analysis behaved extremely similarly to primary HFFFs upon infection with HCMV (Fig-

ure S1D). A comparison of two different protocols for ‘‘mock’’ infection suggested that no adventitious factors were carried along in our viral preparations

(Figure S1E).

(B) Examples of positive controls from the existing literature that were validated by this screen. A ‘‘rescue ratio’’ was calculated as shown: (protein abundance

during HCMV infection with inhibitor/abundance during infection without inhibitor) [b]/(protein abundance during mock infection with inhibitor/abundancewithout

inhibitor) [a]. [a] was limited to a minimum of 1 to avoid artificial ratio inflation. As these ratios were approximately normally distributed (Figure S1B), Benjamini-

Hochberg adjusted significance A values were used to estimate p values (see STARMethods). *p < 0.05, **p < 0.005, ***p < 0.0005 are shown above the bars for

HCMV + MG132 or HCMV + leupeptin. Further examples are shown in Figure S2A.

(C) Number of proteins rescued by MG132 or leupeptin at each time point studied. A stringent filter was employed that required >1.5-fold downregulation during

infection with HCMV or irradiated HCMV, and a rescue ratio of >1.5 with an associated p value of <0.01 (all criteria for each experiment are described in Fig-

ure S1C).

(D) Rescue ratios of all 46 proteins identified by the 12-hr MG132 screen, using stringent criteria.

(legend continued on next page)
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degradation during the early phase of HCMV infection. We

employ three orthogonal tandem mass tag (TMT)-based proteo-

mic screens to measure protein degradation. The first measures

protein abundance throughout early infection in the presence or

absence of inhibitors of the proteasome or lysosome. The sec-

ond employs an unbiased global pulse-chase to compare the

rates of protein degradation during HCMV with mock infection.

The third compares transcript and protein abundance over

time to distinguish between degraded and transcriptionally regu-

lated proteins. Our data provide a comprehensive analysis of

protein degradation and synthesis during early viral infection,

revealing how and when HCMV regulates the expression

of >10,000 host proteins and their transcripts to facilitate replica-

tion and immune evasion.

During productive infection in vitro, HCMV gene expression is

conventionally divided into immediate-early, early, and late

phases over a replication cycle lasting �96 hr. Further definition

can be gained by measuring viral protein profiles over time,

which we have used previously to define five temporal classes

of viral protein expression (Weekes et al., 2014). All herpesvi-

ruses have large genomes, potentially encoding hundreds of

open reading frames (ORFs) (Davison et al., 2013; Stern-Ginos-

sar et al., 2012), meaning that identification of which individual

gene targets a given cellular factor can be challenging. To facil-

itate the mapping of viral gene functions we employed a panel of

HCMV mutants, each deleted in contiguous gene blocks

dispensable for virus replication in vitro. A systematic proteomic

screen of these mutants defined the genetic loci responsible for

targeting >250 host proteins.

A key biological insight from our data is the prediction of ARFs.

The RING E3 ligase helicase-like transcription factor (HLTF) was

proteasomally degraded throughout early infection and potently

inhibits viral immediate-early gene expression. HLTF was found

to be targeted by a protein encoded by the UL/b
0 region in the

HCMV genome (UL133-UL150). Among the proteins encoded

by this region, UL145, which previously had no known function,

was necessary and sufficient for HLTF degradation via recruit-

ment of the Cullin 4/DDB1 ligase complex. Our approach and

data predict molecules of importance in innate antiviral immunity

and will enable further identifications of host pathways targeted

by viruses.

RESULTS

Host Proteins Targeted for Degradation Early during
HCMV Infection
To build a detailed global picture of all host proteins that are

degraded during early HCMV infection, we applied the proteaso-

mal inhibitor MG132 or the lysosomal protease inhibitor leupep-

tin at three early time points during infection of immortalized

primary human fetal foreskin fibroblasts (HFFF-TERTs). Virus in-

activated by irradiation (HCMV*) was included in the experiment

to determine whether components of the virion delivered during
(E) Examples of degraded proteins identified using MG132 (top panels), leupepti

panels). Further examples are shown in Figure S2B. Color coding for bars and re

(F) Examples of proteins that were degraded throughout the time course studied

Color coding for bars and rescue ratio p values are as described in (B).
the process of infection made a contribution. MG132 is known to

affect lysosomal cathepsins in addition to the proteasome

(Wiertz et al., 1996), and leupeptin is a naturally occurring prote-

ase inhibitor that can inhibit some proteasomal proteases in

addition to the lysosome. Our intention in using these broad,

well-characterized inhibitors was to obtain a comprehensive

list of proteins targeted for degradation by HCMV, rather than

deciphering whether a given protein was degraded in the protea-

some or the lysosome. TMT peptide labels and MS3mass spec-

trometry enabled very precise protein quantitation, as well as

multiplexed analysis of up to 11 samples in the same experiment

(Figure 1A) (McAlister et al., 2014).

We quantified 8,118–8,678 proteins (Figure S1A), and deter-

mined an MG132 and leupeptin ‘‘rescue ratio’’ for each protein,

obtained by comparing protein abundance during HCMV

infection ± inhibitor with protein abundance during mock

infection ± inhibitor (Figure 1B). This ratio enabled identification

of proteins that exhibited increased degradation during HCMV

infection, as opposed to those having a baseline high turnover

in mock-infected cells. Using stringent criteria (Figure S1C),

data were filtered to identify proteins that were most strongly

downregulated by HCMV and most significantly rescued by the

inhibitor. Overall, 131 proteins were rescued by application of

MG132 within 24 hr of infection, with 46 proteins rescued at

12 hr post infection, the earliest time point studied (Figure 1C).

Of the 46 proteins, 7 have already been reported to be degraded

by HCMV, including HCMV restriction factors Sp100 and

MORC3 (Kim et al., 2011; Sloan et al., 2016; Tavalai et al.,

2011), E3 ubiquitin ligases ANAPC1, 4, and 5 (anaphase promot-

ing complex subunits 1, 4, and 5) and ITCH (itchy E3 ubiquitin

protein ligase) (Figures 1B and S2A) (reviewed in Weekes et al.,

2014). The remaining 39 proteins have not previously been

reported to be targeted for proteasomal degradation by

HCMV, including HLTF (Figures 1D and 1E).

Overall, 28 proteins were rescued by application of leupeptin,

of which 50%were also rescued by MG132 (Figures 1C, 1E, and

S2B). Of these proteins, 12 were rescued at 12 hr post infection,

including connexin family gap junction protein alpha 1 (GJA1),

which has previously been reported to be degraded during

HCMV infection (Stanton et al., 2007). Among other findings,

we now report early rescue of E3 ligases neural precursor

cell expressed, developmentally downregulated 4 (NEDD4)

and NEDD4-like (NEDD4L). Some proteins were degraded

throughout early infection, whereas others including ephrin re-

ceptor B3 (EPHB3) were most significantly degraded during a

more limited interval, which may reflect the kinetics of expres-

sion of the HCMV proteins that target them (Weekes et al.,

2014) (Figures 1F and S2B).

During infection with irradiated HCMV, application of inhibitors

resulted in rescue of 37 proteins (Figure 1C). These included the

HCMV restriction factor DAXX, which is known to be targeted

for degradation by the viral tegument protein pp71 (Schreiner

and Wodrich, 2013). Additional proteins targeted by virion
n and MG132 (middle panels), or irradiated HCMV plus either inhibitor (bottom

scue ratio p values are as described in (B).

(HLTF), or restricted to a more limited period of infection (SUGP2 and EPHB3).

Cell Host & Microbe 24, 447–460, September 12, 2018 449
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Figure 2. A pSILAC/TMT-Based Screen to Quantify Rates of Protein Degradation and Synthesis

(A) Schematic of the experimental workflow. Experiment 1 is illustrated; the equivalent Experiment 2 instead included time points 0, 2, 3, 4, 5, and 6 hr after

infection. We calculated a p value for the difference between KdegHCMV and Kdegmock as described in STARMethods (Statistical Analysis). If Kdegmock was >0, a

fold change (FCHCMV) in protein abundance in the HCMV-infected sample at 18 hr (Experiment 1) or 6 hr (Experiment 2) was calculated, compared with time point

0 (see also Figure S1C).

(B) Overlap between the inhibitor and pSILAC screens. Blue bars show the number of proteins rescued by MG132 or leupeptin at each time point (Figure 1C).

A given protein was considered to be quantified by pSILAC if measured in either the 6-hr or 18-hr screen. pSILAC data were considered to be consistent with the

inhibitor data if KdegHCMV/Kdegmock > 1.5 or FCHCMV > 1.5 (sensitive criteria, Figure S1C).

(C) 18-hr pSILAC validation of positive controls and targets identified by the inhibitor screen (Figures 1B and 1E). NEDD4L was not quantified in this experiment.

(D) Examples of 6-hr pSILAC data for proteins degraded very early during HCMV infection.

(legend continued on next page)

450 Cell Host & Microbe 24, 447–460, September 12, 2018



components included the fibroblast growth factor receptor Golgi

glycoprotein 1 (GLG1), which has not previously been reported

to play a role in innate immunity (Figure 1E).

Data from all proteomic experiments in this study are shown in

Table S1. Here, the worksheet ‘‘Plots’’ is interactive, enabling

generation of graphs of protein expression of any of the human

and viral proteins quantified. Table S2 shows lists of proteins

identified by each screen.

Stability of Viral Proteins
To identify as many HCMV proteins as possible, we used a pro-

tein database that included 170 canonical ORFs most likely to

encode functional proteins, 604 non-canonical ORFs identified

as potentially protein-coding by ribosome profiling (Stern-Ginos-

sar et al., 2012), and all ORFs ofR8 amino acids from a six-frame

translation of the HCMV strain Merlin sequence. This analysis

identified expression of 139 of 170 canonical ORFs, 27 of 604

non-canonical ORFs, and 13ORFs from the six-frame translation

(6FT-ORFs) that had not previously been recognized, some of

these from multiple peptides. Of the 13 6FT-ORFs, 11 were en-

coded in alternative reading frames from canonical ORFs, and

2 represented 50-terminal extensions of previously described

ORFs (one of canonical US20 and the other of non-canonical

ORFL147C) (Figure S1A and Data S1).

The application of MG132 during infection led to substantial

changes in the abundance of a number of viral proteins, particu-

larly at 18 hr and 24 hr post infection. The most substantially

rescued proteins included non-canonical ORFs or 6FT-ORFs.

Leupeptin led to less substantial, but nevertheless significant

changes (Figure S2C). One possible explanation may be that a

subset of non-canonical ORFs represents rapidly degraded

translation ‘‘noise,’’ encoding proteins that are likely to be un-

structured and inherently unstable. This hypothesis is consistent

with a comparison of the disposition of the 13 6FT-ORFs in the

genome sequences of 244 HCMV strains, which suggested

that at least 12 are unlikely to encode functional proteins (Data

S1). Another possibility is that certain viral proteins are rapidly

co-degraded with human target proteins. We have previously re-

ported that HCMV UL138 is co-degraded in the lysosome with

the multi-drug transporter ABCC1 (Weekes et al., 2013) and

that the ten US12-US21 proteins target certain cell-surface pro-

teins for lysosomal degradation (Fielding et al., 2017). UL138 and

5 of the 5 quantified US12-US21 proteins were all substantially

rescued by leupeptin (Figure S2C), suggesting that the group

of viral proteins that exhibit the greatest rescue by inhibitors

may be enriched in molecules that regulate important host

targets.

Global Overview of Protein Synthesis and Degradation
during Infection in an Unbiased Pulsed SILAC/TMT
Screen
To address protein stability and turnover using an orthogonal

approach, we combined pulsed SILAC (stable isotope labeling
(E) Twenty-eight viral and four human proteins synthesized to significantly greater

6-hr pSILAC analysis (filters and p-value calculations described in STAR Method

(F) Enrichment of pathways within human proteins synthesized at significant leve

Filters were as described in (E).

For (C), (D), and (E), *p < 0.05, **p < 0.005, and ***p < 0.0005.
with amino acids in cell culture) (pSILAC) with TMT to compare

the rates of protein degradation during HCMV and mock

infection (degradation rate constants: KdegHCMV, Kdegmock).

Compared with SILAC-only experiments, benefits of this multi-

plexed approach were a dramatic reduction in the amount of

mass spectrometry time required, and the measurement of

each protein at every time point, avoiding problems caused by

proteins being quantified in some but not all samples. Two

screens examined the first 6 hr or first 18 hr of infection (Figures

2A and S3A). Of the proteins degraded at one or more time

points in the inhibitor screen, 49% (MG132) and 38% (leupeptin)

exhibited an increased rate of degradation by pSILAC (Figures

2B, 2C, S2A, and S2B). In some cases, proteins were degraded

extremely early during infection. For example, a significant differ-

ence was observed between HCMV and mock infection within

4 hr for HLTF, DAXX, and GLG1 (Figure 2D). Degradation of the

restriction factor DAXX has been shown to play a vital role in acti-

vation of immediate-early HCMV gene expression (reviewed in

Schreiner and Wodrich, 2013). Similarly prompt degradation of

HLTF andGLG1 suggests that these proteinsmay play an impor-

tant role in the early part of the viral life cycle.

Of 46 proteins rescued at 12 hr with MG132, 36 were quan-

tified in pSILAC and 24 of 36 exhibited increased degradation

in HCMV-infected cells compared with mock infection. We

investigated 12 out of 36 proteins that were rescued at

12 hr with MG132 and yet did not exhibit instability by pSI-

LAC. In 3 of 12 cases, the protein did not start to exhibit

increased degradation during the 6-hr pSILAC screen and

was not quantified in the 18-hr analysis (for example,

NEDD4, Figure S2B). In 2 of 12 cases, KdegHCMV/Kdegmock

or FCCMV was >1 but <1.5 (for example, PHLDB2, Figure S3B).

Thioredoxin-interacting protein (TXNIP) was extremely rapidly

turned over during mock infection, making it difficult to assess

a difference between mock and HCMV infection even during

the 6-hr pulse. Pleckstrin homology-like domain family A

member 1 (PHLDA1) was rescued significantly by the applica-

tion of MG132 during mock infection, and this may have made

the rescue ratio (which is a ratio of ratios) less precise. Overall,

at least 50% of proteins that were rescued by MG132 but did

not exhibit instability by pSILAC may nevertheless be

degraded, and in some cases transcriptional downregulation

and post-translational controls may have worked in combina-

tion (Figure S3B).

pSILAC enabled the rate of synthesis of each protein in

HCMV-infected (KsynHCMV) and mock-infected cells (Ksynmock)

to be compared. It was also possible to distinguish heavy-

labeled proteins synthesized after infection from light-labeled

proteins delivered in the viral particle. In the 6 hr pulse-chase,

28 viral and 4 human proteins were synthesized to significantly

greater levels in HCMV-infected cells compared with mock-in-

fected cells; all 4 human proteins are known to be interferon

responsive (Figure 2E) (Rusinova et al., 2013). By 18 hr of

pulse-chase, 72 viral and 64 human proteins were synthesized
levels in HCMV-infected cells compared with mock-infected cells from the 0- to

s [Statistical Analysis]). Example plots are shown in the lower part of the figure.

ls during the 0- to 18-hr analysis, using DAVID software (see also Table S3C).
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Figure 3. Comparative Analysis of Transcript and Protein Abundance to Identify the Mechanism of Host Protein Regulation

(A) Schematic of the experimental workflow.

(B) K-means-based hierarchical cluster analysis of 7,516 proteins and transcripts, identifying global mechanisms of protein regulation by HCMV. Right panels

show examples of each class.

(C) Examples of data for proteins shown in Figures 1B, 1E, and 2C. DAXX was not well quantified in RNA-seq.
at significantly greater levels (Tables S3A and S3B). Application

of DAVID software (Huang da et al., 2009) to determine which

pathways were enriched among these proteins indicated the

upregulation of multiple pro-apoptotic transcription factors,

complement components important in innate immunity, and

known ARFs including MX1, MX2, DDX58, and ZC3HAV1.

These proteins are likely to represent the components of an

early cellular response to viral infection (Figure 2F and

Table S3C).

Transcriptional and Post-transcriptional Regulation of
Expression
To identify where protein expression was determined primarily

by mRNA levels rather than being regulated at a post-transcrip-

tional level, we compared transcript and protein abundance

over time. When downregulation of a given protein was accom-

panied by transcript upregulation, it is likely that the protein

was degraded. Thus, integration of an RNA/protein dataset

with the other screens would identify the proteins that were
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degraded during infection, in addition to providing a global

analysis of how viral infection regulates the host proteome

and transcriptome. We published previously a temporal anal-

ysis of >8,000 proteins over eight time points spanning the

course of infection (Weekes et al., 2014). We now compared

data for human proteins with RNA sequencing (RNA-seq) anal-

ysis from samples derived from simultaneous infections and

harvests (Figure 3A).

The k-means method is useful for clustering proteins into a

specified number of classes based on the similarity of kinetic

expression profiles. K-means clustering with 1–20 classes sug-

gested there were at least seven different patterns of expression

of RNA and protein (Figures 3B and S4A; Table S2). Clusters 1

and 2 chiefly comprised proteins that were transcriptionally

upregulated, including CD55, which is known to be upregulated

during infection. Cluster 5 included proteins that were initially

upregulated at the level of transcription and then downregulated.

Cluster 6 included transcriptionally downregulated proteins,

including CD13/alanyl aminopeptidase (ANPEP). Cluster 7 was
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(B) Enrichment of pathways using DAVID software as described in (A).

(C) Immunoblot confirmed rescue of HLTF by MG132 (MOI = 5, 12-hr infection, MG132 applied from 0 to 12 hr).
enriched in proteins known to be degraded during HCMV infec-

tion, including the NK-activating ligand CD112/nectin cell adhe-

sion molecule 2 (NECTIN2) (reviewed in Weekes et al., 2014), as

well as multiple ‘‘hits’’ from the inhibitor and pSILAC screens

(Table S2).

Multiple proteins identified as degraded by other screens

were also identified by the RNA/protein screen, including

most of those shown in Figures 1B, 1E, S2A, and S2B. How-

ever, certain proteins were not identified, usually as a result

of the stringent criteria applied (Figure S1C). For example,

protein tyrosine phosphatase, non-receptor type 14 (PTPN14)

protein was downregulated >12-fold during infection, but the

transcript was downregulated 1.1- to 1.4-fold as opposed to

being upregulated, which was a requirement of the screen (Fig-

ure 3C). Nevertheless, from these kinetics and the results of the

other two screens it is likely that PTPN14 is degraded, suggest-

ing that an overall shortlist of ‘‘high-confidence’’ degraded

proteins should include those passing at least 2 out of 3

screening tests.

Degradation of Multiple E3 Ubiquitin Ligases Early
during HCMV Infection
We applied DAVID software (Huang da et al., 2009) to determine

which pathways were enriched among degraded proteins from

each individual screen. The results suggested that multiple

plasma membrane proteins may be degraded during infection,

in particular proteins that include a pleckstrin homology (PLEKH)

domain (for example PLEKHA5) or that function in cell-to-cell

adhesion (Figures 4A and S5A; Tables S4A–S4C). We found pre-

viously that HCMV rapidly downregulates multiple g-protocad-

herins (PCDHGC). We now show that a subset of these proteins

are degraded early during infection, including PCDHGB5, sup-

porting the suggestion that these might be NK or T cell ligands

or cellular receptors for HCMV (Figure S5A and Table S4B)

(Weekes et al., 2014). We report that ANAPC2, in addition to

ANAPC1, 4, and 5, is degraded early during HCMV infection,

suggesting that inhibition of these proteins may be of particular
importance in subverting the host cell-cycle machinery during

infection.

To identify with highest confidence the proteins that are

degraded during infection, we combined data from all three

screens. A ‘‘medium-confidence’’ shortlist included a total of

133 proteins degraded in R1 out of 3 screens by stringent

criteria and degraded in at least one other screen by sensitive

criteria (Figure S1C and Table S2). A ‘‘high-confidence’’ shortlist

included 35 proteins that were degraded in at least 2 out of

3 screens by stringent criteria, with 7 proteins degraded in all

3 screens (Figure 4B and Table S2). As expected, the majority

of proteins in both shortlists appeared in cluster 7 from the

RNA/protein analysis (Figures 3B and S5B).

‘‘Ubiquitin-mediated proteolysis’’ was the only significantly en-

riched pathway within the ‘‘high-confidence’’ shortlist, and

included 6 ubiquitin E3 ligases (Figure 4B, Tables S2 and S4E).

A comprehensive search of all 35 ‘‘high-confidence’’ proteins

for E3 ligase activity identified one additional ligase, HLTF.

HLTF was degraded in all three screens, and throughout early

infection starting from 4 hr (Figures 1F, 2D, and 3C), which was

confirmed by immunoblot (Figure 4C). This suggested that

HLTF might play a key functional role in early viral infection,

possibly beingdegradedby the virus to evadeantiviral restriction.

HLTF is known to participate in error-free post-replication

DNA-damage tolerance by binding to nascent single-stranded

DNA and ubiquitinating DNA replication processivity factor

(PCNA) at the stalled replication fork. HLTF thereby facilitates

fork regression and reconvenes DNA replication (Achar et al.,

2011; Blastyak et al., 2010). Functional domains in HLTF include

an RING E3 ligase domain close to the C terminus, an N-terminal

DNA-binding HIRAN (HIP116 Rad5p N-terminal) domain, and

ATPase/helicase domains (Achar et al., 2011). Two recent

studies have suggested that HIV Vpr also degrades HLTF in

a proteasome-dependent manner, by redirecting the Cullin

4/DCAF1 E3 ligase complex, although neither study demon-

strated why this is of functional importance to HIV (Hrecka

et al., 2016; Lahouassa et al., 2016).
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HCMV UL145 Is Necessary and Sufficient to
Degrade HLTF
HCMV is the largest human herpesvirus, potentially encoding

hundreds of proteins (Mocarski et al., 2013; Stern-Ginossar

et al., 2012). Given the large and uncertain numbers of functional

proteins, identification of which viral protein targets a given

cellular factor can be a challenging task. We took a systematic

approach to identify the proteins targeting HLTF, initially by

employing a panel of recombinant viruses deleted for one or

other of a series of blocks of genes non-essential for replication

in vitro (Fielding et al., 2014) (Table S5A). Ten block deletion

viruses were screened in two parallel multiplexed proteomic

analyses, with most blocks analyzed in biological duplicate.

For each human protein target, a Z score and fold change (FC)

compared with wild-type (wt) infection were calculated as

described in STAR Methods. To confidently assign modulated

cellular proteins to viral blocks, stringent criteria with a final

Z score of >6 and FC >2 assigned 91 proteins, and sensitive

criteria with a final Z score of >5 and FC >1.5 assigned 251

proteins (Figures 5A, 5B, and S6A, all predictions shown in

Table S6).

The data were validated from multiple positive controls,

including the 14 known targets of the US1-US11 block, such

as HLA-A, -B, and -C molecules, a integrins ITGA2, 4, and 6,

and butyrophilin 2A1 (BTN2A1) (Hsu et al., 2015). Nineteen

known targets of the US18-US22 block were additionally

confirmed, as well as our previous report that ABCC1 is targeted

by UL138, a UL/b
0 gene (Figures 5A, 5B, and S6B; Table S6)

(Fielding et al., 2014; Weekes et al., 2013). HLTF was targeted

by a single viral block, UL/b
0, and this was confirmed by immuno-

blot (Figures 5A and 5C).

This analysis also enabled an examination of which blocks of

viral genes are most important in the regulation of host factors.

There was striking block-to-block variation, with three blocks,

US1-US11, US18-US22, and UL/b
0 each regulating >15 (strin-

gent) or >35 (sensitive) proteins (Figure 5B). By sensitive criteria,

the US12-US17 block was similarly important, regulating 59 pro-

teins (Figure S6A). It is possible that protein Z scores from this

block were lower due to frequent co-regulation of protein targets

with the US18-US22 block (Fielding et al., 2017). Other blocks

had few or no protein targets, suggesting that the proteins they

encode may not be dominantly directed toward regulation of

the host proteome.

To determine which individual proteins target HLTF for degra-

dation, we generated a library of HCMVmutants with deletions of

single canonical genes in UL/b
0 (Table S5B). Only deletion of

UL145 rescued expression of HLTF (Figure 5D). Overexpression

of a C-terminally V5-tagged UL145 (UL145-V5) was sufficient to

downregulate HLTF, and the expression of both proteins was

rescued by MG132, which may suggest co-degradation in the

proteasome (Figure 5E). UL145 was one of the viral proteins

most substantially rescued byMG132, at each time point studied

in the inhibitor screen (Figures S2C and S6C). Both UL145

transcript and newly synthesized protein were detected from

6 hr of infection (Figures 5F and 5G), confirming that the protein

is expressed sufficiently early to regulate HLTF.

The gene encoding UL145 is located between UL144 and

UL146, which exhibit high sequence variability (Dolan et al.,

2004). In contrast, UL145 is well conserved (Sun et al., 2007),
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with our assessment of UL145 sequences from 242 genome

sequences indicating identity levels of 80% and 83% at the

nucleotide and amino acid sequence levels, respectively (data

not shown). The presence of UL145 orthologs in Old and New

World primate cytomegaloviruses indicates that this gene has

existed for many millions of years (Figure S6D). Thus, although

UL145 is not essential for viral replication in vitro, it is likely to

play an important role in promoting HCMV persistence.

HCMV UL145 Recruits the Cullin4 E3 Ligase Complex to
Target HLTF to the Proteasome
To identify cellular factors interacting with UL145, we performed

a SILAC immunoprecipitation in HFFF-TERTs stably expressing

UL145-V5 (Figure 6A). Cullin 4A (CUL4A) and adaptor molecules

damage-specific DNA-binding protein 1 (DDB1) and DET1- and

DDB1-associated protein 1 (DDA1) all co-precipitated with

UL145 (Figure 6B). Small interfering RNA (siRNA) knockdown

of CUL4A inhibited UL145-mediated HLTF downregulation, sug-

gesting that UL145 may redirect the Cullin4 ligase complex to

degrade HLTF, in a similar manner to HIV Vpr (Figure 6C). Vpr

and UL145 are both small, soluble 14-kDa proteins. Vpr is known

to form three a helices folded around a hydrophobic core; this

structure is important for interactions with HLTF and other

targets, including uracil DNA glycosylase (UNG) (Wu et al.,

2016). UL145 is also predicted to form three a helices (Fig-

ure S6D), hinting that both proteins may have evolved a similar

structure to degrade HLTF.

HLTF is known to localize predominantly to the nucleus,

consistent with its function in DNA repair (Sheridan et al.,

1995). To determine the subcellular localization of UL145, we

generated a recombinant Merlin strain HCMV with a C-terminal

UL145 V5-tag. As expected, infected cells exhibited very low-

level expression of HLTF (Figure 6D). Both proteins exhibited a

predominantly nuclear localization, although some HLTF formed

perinuclear cytoplasmic speckles. Cullin4A localizes to the

nucleus via a nuclear localization signal (Jackson and Xiong,

2009). The Cullin4A-mediated degradation of HLTF may there-

fore occur via the nuclear ubiquitin-proteasome system.

To determine whether UL145 has other cellular targets in addi-

tion to HLTF, we performed an unbiased proteomic comparison

of HFFF-TERTs infected with WT or DUL145 virus. The double-

strand break repair protein tumor protein p53-binding protein 1

(TP53BP1) was rescued both by DUL145 and DUL/b
0 viruses,

compared with WT infection (Figures 6E and S6E), suggesting

that UL145may havewider roles inmodulating theDNA-damage

response.

HLTF Restricts HCMV Early in Infection
We sought to determine whether HLTF acts as a restriction fac-

tor. To identify HCMV-infected cells, we cloned enhanced GFP

(EGFP) as a C-terminal fusion with the immediate-early gene

UL36, with a self-cleaving P2A peptide releasing the reporter

following synthesis. UL36 was chosen for this analysis since

we found it to be among the most abundantly expressed viral

proteins within the first 6 hr of infection, and the insertion of

GFP did not impede UL36 function (Figures 7A and 7B). We

adapted an assay previously deployed to examine the role of

PML-NB components in HCMV restriction (Tavalai et al., 2011)

(Figure 7C). The PML-NB protein Sp100 acts to restrict HCMV
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Figure 5. A Proteomic Screen of Viral Block Deletion Mutants Revealed that the UL/b
0 gene UL145 Targets HLTF

(A) Regulation of >250 cellular proteins (MOI = 10, 72-hr infection). Due to the multiplexing limits of TMT analysis, two separate screens were needed to

encompass all viruses. HCMV strain AD169 was used for the UL/b
0 mutant, as a deletion in this region (plus additional defects) has been acquired during passage

in culture. Strain AD169, strain Merlin DUS27-US28, DUL13-UL20, and DUS12-US17 mutants were only examined in single screens, with all other viruses

examined in duplicate. Example results are shown for HLA-A11 and HLTF. For HLTF, peptides were quantified in only one of the two screens. Further details are

given in STAR Methods (Statistical Analysis).

(B) Numbers of human proteins targeted by each block using stringent scoring (Z score of >6 and FC > 2, left panel). For each block, the Z scores of all proteins

that passed the stringent scoring criteria are shown (right panel).

(C) Immunoblot confirming that HLTF is downregulated by strain Merlin but not strain AD169 (MOI = 5, 24-hr infection).

(D) Immunoblot showing UL145 is necessary for downregulation of HLTF (HCMV UL/b
0 single gene-deletion viruses used at MOI = 5, 72-hr infection).

(E) Immunoblot of stably transduced HFFF-TERTs showing UL145 is sufficient for downregulation of HLTF.

(F) UL145 protein is expressed from at least 6 hr post infection (earliest time point studied in pSILAC 0- to 18-hr data, Figure 2). UL145 RNAwas detected by RNA-

seq from 24 hr post infection, the earliest time point studied in the RNA/protein screen (Figure 3).

(G) Detection of UL145 transcript from 6 hr of infection at MOI = 1 by qRT-PCR. Error bars show SEM for technical quadruplicates.
infection and was thus selected as a positive control. Sp100

depletion consistently enhanced HCMV UL36-GFP expression

in four independent experiments (Figure 7D). This effect was

highly dependent on the viral dose. The enhancement of virus
infection with Sp100 knockdown was much more pronounced

at lower MOIs as has been previously reported, possibly

explained by efficient viral antagonism of Sp100 at higher MOI

(Tavalai et al., 2011). Remarkably similar results were observed
Cell Host & Microbe 24, 447–460, September 12, 2018 455
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Figure 6. HCMV UL145 Degrades HLTF via the Cullin 4E3 Ligase Complex, and Additionally Targets TP53BP1

(A) Schematic of SILAC immunoprecipitation (IP). MS, mass spectrometry.

(B) Results of SILAC immunoprecipitation. The fold enrichment of each protein is shown. p values were estimated using significance A values, then corrected for

multiple hypothesis testing (Cox and Mann, 2008). Proteins enriched with p < 0.05 are shown in the graph.

(C) Immunoblot showing HCMV UL145 downregulates HLTF in a CUL4A-dependent manner. 293T cells stably expressing UL145-V5 or vector control were

treated with control siRNA, or siRNA against CUL4A for 48 hr.

(D) Immunofluorescence demonstrated nuclear localization of UL145 (MOI = 0.1, 24-hr infection with Merlin strain recombinant with a C-terminal UL145 V5 tag).

(E) UL145 targets TP53BP1 in addition to HLTF. HFFF-TERTs were infected with WTor DUL145 HCMV at MOI = 5 for 72 hr. Shown are proteins quantified byR2

peptides and rescued >1.5-fold both by DUL145 compared with wt, and by the UL/b
0 block deletion compared with WT (Figure 5A). Values displayed are the

minimum fold change and the maximum p value from the DUL145/wt and UL/b
0/wt experiments. Benjamini-Hochberg-corrected significance A was used to

estimate p values.
with short hairpin RNA (shRNA) knockdown of HLTF. At lowMOI,

knockdown of HLTF significantly increased the efficiency of virus

infection in two independent HFFF-TERT lines stably transduced

with different HLTF shRNA constructs (Figures 7D and 7E). The

enhancement of HCMV infection was confirmed using five inde-

pendently derived CRISPR/Cas9 knockdown lines for both

Sp100 and HLTF (Figure 7F). HLTF thus acts to restrict signifi-

cantly the efficiency with which a low MOI HCMV infection acti-

vates immediate-early gene expression, with an efficiency

similar to that of the recognized HCMV restriction factor Sp100.

DISCUSSION

Herpesviruses achieve lifelong persistence in infected individ-

uals by utilizing a wide range of strategies to modulate innate

and adaptive immunity. These include the deployment of

proteins to target host factors for degradation. For example,
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the HCMV US2 protein targets at least ten cell-surface mole-

cules to the proteasome, including the NK-activating ligand

CD112 and major histocompatibility complex class I (Hsu

et al., 2015). The ten members of the US12 gene family act in

concert to suppress the expression of cell-surface immune

ligands, with many targeted for lysosomal degradation (Fielding

et al., 2017). The degradation of intrinsic cellular restriction

factors (e.g., Sp100, DAXX, and MORC3) is induced by virion

components or viral proteins expressed early in infection and

dramatically enhances the efficiency of infection (Schreiner and

Wodrich, 2013; Sloan et al., 2016; Tavalai et al., 2011).

We now provide a searchable database that systematically

details the synthesis and degradation of >10,000 cellular and

viral proteins during the establishment of a productive HCMV

infection. Our data provide a significant insight into how this virus

regulates the stability of each protein including the route and rate

of degradation, and predict molecules of key importance in
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Figure 7. HLTF Restricts Early HCMV Infection
(A) Viral proteins with the highest cellular concentration, estimated using a ‘‘proteomic ruler’’ approach (Wisniewski et al., 2014) with data from the 0- to 6-hr

pSILAC experiment. A UL123 C-terminal GFP tag impaired viral growth. A similar problem occurred with UL135 (data not shown). The inhibitor of apoptosis UL36,

which was the fourth most abundant viral protein, was therefore selected and C-terminally tagged with a self-cleaving P2A peptide followed by EGFP.

(B) A C-terminal UL36-GFP tag does not impair protein UL36 function. Cells were infected with the indicated virus for 24 hr, then treatedwith cycloheximide (CHX)

and a crosslinking Fas antibody. A viability dye was used to quantify live cells by flow cytometry. Data were normalized to the number of live cells in the absence of

Fas antibody. UL36-P2A-GFP virus was comparable withwt, whereas virus lacking UL36was significantlymore sensitive to Fas-mediated apoptosis. *p < 0.05 by

two-way ANOVA (n = 3).

(C) Schematic of the restriction assay. HFFF-TERTs were infected at low MOI after stable knockdown for a putative restriction factor or control.

(D) Validation of the restriction assay using shRNA. Representative results from one of four experiments are shown (left panel). At MOI = 0.1, a difference between

shSp100 and shControl cells was no longer detectable, suggesting that the antiviral activity of Sp100 was efficiently overcome. In the same experiment, HLTF

restricted infection similarly to Sp100. Values shown are mean ± SEM p values for a difference between shSp100 or shHLTF, and control cells were estimated

using a two-tailed t test (n = 3). *p < 0.05 (for both Sp100 and HLTF where indicated). Immunoblot confirmed knockdown of all Sp100 isoforms (right panel) and

HLTF (E).

(E) HLTF restricts early HCMV infection. Application of the restriction assay at low MOI using two different shHLTF vectors suggested that HLTF restricted

infection at least as potently as Sp100 (left panel). p values were estimated using a two-tailed t test (n = 3). **p < 0.005, ***p < 0.0005.

(F) Confirmation that HLTF restricts early HCMV infection using five independent polyclonal CRISPR/Cas9 Sp100 and HLTF cell lines. Each employed integrated

guide RNAs (gRNAs) with different target sequences within a given gene. Control cells expressing non-targeting gRNAs were generated in a similar manner (right

panels; superfluous lanes from the HLTF and corresponding GAPDH gel have been digitally eliminated as indicated by the dashed line). Infection at MOI = 0.01

identified a substantial increase in viral replication in knockdown compared with control cells (left panels). p values were estimated using a two-tailed t test (n = 3).

*p < 0.05, **p < 0.005, ***p < 0.0005, ****p < 0.00005.
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innate antiviral immunity to HCMV. Furthermore, data from a

comprehensive panel of viral mutants enable identification of

the viral genes that target >250 host proteins, and have distin-

guished four key genetic ‘‘hubs’’ of regulation, including UL13-

UL20, UL133-UL150 (UL/b
0), US1-US11, and US27-US28.

Further information could now be gained by studying individual

gene-deletion mutants for each of these hubs.

HCMV orchestrates the regulation of host gene expression

through a relatively long replication cycle (>72 hr) to facilitate viral

replication while evading immune defenses. The calculated me-

dian protein half-life of 58.4 hr in uninfected fibroblasts suggests

that degradation may be the only mechanism that can achieve

sufficiently rapid change in a subset of proteins downregulated

early during infection. For example, �18% of proteins downre-

gulated >3-fold within 24 hr of infection were regulated primarily

by mRNA levels, but 32%–54% were targeted for degradation

(using high- or medium-confidence criteria, respectively). Of

these degraded proteins, 87%–89% were targeted to the

proteasome (as assessed by MG132), suggesting that the lyso-

somal route is used less commonly. Interestingly, 1%–5% of

proteins were degraded and also had reduced mRNA levels,

suggesting that multiple regulatory mechanisms may be em-

ployed by HCMV for effective control of certain targets. For

example, GJA1 has been reported to be degraded in the protea-

some (Stanton et al., 2007). The MG132 and pSILAC screens

confirmed this finding, although the RNA-seq and leupeptin

data suggested that GJA1 is also transcriptionally downregu-

lated and targeted to the lysosome.

In addition to degradation, mechanisms such as intracellular

sequestration play a role in downregulation of proteins from

organelles such as the plasma membrane (PM). For example,

we and others have reported that the NK-activating ligands

poliovirus receptor, MICB, and ULBP1-2 are downregulated

from the cell surface while accumulating in the ER, retained by

HCMV UL141 or UL16. By 24 hr of infection, such sequestered

proteins were downregulated >2-fold from the PM but were

not downregulated in whole-cell lysates (Weekes et al., 2014).

Overall, this trend was observed for only 1.6% of PM proteins,

suggesting that the predominant mechanism HCMV employs

to downregulate proteins during the early phase of infection is

proteasomal degradation.

Additional insights gained from these data include the quanti-

tation of the majority (139/170) of the current set of canonical

HCMV proteins. This suggests that our approach has sufficient

sensitivity to reveal non-canonical gene usage. A large number

(604) of additional HCMVORFs have been identified by ribosome

profiling as potentially being translated (Stern-Ginossar et al.,

2012), but it is unclear how many represent functional polypep-

tides. We quantified 27 of these ORFs, but only four exhibited

stable expression, which was defined as requiring identification

by >10 peptides across all experiments and not being rescued

byMG132 or leupeptin. For example, one of this set (ORFL147C)

was identified by a total of 129 peptides and was

rescued <1.2-fold by the inhibitors. Of the 13 ORFs identified

from the six-frame translation, all but one lacked substantial con-

servation among HCMV strains or between HCMV and related

viruses, and, where measured, were turned over rapidly in the

proteasome. The exceptional ORF is a 50-terminal extension of

ORFL147C. Overall, the data are supportive of the current defini-
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tion of the canonical gene set (Davison et al., 2013), but there is a

case for functional investigations of a modest number of addi-

tional ORFs, including ORFL147C.

An example of the power of our techniques and data is the

identification of an innate immune function in HCMV (UL145)

and its cellular target (HTLF). HLTF was initially identified as a

DNA-binding protein, which specifically recognized the SV40

enhancer and HIV-1 promoter (Sheridan et al., 1995). HLTF

also binds directly to the promoters of the human b-globin and

plasminogen activator inhibitor-1 genes to enhance expression,

and associates with transcription factors Sp1 and Sp3, which

can in some cases repress promoters (Ding et al., 1999; Li

et al., 2004). Although the mechanism through which HLTF is

able to restrict HCMV is yet to be elucidated, based on its cellular

functions it may either repress HCMV gene transcription via Sp1/

Sp3 or other factors, or function as an intrinsic viral DNA sensor

that triggers antiviral immunity.

Only three drugs are currently available to treat HCMV infec-

tion, and all suffer from significant side effects and the threat of

the development of resistance. In the context of the increasing

frequency of transplantation, innovative strategies are clearly

required. The identification of a potentially inhibitable interaction

between a cellular restriction factor and a viral antagonist may

therefore be of major therapeutic significance. Ideally, similar

interactions involving several distinct antiviral pathways might

be targeted simultaneously to inhibit viral replication in a way

that is refractory to resistance. This illustrates the crucial poten-

tial of our data to identify additional proteins that have roles in

restricting infection by HCMV or other viruses.
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Rabbit polyclonal anti-HLTF Abcam Cat#ab17984; RRID:AB_444160

Mouse monoclonal anti-HCMV IE1/2 (CH160) Abcam Cat#ab53495; RRID:AB_882995

Mouse monoclonal anti-HCMV early antigens (6F8.2) Merck Cat#MAB8131; RRID:AB_95269

Mouse monoclonal anti-GAPDH R&D Systems Cat#MAB5718; RRID:AB_10892505

Mouse monoclonal anti-V5 (E10/V4RR) Thermo Cat#MA5-15253; RRID:AB_10977225

IRDye 680RD goat anti-mouse IgG LI-COR Cat#925-68070; RRID:AB_2651128

IRDye 800CW goat anti-rabbit IgG LI-COR Cat#925-32211; RRID:AB_2651127

Anti-mouse IgG Alexa Fluor 488 Cell Signaling

Technologies

Cat#4408S; RRID:AB_10694704

Anti-rabbit IgG Alexa Fluor 647 Thermo Cat#A31573; RRID:AB_2536183

Human TruStain FcX BioLegend Cat#422302

Rabbit polyclonal anti-Sp100 GeneTex Cat#GTX131570; RRID:AB_2732019

Bacterial and Virus Strains

HCMV Merlin (Stanton et al., 2010) RCMV1111

HCMV AD169 (Fielding et al., 2014) N/A

HCMV AD169-GFP (Fielding et al., 2014) RCMV288

HCMV Merlin UL36-GFP This paper N/A

HCMV Merlin DRL1-UL11 (Fielding et al., 2014) RCMV1333

HCMV Merlin DRL11-UL11 (Fielding et al., 2014) RCMV2209

HCMV Merlin DUL2-UL11 (Fielding et al., 2014) RCMV1293

HCMV Merlin DUL13-UL20 (Fielding et al., 2014) RCMV1294

HCMV Merlin DUS1-US11 (Fielding et al., 2014) RCMV1528

HCMV Merlin DUS12-US17 (Fielding et al., 2014) RCMV1297

HCMV Merlin DUS18-US22 (Fielding et al., 2014) RCMV1318

HCMV Merlin DUS27-US28 (Fielding et al., 2014) RCMV1299

HCMV Merlin DUS29-US34A (Fielding et al., 2014) RCMV1300

HCMV Merlin DUL131A This paper RCMV1819

HCMV Merlin DUL132 This paper RCMV1821

HCMV Merlin DUL133 This paper RCMV1823

HCMV Merlin DUL135 This paper RCMV1825

HCMV Merlin DUL136 This paper RCMV1847

HCMV Merlin DUL138 This paper RCMV1849

HCMV Merlin DUL139 This paper RCMV1851

HCMV Merlin DUL140 This paper RCMV1812

HCMV Merlin DUL141 This paper RCMV1853

HCMV Merlin DUL142 This paper RCMV1835

HCMV Merlin DUL144 This paper RCMV1837

HCMV Merlin DUL145 This paper RCMV1814

HCMV Merlin DUL146 This paper RCMV1855

HCMV Merlin DUL147 This paper RCMV2035

HCMV Merlin DUL147A This paper RCMV1839

HCMV Merlin DUL148 This paper RCMV1841

HCMV Merlin DUL148A This paper RCMV1843

HCMV Merlin DUL148B This paper RCMV1845

(Continued on next page)
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

HCMV Merlin DUL148C This paper RCMV1819

HCMV Merlin DUL148D This paper RCMV1821

HCMV Merlin DUL150 This paper RCMV1823

E. coli. (a-Select Silver Competent Cells) Bioline Cat# BIO-85026

Chemicals, Peptides, and Recombinant Proteins

Tandem mass tag (TMT) 10-plex isobaric reagents Thermo Fisher Cat# 90110

HPLC water VWR Cat# 23595.328

LC-MS grade Acetonitrile Merck Cat# 1.00029.2500

Formic acid Thermo Fisher Cat# 85178

MG132 Merck Cat#474787

Leupeptin Merck Cat#108975

Bafilomycin A Alfa Aesar Cat#J61835

10X RIPA Cell Signaling

Technologies

Cat#9806S

Complete Protease Inhibitor Cocktail Roche Cat# 11836153001

Fixation Buffer BioLegend Cat#420801

DMSO Sigma-Aldrich Cat#D8418

Dexamethasone Sigma-Aldrich Cat#D4902

L-arginine monohydrochloride Sigma-Aldrich Cat#A6969

L-Lysine dihydrochloride Sigma-Aldrich Cat#L5751

Medium Arginine CK Isotopes Cat#CLM-2265-H

Medium Lysine CK Isotopes Cat#DLM-2640

Heavy Arginine CK Isotopes Cat#CNLM-539-H

Heavy Lysine CK Isotopes Cat#CNLM-291-H

SILAC DMEM Gibco Cat#88364

Dialysed FBS Gibco Cat#24600044

Proline Sigma-Aldrich Cat#P5607

DAPI Cell signaling Cat#4083S

Critical Commercial Assays

BCA Protein Assay Kit Thermo Fisher Cat#23227

Micro BCA Protein Assay Kit Thermo Fisher Cat#23235

RNeasy Plus Kit Qiagen Cat#74134

RNeasy Mini Kit Qiagen Cat#74104

Poly(A)Purist MAG kit Thermo Fisher Cat#AM1922

PrepX RNA-Seq Library Kit Wafergen Biosystems Cat#400039

GoScript Reverse Transcriptase kit Promega Cat#A5001

TaqMan� Universal PCR Master Mix Thermo Fisher Cat#4304437

Deposited Data

Unprocessed peptide files for Figures 1, 2, 3, and 5 This paper The peptide data reported in this

paper have been deposited to Mendeley

Data and are available at http://dx.doi.

org/10.17632/zkgmjzrcyk.1

RNA-seq metadata, processed data, FASTQ files This paper The accession number for the

RNAseq data reported in this paper

is GEO: GSE111036.

Raw Mass Spectrometry Data Files This paper The accession number for the

RNAseq data reported in this paper

is PRIDE: PXD009945.

Experimental Models: Cell Lines

Human Fetal Foreskin Fibroblast (HFFF) (Stanton et al., 2007) N/A

HFFF immortalized with human telomerase (HF-TERT) (Stanton et al., 2007) N/A

(Continued on next page)
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

Oligonucleotides

GAPDH (Hs02786624_g1) Thermo Fisher Cat#4331182

HLTF (Hs00172585_m1) Thermo Fisher Cat#4331182

Sp100 (Hs00162109_m1) Thermo Fisher Cat#4331182

Oligonucleotide 1 for pHAGE-pSFFV-Control construct:

GGGGACAAGTTTGTACAAAAAAGCAGGCTCCCAGGCG

AGAACGTGTGCGTGGACAAGCGAGCAGCATACGAACC

CAGCTTTCTTGTACAAAGTGGTCCCC

This paper N/A

Oligonucleotide 2 for pHAGE-pSFFV-Control construct:

GGGGACCACTTTGTACAAGAAAGCTGGGTTCGTATGCTG

CTCGCTTGTCCACGCACACGTTCTCGCCTGGGAGCCTG

CTTTTTTGTACAAACTTGTCCCC

This paper N/A

Forward primer for pHAGE-pSFFV-UL145-V5 construct: GGGGA

CAAGTTTGTACAAAAAAGCAGCTGAAGACACCGGGACCGATC

This paper N/A

Reverse primer for pHAGE-pSFFV-UL145-V5 construct:

GGGGACCACTTTGTACAAGAAAGCTGGGTTTACGTAGAATC

AAGACCTAGGAGC

This paper N/A

Forward primer for HCMV UL145 RT-qPCR:

CCCATCATGCGTCGTATCAC

This paper N/A

Reverse primer for HCMV UL145 RT-qPCR:

CCGACTGATCTAGCCTACGG

This paper N/A

Forward primer for GAPDH RT-qPCR:

AGGGCTGCTTTTAACTCTGGT

This paper N/A

Reverse primer for GAPDH RT-qPCR:

CCCCACTTGATTTTGGAGGGA

This paper N/A

Please refer to Table S7C for complete oligonucleotides including

those for shRNA and CRISPR/cas9 gene disruption.

Recombinant DNA

pHRSIREN-Control_1 This paper N/A

pHRSIREN-Control_2 This paper N/A

pHRSIREN-Sp100_1 This paper N/A

pHRSIREN-HLTF_1 This paper N/A

pHRSIREN-HLTF_2 This paper N/A

pKLV-U6gRNA(BbsI)-PGKpuro2ABFP Addgene #50946

pHRSIN-PSFFV-Cas9-PPGK-Hygro This paper N/A

pHAGE-pSFFV This paper N/A

pHAGE-pSFFV-Control This paper N/A

pHAGE-pSFFV-UL145-V5 This paper N/A

Software and Algorithms

‘‘MassPike’’, a Sequest-based software pipeline for

quantitative proteomics.

Professor Steven Gygi’s

lab, Harvard Medical

School, Boston, USA.

N/A

XLStat Addinsoft https://www.xlstat.com/en/

DAVID software Huang da et al., 2009 https://david.ncifcrf.gov/

Cluster 3.0 Stanford University

University of Tokyo

http://bonsai.hgc.jp/�mdehoon/

software/cluster/software.htm

Java Treeview SourceForge.net http://jtreeview.sourceforge.net/

Image Studio Lite LI-COR Ver. 5.2 https://www.licor.com/bio/

products/software/image_studio_lite/

(Continued on next page)
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

Clustal Omega EMBL-EBI https://www.ebi.ac.uk/Tools/msa/

clustalo/

FlowJo FlowJo Ver. 10 https://www.flowjo.com/

solutions/flowjo

Other

Orbitrap Fusion Mass Spectrometer ThermoFisher Scientific Cat# IQLAAEGAAP FADBMBCX

Orbitrap Fusion Lumos Mass Spectrometer ThermoFisher Scientific Cat# IQLAAEGAAP FADBMBHQ

Apollo 324 Wafergen Biosystems N/A

Agilent Bioanalyzer 2100 Agilent Technologies Cat#G2939BA
CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Michael

Weekes (mpw1001@cam.ac.uk).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Cells and Cell Culture
Primary human fetal foreskin fibroblast cells (HFFFs, male) and HFFFs immortalised with human telomerase (HFFF-TERTs) were

grown in Dulbecco’s modified Eagle’s medium (DMEM) supplemented with foetal bovine serum (FBC: 10% v/v), and penicillin/strep-

tomycin at 37�C in 5% CO2. HFFFs and HFFF-TERTs have been tested at regular intervals since isolation to confirm both that the

HLA & MICA genotypes and the morphology and antibiotic resistances are consistent with the original cells. In addition, the

HCMV Merlin strain used is only permissive in human fibroblasts (dermal or foreskin), further limiting the chances that the cells

have been contaminated with another cell type.

For pulsed SILAC analysis, cells were grown for seven divisions in DMEM for SILAC, which was supplied without light arginine or

lysine. This medium was supplemented with 10% dialysed FBS, penicillin/streptomycin, 84 mg/ml light arginine, 280 mg/l L-proline

and either 50mg/ml medium lysine (Lys 4) or 146mg/ml heavy lysine (Lys 8). For SILAC immunoprecipitations, cells were grown iden-

tically but the medium was supplemented with 10% dialysed FBS, penicillin/streptomycin, 280 mg/l L-proline and either light (Arg 0,

Lys 0) or medium (Arg 6, Lys 4) amino acids at 50mg/l. Incorporation of heavy label was >98% for both arginine and lysine-containing

peptides.

Viruses
We used virus (RCMV1111) derived by transfection of a BAC clone of HCMV strain Merlin, the genome of which is designated the

reference HCMV sequence by the National Center for Biotechnology Information and was sequenced after 3 passages in vitro (Dolan

et al., 2004) (Stanton et al., 2010). RCMV1111 contains point mutations in two genes (RL13 and UL128) that enhance replication in

fibroblasts (Stanton et al., 2010). The 10 block HCMV deletion mutants were generated on a strain Merlin background (wt1), or wt1

that lacked UL16 andUL18 (wt2) by transfection of recombinant BACs (Stanton et al., 2010) as described in (Fielding et al., 2014). The

wt2 background was originally employed to facilitate detection of NK evasion functions (deletion and backbone details shown in

Table S5A) (Fielding et al., 2014). HCMV strain AD169 varUK/BK000394 was used for the UL/b’ mutant, as a deletion in this region

(plus additional defects) has been acquired during passage in culture. Single gene deletion mutants of all the canonical genes in the

UL/b’ region were generated by recombineering the strain Merlin BAC as described previously (Stanton et al., 2010). Whole-genome

consensus sequences of passage 1 of each RCMV were derived using the Illumina platform as described previously (Fielding et al.,

2014), and deposited in GenBank. HCMV expressing rGFP from a P2A self-cleaving peptide following the UL36 ORF, and UL145-V5

recombinants were generated as described in (Fielding et al., 2014). For part of the inhibitor screen, viruses were irradiated with a

dose of 3500 Gy using a Gammacell 1000 Elite (Nordion International), and inactivation was verified by the absence of immunoflu-

orescence for IE1 compared to control (data not shown) (Weekes et al., 2014).

Virus stocks were prepared from HFFF-TERTs as described previously (Stanton et al., 2007). Tissue culture supernatants were

kept when a 100% cytopathic effect was observed, and were centrifuged to remove cell debris. Cell-free virus was pelleted from

supernatant by centrifugation at 22,000 3 g for 2 h and then resuspended in fresh DMEM. Residual debris was removed from the

resulting virus stocks by centrifugation at 16,000 x g for 1 min.
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METHOD DETAILS

Virus Infections and Inhibitors for Proteomic Experiments
1 x 106 HFFFs (RNA/protein screen, block deletion mutant screen) or HFFF-TERTs (inhibitor, pSILAC, wt vs DUL145 virus screens)

were plated in a 25cm2 flask. We found that primary HFFFs were limited to a total of�25 passages and exhibited diminished rates of

growth as passage number increased. HFFF-TERTs were therefore used in the pSILAC screen, due the need for seven cell divisions

prior to infection, and in the inhibitor screen to ensure comparability of results. Cells were infected at multiplicity of infection 5 or

10 with HCMV strain Merlin as previously described (Weekes et al., 2014). Briefly, the requisite volume of viral stock was added

to 1 ml DMEM and mixed gently prior to being applied to cells. Mock infections were performed identically but with additional

DMEM instead of viral stock. Time 0 in any experiment was considered to be the initial point of infection with virus. In each

experiment, cells were incubated with virus for 2 h prior to a change in medium with the exception of the 6 h pSILAC experiment,

where cells were incubated with virus for 1.5 h. Inhibitors added at the indicated times were: 10 mM MG132 (Merck) or 200 mM

Leupeptin (Merck).

Pulsed SILAC Analysis
For pulsed SILAC, cells were grown for seven divisions in medium-labelled SILAC DMEM as detailed above. Seeding at 1 x 106 per

T25 gave a confluent culture, resulting in the arrest of cell division by contact inhibition. This ensured that protein turnover was the

sole determinant of labeling kinetics, as opposed to dilution of cellular proteins by cell division. At time 0, media was changed to

heavy-labelled SILACDMEMcontaining HCMVor equivalent virus-freemedium for mock infection. Without frequent media changes,

substantial recycling of medium-labelled amino acids occurred (data not shown). We therefore (a) increased the concentration of

heavy lysine to that of standard DMEM, namely 146 mg/l. (b) changed media every 45 mins for the whole course of the experiment

(18 h pSILAC experiment) or every 30 mins for the whole experiment (6 h pSILAC experiment). Cells were harvested at time points

detailed in Figure 2A. For the 3 h time point in Experiment 2, HCMV-infected and not mock-infected cells were harvested, as only

11 TMT labelling reagents were available.

Whole Cell Lysate Protein Digestion
Cells were washed twice with PBS, and 250 ml lysis buffer added (6M Guanidine/50 mM HEPES pH 8.5). Cell lifters (Corning) were

used to scrape cells in lysis buffer, which was removed to an eppendorf tube, vortexed extensively then sonicated. Cell debris was

removed by centrifuging at 21,000 g for 10 min twice. Although this method prohibited cell counting immediately prior to lysis, it

avoided the need for cellular detachment. Half of each sample was kept for subsequent analysis by immunoblot where required.

For the other half, dithiothreitol (DTT) was added to a final concentration of 5 mM and samples were incubated for 20mins. Cysteines

were alkylated with 14 mM iodoacetamide and incubated 20 min at room temperature in the dark. Excess iodoacetamide was

quenched with DTT for 15 mins. Samples were diluted with 200 mM HEPES pH 8.5 to 1.5 M Guanidine followed by digestion at

room temperature for 3 h with LysC protease at a 1:100 protease-to-protein ratio. Samples were further diluted with 200 mMHEPES

pH 8.5 to 0.5MGuanidine. Trypsin was then added at a 1:100 protease-to-protein ratio followed by overnight incubation at 37�C. The
reaction was quenched with 5% formic acid, then centrifuged at 21,000 g for 10 min to remove undigested protein. Peptides were

subjected to C18 solid-phase extraction (SPE, Sep-Pak, Waters) and vacuum-centrifuged to near-dryness.

Peptide Labeling with Tandem Mass Tags
In preparation for TMT labeling, desalted peptideswere dissolved in 200mMHEPESpH 8.5. Peptide concentrationwasmeasured by

microBCA (Pierce), and 25 mg of peptide labeled with TMT reagent. TMT reagents (0.8 mg) were dissolved in 43 ml anhydrous aceto-

nitrile and 3 ml added to peptide at a final acetonitrile concentration of 30% (v/v). Sample labelling was as indicated in Table S7A.

Following incubation at room temperature for 1 h, the reaction was quenched with hydroxylamine to a final concentration of

0.3% (v/v). TMT-labeled samples were combined at a 1:1:1:1:1:1:1:1:1:1:1 ratio. The sample was vacuum-centrifuged to near dry-

ness and subjected to C18 SPE (Sep-Pak, Waters). An unfractionated singleshot was analysed initially to ensure similar peptide

loading across each TMT channel, thus avoiding the need for excessive electronic normalization. As all normalisation factors

were >0.5 and <2, data for each singleshot experiment was analysed with data for the corresponding fractions to increase the overall

number of peptides quantified. Normalisation is discussed in ‘Data Analysis’, and high pH reversed-phase (HpRP) fractionation is

discussed below.

Offline HpRP Fractionation
TMT-labelled tryptic peptides were subjected to HpRP fractionation using an Ultimate 3000 RSLC UHPLC system (Thermo Fisher

Scientific) equipped with a 2.1 mm internal diameter (ID) x 25 cm long, 1.7 mmparticle Kinetix Evo C18 column (Phenomenex). Mobile

phase consisted of A: 3% acetonitrile (MeCN), B: MeCN and C: 200 mM ammonium formate pH 10. Isocratic conditions were

90% A/10% C, and C was maintained at 10% throughout the gradient elution. Separations were conducted at 45�C. Samples

were loaded at 200 ml/minute for 5minutes. The flow rate was then increased to 400 ml/minute over 5minutes, after which the gradient

elution proceed as follows: 0-19% B over 10 minutes, 19-34% B over 14.25 minutes, 34-50% B over 8.75 minutes, followed by a

10minutes wash at 90%B. UV absorbance wasmonitored at 280 nm and 15 s fractions were collected into 96 well microplates using

the integrated fraction collector. Fractions were recombined orthogonally in a checkerboard fashion, combining alternate wells from
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each column of the plate into a single fraction, and commencing combination of adjacent fractions in alternating rows. Wells were

excluded prior to the start or after the cessation of elution of peptide-rich fractions, as identified from the UV trace. This yielded

two sets of 12 combined fractions, A and B, which were dried in a vacuum centrifuge and resuspended in 10 ml MS solvent (4%

MeCN/5% formic acid) prior to LC-MS3. 12 set ‘A’ fractions were used for MS analysis of all experiments. For the 18 h pSILAC

(pSILAC_18) experiment, an additional 6 set ‘B’ fractions were used, as 6/12 original fractions were suboptimally analysed on the

Orbitrap Lumos. For the 12 h inhibitor experiment (Deg_12), a single fraction failed to run optimally and a further set ‘B’ fraction

was analysed. Both set ‘A’ and set ‘B’ runs were included in the final analysis in each case (Table S7B).

LC-MS3 for TMT and TMT/SILAC Experiments
Mass spectrometry data was acquired using an Orbitrap Lumos for all experiments apart from 6 fractions from the pSILAC_18 exper-

iment, where an Orbitrap Fusion mass spectrometer was used instead (Thermo Fisher Scientific, San Jose, CA). In both cases, an

Ultimate 3000 RSLC nano UHPLC equipped with a 300 mm ID x 5 mm Acclaim PepMap m-Precolumn (Thermo Fisher Scientific)

and a 75 mm ID x 50 cm 2.1 mm particle Acclaim PepMap RSLC analytical column was used.

For Orbitrap Lumos Experiments

Loading solvent was 0.1% FA, analytical solvent A: 0.1% FA and B: 80%MeCN + 0.1% FA. All separations were carried out at 55�C.
Samples were loaded at 5 mL/minute for 5 minutes in loading solvent before beginning the analytical gradient. The following gradient

was used: 3-7% B over 3 minutes, 7-37% B over 173 minutes, followed by a 4 minute wash at 95% B and equilibration at 3% B for

15 minutes. Each analysis used a MultiNotch MS3-based TMT method (McAlister et al., 2014). The following settings were used:

MS1: 380-1500 Th, 120,000 Resolution, 2x105 automatic gain control (AGC) target, 50msmaximum injection time. MS2: Quadrupole

isolation at an isolation width of m/z 0.7, CID fragmentation (normalised collision energy (NCE) 35) with ion trap scanning in turbo

mode from m/z 120, 1.5x104 AGC target, 120 ms maximum injection time. MS3: In Synchronous Precursor Selection mode the

top 6 MS2 ions were selected for HCD fragmentation (NCE 65) and scanned in the Orbitrap at 60,000 resolution with an AGC target

of 1x105 and a maximum accumulation time of 150 ms. Ions were not accumulated for all parallelisable time. The entire MS/MS/MS

cycle had a target time of 3 s. Dynamic exclusion was set to +/- 10 ppm for 70 s. MS2 fragmentation was trigged on precursors 5x103

counts and above.

For Orbitrap Fusion Experiments

Loading solvent was 0.1% TFA, analytical solvent A: 0.1% FA and B: MeCN + 0.1% FA. All separations were carried out at 55�C.
Samples were loaded at 10 ml/minute for 5 minutes in loading solvent before beginning the analytical gradient. The following gradient

was used: 3-5.6%Bover 4minutes, 5.6-32%Bover 162minutes, followed by a 5minute wash at 80%B and a 5minute wash at 90%

B and equilibration at 3% B for 5 minutes. Each analysis used a MultiNotch MS3-based TMT method (McAlister et al., 2014). The

following settings were used: MS1: 400-1400 Th, Quadrupole isolation, 120,000 Resolution, 2x105 AGC target, 50 ms maximum in-

jection time, ions injected for all parallisable time. MS2: Quadrupole isolation at an isolation width of m/z 0.7, CID fragmentation

(NCE 30) with ion trap scanning out in rapid mode fromm/z 120, 1x104 AGC target, 70 msmaximum injection time, ions accumulated

for all parallisable time in centroid mode. MS3: in Synchronous Precursor Selection mode the top 10MS2 ions were selected for HCD

fragmentation (NCE 65) and scanned in the Orbitrap at 50,000 resolution with an AGC target of 5x104 and a maximum accumulation

time of 150 ms, ions were not accumulated for all parallelisable time. The entire MS/MS/MS cycle had a target time of 3 s. Dynamic

exclusion was set to +/- 10 ppm for 90 s. MS2 fragmentation was trigged on precursors 5x103 counts and above.

Immunoprecipitation and Protein Digestion
Cells were harvested in lysis buffer (50 mM Tris pH 7.5, 300 mM NaCl, 0.5% (v/v) NP40, 1 mM DTT and Roche protease inhibitor

cocktail), tumbled for 15minutes at 4�Cand then centrifuged at 16,100 g for 20minutes at 4�C. Lysates were then clarified by filtration

through a 0.7 mm filter and incubated for 3 h with immobilised mouse monoclonal anti-V5 agarose resin. Samples were washed

multiple times with lysis buffer, followed by multiple PBS pH 7.4 washes. Subsequently, proteins bound to the anti-V5 resin were

eluted twice by adding 200 ml of 250 mg/ml V5 peptide (Alpha Diagnostic International) in PBS at 37�C for 30 minutes with agitation.

Finally, proteins were precipitated with 20% TCA, washed once with 10% TCA, washed three times with cold acetone and dried to

completion using a centrifugal evaporator. Samples were re-suspended in protein loading dye, electrophoresed approximately 2 cm

into a precast SDS-Polyacrylamide gel and stained with SimplyBlue Safe Stain (Novex). The lane was excised, and the proteins

digested in-gel for mass spectrometry on the Orbitrap Lumos.

LC-MS/MS for Immunoprecipitation Experiments
Loading solvent was 3%MeCN, 0.1% FA, analytical solvent A: 0.1% FA and B: MeCN + 0.1% FA. All separations were carried out at

55�C. Samples were loaded at 5 ml/minute for 5 minutes in loading solvent before beginning the analytical gradient. The following

gradient was used: 3-40% B over 29 minutes followed by a 3 minute wash at 95% B and equilibration at 3% B for 10 minutes.

The following settings were used: MS1: 300-1500 Th, 120,000 resolution, 4x105 AGC target, 50 ms maximum injection time. MS2:

Quadrupole isolation at an isolation width of m/z 1.6, HCD fragmentation (NCE 35) with fragment ions scanning in the Orbitrap

from m/z 110, 5x104 AGC target, 60 ms maximum injection time, ions accumulated for all parallelisable time. Dynamic exclusion

was set to +/- 10 ppm for 60 s. MS2 fragmentation was trigged on precursors 5x104 counts and above.
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RNAseq Analysis
RNAseq analysis was performed in biological triplicate at three time points of infection: 0h (mock), 24 h and 72 h. For each sample,

RNA was extracted from a 75 cm2 flask of HFFFs infected at moi 10 or mock-infected using an RNeasy Plus kit (Qiagen). Infections

and harvests were performed simultaneously with protein samples for experiment WCL2 (Weekes et al., 2014). Poly(A) RNA was

enriched using a Poly(A)Purist MAG kit (Thermo). 250 ng of poly(A) RNA from each sample was used to prepare a cDNA library using

a PrepX RNA-Seq Library Kit (Wafergen biosystems) on an Apollo 324 (WaferGen biosystems), according to the manufacturer’s

protocol. The following barcode sequences were used: Mock1 (ATCACGAT); Mock2 (CGATGTAT); Mock3 (TTAGGCAT); 24h_1

(TGACCAAT); 24h_2 (ACAGTGAT); 24h_3 (GCCAATAT); 72h_1 (CAGATCAT); 72h_2 (ACTTGAAT); 72h_3 (GATCAGAT). The resulting

libraries were quantified using an Agilent Bioanalyser 2100 (Agilent Technologies, Santa Clara, CA), then were pooled for sequencing

on a single lane of Illumina HiSeq2500 (1 3 50 bp reads).

Plasmid Construction
For exogenous gene expression, a V5-tagged UL145 construct was amplified from an adenoviral template, which expressed UL145-

V5 under the control of a CMVpromoter. Primers were designed to recognise the 3’ end of the CMVpromoter (forward) and the V5 tag

(reverse) (Key Resources Table). A control construct was prepared by annealing two oligonucleotides. Both primers and oligonucle-

otides had flanking Gateway attB sequences (Key Resources Table). PCR employed the PfuUltra II Fusion HS DNA Polymerase

(Agilent). Constructs were subsequently cloned into lentiviral destination vector pHAGE-pSFFV using the Gateway system (Thermo

Scientific). pHAGE-pSFFV has a spleen focus-forming virus (SFFV) promoter replacing the CMV promoter in pHAGE-pCMV to

prevent promoter inactivation during HCMV infection. For shRNA, two partially complementary oligonucleotides (Table S7C) were

annealed. The resulting product was ligated into the pHR-SIREN vector (gift from Prof. Paul Lehner, University of Cambridge) as a

BamHI–EcoRI fragment using T4 ligase (Thermo Scientific). All constructed plasmids were transformed into Alpha-Select Silver

Efficiency Competent E. coli cells (Bioline) at 42�C for 1 min and selected on antibiotic-containing LB agar plates.

Stable Cell Line Production
Lentiviral particles were generated through transfection of HEK293T cells with the lentiviral transfer vector plus four helper plasmids

(VSVG, TAT1B, MGPM2, CMV-Rev1B), using TransIT-293 transfection reagent (Mirus) according to the manufacturer’s recommen-

dations. Viral supernatant was typically harvested 48 h after transfection, cell debris was removed with a 0.22 mm filter, and target

cells were transduced for 48 h then subjected to antibiotic selection for two weeks.

CRISPR/Cas9-Mediated Gene Disruption
HFFF-TERT cells stably expressing pHRSIN-PSFFV-Cas9-PPGK-Hygro (gift from Professor Paul Lehner, University of Cambridge)

were transduced with lentivirus employing the pKLV-U6gRNA(BbsI)-PGKpuro2ABFP plasmid (Addgene Plasmid #50946), that

constitutively expressed a given gRNA (Table S7C). Confirmation of protein level reduction in low passage polyclonal populations

of cells expressing both Cas9 and the gRNA of choice was then achieved by immunoblot. Polyclonal selected cell populations

were used in this study.

siRNA Knockdown
24 h prior to transfection, 3x105 293Ts constitutively expressing UL145-V5 or control were plated in 6 well plates. Cells were trans-

fected with a pool of CUL4A siRNAs (L-012610-00, Dharmafect) or a pool of non-targeting siRNAs (D-001810-10, Dharmafect) with

DHARMAfect 1 Transfection Reagent (T-2001, Dharmafect) giving a final siRNA concentration of 25 nM. Cellular lysates were

harvested 48 h post transfection for immunoblot.

Immunoblotting
HFFF-TERTs were used for all experiments apart from Figure 6C, where 293T cells were used. For most immunoblots, cells were

lysed with RIPA buffer (Cell Signaling) containing Complete Protease Inhibitor Cocktail (Roche) and then lysates were sonicated.

For cells infected by single gene deletion viruses, 6 M Guanidine whole cell lysates were precipitated using a ProteoExtract protein

precipitation kit (Calbiochem) and re-dissolved in 2%SDS/Tris 200mM pH 8.5 with sonication. Protein concentration was measured

by BCA (Pierce). Lysates were reducedwith 6X Protein Loading Dye (Tris 375mMpH 6.8, 12%SDS, 30%glycerol, 0.6MDTT, 0.06%

bromophenol blue) for 5 min at 95�C. 50 mg of protein for each sample was separated by PAGE using 4-15% TGX Precast Protein

Gels (Bio-rad), then transferred to PVDF membranes using Trans-Blot Systems (Bio-rad). The following primary antibodies were

used: anti-HLTF (ab17984, Abcam), anti-HCMV IE1/2 (ab53495, Abcam), anti-GAPDH (MAB5718, R&D Systems), anti-V5 (MA5-

15253, Thermo), anti-Sp100 (GTX131570, GeneTex). Secondary antibodies were IRDye 680RD goat anti-mouse (925-68070,

LI-COR) and IRDye 800CW goat anti-rabbit (925-32211, LI-COR). Fluorescent signals were detected using a LI-COR Odyssey,

and images were processed using Image Studio Lite (LI-COR).

Restriction Assay and Flow Cytometry
24 h prior to infection, 1.5x105 HFFF-TERTs stably expressing shRNA constructs targeted against Sp100, HLTF or control were

plated in 24 well plates. Cells were infected with HCMV UL36-GFP at a range of low moi (0.003 – 0.3). The requisite volume of viral

stock was added to 150 ml DMEM, and mixed gently prior to being applied to cells. Cells were incubated with virus for 2 h prior to
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replacing themedium. 24 h after infection, cells were harvested and fixed in 4%paraformaldehyde. 30,000 events were acquiredwith

a FACSCalibur flow cytometer and analysed with FlowJo vX software. A similar approach was performed for polyclonal selected

CRISPR cell populations.

Immunofluorescence Microscopy
HFFF-TERTs were infected on coverslips with a recombinant Merlin strain with a C-terminal UL145 V5 tag, at moi 0.1 for 24 h. Cells

were then cross-linked with fixation buffer (Biolegend), permeabilised with ice-cold methanol, and blocked with Human TruStain FcX

(Biolegend). Two primary antibodies were used: rabbit anti-HLTF (ab17984, Abcam) and mouse anti-V5 (MA5-15253, Thermo).

Secondary antibodies were anti-mouse Alexa Fluor 488 (4408S, Cell Signaling) and anti-rabbit Alexa Fluor 647 (A31573, Thermo).

Cell nuclei were stained with DAPI (Cell Signaling). Fluorescence were observed using a confocal microscope (Zeiss LSM 710).

RT-qPCR
Total RNA from mock- or HCMV-infected HFFF-TERTs was extracted using an RNeasy Mini Kit (Qiagen). cDNA was synthesized

using GoScript Reverse Transcriptase (Promega), followed by RT-qPCR using Fast SYBR Green Master Mix (Applied Biosystems)

and 7500 Fast & 7500 Real-Time PCR Systems (Applied Biosystems). Primers targeting HCMV UL145 or GAPDH (as an internal

control) are shown in the Key Resources Table. The PCR program started with activation at 95�C for 2 min, followed by 40 cycles

of denaturation at 95�C for 5 s and annealing/extension at 60�C for 30 s. Melting curve analyses were performed to verify the ampli-

fication specificity. All mock-infected samples exhibited non-singular melting curves, indicating non-specific amplification; values for

these samples were set to zero.

QUANTIFICATION AND STATISTICAL ANALYSIS

Data Analysis
Mass spectra were processed using a Sequest-based software pipeline for quantitative proteomics, ‘‘MassPike’’, through a collab-

orative arrangement with Professor Steven Gygi’s laboratory at Harvard Medical School. MS spectra were converted to mzXML

using an extractor built upon Thermo Fisher’s RAW File Reader library (version 4.0.26). In this extractor, the standard mzxml format

has been augmented with additional custom fields that are specific to ion trap and Orbitrapmass spectrometry and essential for TMT

quantitation. These additional fields include ion injection times for each scan, Fourier Transform-derived baseline and noise values

calculated for every Orbitrap scan, isolation widths for each scan type, scan event numbers, and elapsed scan times. This software is

a component of the MassPike software platform and is licensed by Harvard Medical School.

A combined database was constructed from (a) the human Uniprot database (26th January, 2017), (b) the HCMV strain Merlin

Uniprot database, (c) all additional non-canonical human cytomegalovirus ORFs described by Stern-Ginossar et al. (Stern-Ginossar

et al., 2012), (d) a six-frame translation of HCMV strain Merlin filtered to include all potential ORFs of R8 amino acids (delimited by

stop-stop rather than requiring ATG-stop) and (e) common contaminants such as porcine trypsin and endoproteinase LysC. ORFs

from the six-frame translation (6FT-ORFs) were named as follows: 6FT_Frame_ORFnumber_length, where Frame is numbered 1-6,

and length is the length in amino acids. The combined database was concatenated with a reverse database composed of all protein

sequences in reversed order. Searches were performed using a 20 ppm precursor ion tolerance. Fragment ion tolerance was set to

1.0 Th. TMT tags on lysine residues and peptide N termini (229.162932Da) and carbamidomethylation of cysteine residues (57.02146

Da) were set as static modifications, while oxidation of methionine residues (15.99492 Da) was set as a variable modification. For

SILAC analysis, the following variable modifications were used: heavy lysine (8.01420 Da), heavy arginine (10.00827 Da), medium

lysine (4.02511 Da), medium arginine (6.02013 Da). SILAC-only searches were performed in the same manner, omitting the TMT

static modification.

To control the fraction of erroneous protein identifications, a target-decoy strategy was employed (Huttlin et al., 2010). Peptide

spectral matches (PSMs) were filtered to an initial peptide-level false discovery rate (FDR) of 1% with subsequent filtering to attain

a final protein-level FDR of 1%. PSM filtering was performed using a linear discriminant analysis, as described previously (Huttlin

et al., 2010). This distinguishes correct from incorrect peptide IDs in a manner analogous to the widely used Percolator algorithm

(https://noble.gs.washington.edu/proj/percolator/), though employing a distinct machine learning algorithm. The following parame-

ters were considered: XCorr, DCn, missed cleavages, peptide length, charge state, and precursor mass accuracy.

Protein assembly was guided by principles of parsimony to produce the smallest set of proteins necessary to account for all

observed peptides (algorithm described in Huttlin et al., 2010). Where all PSMs from a given HCMV protein could be explained either

by a canonical gene or non-canonical ORF, the canonical gene was picked in preference.

In eleven cases, PSMs assigned to a non-canonical or 6FT-ORF were a mixture of peptides from the canonical protein and the

ORF. This most commonly occurred where the ORF was a 5’-terminal extension of the canonical protein (thus meaning that the

smallest set of proteins necessary to account for all observed peptides included the ORFs alone). In these cases, the peptides

corresponding to the canonical protein were separated from those unique to the ORF, generating two separate entries. In a single

case, PSM were assigned to the 6FT-ORF 6FT_6_ORF1202_676aa, which is a 5’-terminal extension of the non-canonical ORF

ORFL147C. The principles described above were used to separate these two ORFs.

Proteins were quantified by summing TMT reporter ion counts across all matching peptide-spectral matches using ’’MassPike’’, as

described previously (McAlister et al., 2014). Briefly, a 0.003 Th window around the theoretical m/z of each reporter ion (126, 127n,
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127c, 128n, 128c, 129n, 129c, 130n, 130c, 131n, 131c) was scanned for ions, and the maximum intensity nearest to the theoretical

m/z was used. The primary determinant of quantitation quality is the number of TMT reporter ions detected in each MS3 spectrum,

which is directly proportional to the signal-to-noise (S:N) ratio observed for each ion. Conservatively, every individual peptide used for

quantitation was required to contribute sufficient TMT reporter ions (minimumof�500 per spectrum) so that each on its own could be

expected to provide a representative picture of relative protein abundance (McAlister et al., 2014). An isolation specificity filter with a

cutoff of 50% was additionally employed to minimise peptide co-isolation (McAlister et al., 2014). Peptide-spectral matches with

poor quality MS3 spectra (more than 9 TMT channels missing and/or a combined S:N ratio of less than 100 across all TMT reporter

ions) or noMS3 spectra at all were excluded from quantitation. Peptidesmeeting the stated criteria for reliable quantitation were then

summed by parent protein, in effect weighting the contributions of individual peptides to the total protein signal based on their

individual TMT reporter ion yields. Protein quantitation values were exported for further analysis in Excel.

For protein quantitation, reverse and contaminant proteins were removed, then each reporter ion channel was summed across all

quantified proteins and normalised assuming equal protein loading across all channels. For further analysis and display in Figures,

fractional TMT signals were used (i.e. reporting the fraction of maximal signal observed for each protein in each TMT channel, rather

than the absolute normalized signal intensity). This effectively corrected for differences in the numbers of peptides observed per

protein.

For pulsed SILAC experiments, after protein assembly, medium-labelled peptides (measuring protein degradation), and heavy-

labelled peptides (measuring protein synthesis) were extracted then re-assembled into medium- and heavy-labelled proteins using

an in-house script written in Python (version 2.7). Protein normalisation across reporter ion channels again assumed equal protein

loading (i.e. for each TMT channel, the summed protein S:N including all medium- and heavy-labelled proteins was the same).

For each protein, values were further normalised to the time 0 sample for display in Figures. For all TMT or pSILAC experiments,

normalised S:N values are presented in Table S1 (‘Data’ worksheet). For SILAC immunoprecipitations, normalisation assumed equal

protein loading across all samples.

Although peptides were assigned appropriately to HLA-A alleles, it was not possible confidently to assign peptides to only two

HLA-B or HLA-C alleles. For the 5 HLA-B or HLA-C alleles that had the greatest summed number of peptides across all experiments,

signal:noise values were further summed to give a single combined result for HLA-B or HLA-C.

Hierarchical centroid clustering based on uncentered Pearson correlation, and k-means clustering were performed using Cluster

3.0 (Stanford University) and visualised using Java Treeview (http://jtreeview.sourceforge.net) unless otherwise noted. Multiple

sequence alignment was performed using Clustal Omega (http://www.ebi.ac.uk/Tools/msa/clustalo/) provided by EMBL-EBI.

Comparative Data Analysis Using Proteome Discoverer
To compare data generated using ‘‘MassPike’’ with another platform, we re-analysed raw MS files for the 12, 18 and 24 h inhibitor

experiments using Proteome Discoverer 2.2 (Thermo Fisher Scientific) (Figure S7). Data were searched in Sequest against an

identical combined database to that described in the ‘‘Data analysis’’ section. Searches were performed using a 20 ppm precursor

ion tolerance and fragmentmass tolerance of 0.5 Da. TMT tags on lysine residues and peptide N termini and carbamidomethylation of

cysteine residues were set as static modifications, and oxidation of methionine residues was set as a variable modification.

Percolator (https://noble.gs.washington.edu/proj/percolator/) was used to control the fraction of erroneous protein identifications,

with a peptide false discovery rate of 1% for ‘high’ confidence PSMs and 5% for ‘medium’ confidence PSMs. Proteins were subse-

quently filtered to attain a final protein-level FDR of 1% (‘strict’ criteria) or 5% (‘relaxed’ criteria). Protein assembly was guided by

principles of parsimony. MS3 spectra were used for reporter ion based quantitation with a most intense centroid tolerance of

20 ppm. An average reporter S:N value of 10 was used for quantitation and an isolation specificity filter with a cutoff of 50% was

employed to minimize peptide co-isolation. Peptides meeting these criteria were summed by parent protein, and quantitation values

were exported for further analysis in Excel. For protein quantitation, reverse and contaminant proteins were removed, and then each

reporter ion channel was summed across all quantified proteins and normalised assuming equal protein loading across all channels.

Histone Proteomic Ruler
The cellular concentrations of viral proteins in whole cell lysates from the 6 h pSILAC experiment (Figure 7A) were calculated using a

‘proteomic ruler’ approach implemented in the Perseus plugin (http://www.coxdocs.org/doku.php?id=perseus:user:plugins:

proteomicruler:estimatecopynumbers) (Wisniewski et al., 2014). This used the mass spectrometry signal of histones from the 6 h

HCMV-infected sample to scale other proteins of unknown concentration from the same sample. Briefly, intensity values that had

been normalised assuming equal protein loading across all samples were imported into Perseus. Molecular weights of all human

and canonical HCMV proteins were obtained from Uniprot. Predicted masses of non-canonical HCMV ORFs and six-frame transla-

tions were obtained using an online molecular weight calculator (https://www.bioinformatics.org/sms/prot_mw.html). Scaling was

using the histone proteomic ruler, assuming a ploidy of 2.

RNAseq Data Analysis
RNA samples were collected in biological triplicate. Reads were aligned to the Human genome (hg19) and HCMV Merlin

strain genome (NC_006273.2) using the aligner STAR version 2.5.2b (http://code.google.com/p/rna-star/). Read counts for each

gene/transcript were determined using HTSeq version 0.6.1 (https://pypi.org/project/HTSeq/) with the following optional

parameters: –m union,-r pos,-i transcript_id,-a 10,–stranded=no. For human genes, normalisation assumed equal human reads
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per run; HCMV reads were not included in this normalisation since by 72 h HCMV accounted for a significant proportion of all reads

(0h: <0.01%, 24 h: 4.7-5.8%; 72 h: 41.8-42.3% HCMV reads). For HCMV, reads for each barcode were normalised assuming equal

total reads (human plus HCMV) per sequencing run. Reads per Kilobase per Million (RPKM) values were calculated in Excel and

further normalised to 1. Mean and standard error of the mean (SEM) values are shown in Table S1 and Figures 3, 5, S1–S3, and

S5. Although data for HCMV reads is included in Table S1, this analysis may be confounded by overlapping viral transcripts. For Fig-

ure 5F, as UL145 transcripts do not overlap with transcripts from the neighboring UL144 and UL146 genes, the sequences detected

by RNAseq could be reliably ascribed to UL145 (Sun et al., 2007).

Statistical Analysis
The exact value of nwithin figures is indicated in the respective figure legends, and refers to the number of biological replicates. Blind-

ing or sample-size estimation was not appropriate for this study. There were no inclusion criteria and no data was excluded.

Figures 1, S2, S3, and S5. The inhibitor experiments were performed in single replicates at each of 12, 18 and 24 h after infection.

Protein ‘rescue ratios’ were approximately normally distributed (Figure S1B). The method of significance A was used to estimate the

p-value that each ratio was significantly different to 1 (Cox and Mann, 2008). Values were calculated and corrected for multiple

hypothesis testing using the method of Benjamini-Hochberg in Perseus version 1.5.1.6 (Cox and Mann, 2008). A corrected

p-value <0.01 was considered statistically significant.

Figures 2, S2, S3, and S5. The pSILAC experiments were performed in single replicates at each of 6 and 18 h after infection. With

respect to protein concentration, protein degradation typically follows first order kinetics whereas protein synthesis is a zero-order

process. For pSILAC data, the rate of protein decline in mock- and HCMV-infected samples was therefore estimated using exponen-

tial regression in Excel and the formula [protein] (t) = eKdeg x t where Kdeg is the rate constant for degradation, and should be negative

for degraded proteins. A degradation ratio was calculated by rdeg = KdegHCMV/Kdegmock. In cases where this ratio could not be

calculated because Kdegmock was greater than 0, a fold change (FCHCMV) in protein abundance in the HCMV-infected sample at

6 h (6 h pSILAC experiment) or 18 h (18 h pSILAC experiment) was instead used, defined by FCHCMV = 1/eKdeg(HCMV) x t. Protein

half-life was estimated by t1/2 = ln(0.5)/Kdeg. The corresponding rates of protein synthesis were estimated using linear regression

in Excel and the formula [protein] (t) = Ksyn x t where Ksyn is the rate constant for synthesis. We determined if KdegHCMV was signif-

icantly different to Kdegmock, and if KsynHCMV was significantly different to Ksynmock using an in-house script written in R (version

3.4.2). For each peptide, the difference in paired normalised signal:noise values at each of the five measured time points was calcu-

lated. A simple linear regressionmodel without an intercept was fitted to paired difference data from all peptides for each protein, and

a p-value calculated for the null hypothesis of the slope being zero. All p-values were corrected for multiple hypothesis testing using

the method of Benjamini-Hochberg (Benjamini and Hochberg, 1995). A Benjamini-Hochberg-corrected p-value <0.05 was consid-

ered statistically significant.

For Figure 2E, all viral proteins were included where KsynHCMV was significantly higher than Ksynmock at p<0.05. As the measure-

ment of viral proteins in mock-infected samples was at the level of noise, the value of the ratio KsynHCMV/Ksynmock was not consid-

ered. All human proteins were included with KsynHCMV/Ksynmock >3 and p<0.05.

Figures 3, S2, S3, and S5. TheWCL2 experiment was performed using single replicates collected atmultiple time points as detailed

in the figure, apart from the mock sample which was collected in biological duplicate (Weekes et al., 2014). The RNAseq experiment

was performed in biological triplicate at 0, 24 and 72 h after infection. Mean and SEMwere calculated for normalised RPKM values for

each time point 0, 24, 72 h (n=3). Fold change at 24h was calculated from mean RPKM(24 h)/mean RPKM(0h). A similar value was

calculated for 72 h data. A Benjamini-Hochberg corrected student’s t-test was used to estimate the p-value for the hypothesis that a

given transcript was expressed significantly differently at 24 or 72 h compared to mock infection. For protein expression from

experiment WCL2, fold change at time t was calculated from S:N (t) / S:N (0h). p-values that a given protein was expressed signif-

icantly differently at 24 or 72 h compared to mock infection were estimated using Benjamini-Hochberg-corrected significance

A values (Cox and Mann, 2008). XLStat (Addinsoft) was used to calculate the summed distance of each protein from its cluster

centroid (Figure S4), and k-means clustering was performed in Cluster 3.0 (Stanford University).

Figures 5 and S6. The block deletion screens were conducted in partial biological duplicate as detailed below. Two block viral

gene-deletion screens Block1 and Block2 were conducted. For each protein in each screen, a mean (m) and standard deviation

(s) of all normalised S:N values was calculated. In each case, themaximum (x) value was omitted. For example, for HLTF in Figure 5A,

m and swere calculated using values for wt1, wt2, RL10-UL1, RL11-UL11, UL2-UL11, US1-US11, US18-US22, US29-US34A but not

the maximum UL/b’. The formula z = (x – m)/s was then applied to calculate a z-score. Fold change (FC) compared to wild-type (wt)

infection was calculated from normalised S:N values using FC = x/wt1. Because of the limits of multiplexing with TMT, block deletion

viruses AD169 (UL/b’), DUS27-28, DUL13-20, DUS12-17 were only examined in a single screen. All other block deletion viruses were

examined in both screens. For each experiment, a given protein was initially assigned to the block corresponding to the TMT channel

with the maximum S:N. To combine results to assign an overall block to each protein:

For Proteins Assigned to Blocks Studied in Both Screens

If the protein was quantified in both screens and assigned to the same block, z-scores and fold changeswere averaged. For example,

HLA-A11 was assigned to the US1-US11 block in both screens (Figure 5A), so the average of the two z-scores (17.1 and 112.6) was

used to give a combined z=64.8. If the protein was only quantified in one of the two screens, the block assignment, z-score and fold

change from that screen were used (for example, for CXADR, Figure S6B). Otherwise, it was not considered possible to assign an

overall gene block for that protein.
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For Proteins Assigned to One of the UL/b’, US27-28, UL13-20, US12-17 Blocks, Which Were Only Examined in 1/2

Screens

If the protein was quantified in both screens, and assigned to one of UL/b’, US27-28, UL13-20, US12-17 in 1/2 screens, the assign-

ment in the other screen would have been different as these blocks were not examined in duplicate. To assign an overall block, the

following rule was employed: if the z-score of the block assignment in one screen was at least 3.5 higher than the z-score of the block

assignment from the other screen, the z-score and fold change from the former screen were used. For example, ABCC1 was

assigned to the UL/b’ block in Block1 (z=5.44, FC=2.23) and the US29-US34A block in Block2 (z=1.87, FC=1.16). Since the difference

in z-scores was 3.57, the data for Block1 was used.

To confidently assign proteins to viral blocks, stringent criteria were used with a combined z-score of >6 and FC>2 or sensitive

criteria with a combined z-score of >5 and FC>1.5. ABCC1 was therefore assigned to the UL/b’ block by sensitive criteria, in keeping

with our previous data (Weekes et al., 2013).

Figure 6. SILAC immunoprecipitations shown in Figures 6B and 6E were performed in single replicates. p-values were estimated

using Benjamini-Hochberg-corrected significance A from Perseus version 1.5.1.6 (Cox and Mann, 2008).

Figure 7. All experiments in this figure were performed in biological triplicate. p-values were estimated using a 2-way ANOVA (B) or

a two-tailed t-test (D, E, F).

Pathway Analysis
The Database for Annotation, Visualisation and Integrated Discovery (DAVID) was used to determine pathway enrichment (Huang da

et al., 2009). A given cluster was always searched against a background of all proteins quantified within the relevant experiment. For

Figure 4A, DAVID analysis examined all proteins identified as degraded at any of the three time points for the inhibitor screen, proteins

degraded in either of the two time courses for the pSILAC screen, or proteins degraded at either time point for the RNA/protein

screen.

DATA AND SOFTWARE AVAILABILITY

Unprocessed peptide data files for Figures 1, 2, 3, and 5 have been deposited toMendeley Data and are available at http://dx.doi.org/

10.17632/zkgmjzrcyk.1. These files include details of peptide sequence, redundancy, protein assignment raw unprocessed TMT

reporter intensities and isolation specificity. RNAseq metadata, processed data and FASTQ files can be accessed via

GEO: GSE111036. The mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium (http://

www.proteomexchange.org/) via the partner repository PRIDE: PXD009945.
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