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Abstract 12 

Despite an extensive body of theoretical and empirical literature on biparental cooperation, 13 

it is still unclear whether offspring fare equally, better, or worse when receiving care by two 14 

parents versus a single parent. Some models predict that parents should withhold the 15 

amount of care they provide due to sexual conflict, thereby shifting as much of the workload 16 

as possible to their partner. This conflict should lead to offspring faring worse with two 17 

parents. Yet, other models predict that when parents care for their offspring together, their 18 

individual contributions can have synergistic (more than additive) effects on offspring 19 

fitness. Under this scenario, biparental cooperation should lead to offspring faring better 20 

with two parents. We address this fundamental question using a unique experimental design 21 

where we compared offspring fitness when the two parents worked together (biparental 22 

treatment) and when the two parents worked separately (uniparental treatment), while 23 

keeping constant the amount of resources and number of offspring per parent across 24 

treatments. This made it possible to directly compare the biparental treatment to the sum of 25 

the male and female contributions in the uniparental treatment. Our main finding was that 26 

offspring grew larger and were more likely to survive to adulthood when reared by both 27 

parents than a single parent. This is the first empirical evidence for a synergistic effect of 28 

biparental cooperation on offspring fitness and could provide novel insights into the 29 

conditions favouring the evolution of biparental cooperation. 30 

  31 
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Introduction 32 

Biparental care occurs when male and female parents cooperate to provide care for their 33 

joint offspring. Although biparental care is relatively rare, it has evolved repeatedly in birds, 34 

mammals, fishes, amphibians, and insects [1‒3]. In general, biparental care is expected to 35 

evolve when it increases offspring fitness to such an extent that it outweighs the fitness loss 36 

to a caring parent in terms of lost breeding opportunities [4]. Nevertheless, when two 37 

parents cooperate to rear their offspring, conflict inevitably arises over how much each 38 

should contribute towards care [5‒7]. This is because the benefit of care to each parent 39 

depends on the combined effort of the two parents, whereas the cost depends on each 40 

parent’s personal effort [6,8]. Thus, biparental care provides an excellent model system for 41 

investigating the balance between cooperation and conflict between two unrelated 42 

individuals [6,7]. 43 

Due to sexual conflict, each parent is under selection to reduce its personal cost by 44 

shifting as much of the workload as possible over to its partner. Consequently, parents that 45 

are working together are expected to withhold the amount of care they provide towards the 46 

current brood, compared to when working alone [9]. This may result in offspring faring 47 

worse when cared for by two parents than a single parent, as reported in a prior study on 48 

zebra finches [10]. On the other hand, offspring may fare better with two parents if there are 49 

synergistic (more than additive) effects of the individual contributions of the two parents on 50 

offspring fitness [6,11,12]. This is referred to as complementarity and is predicted when 51 

male and female parents specialise in different tasks during care [13]. Under this scenario, 52 

the total beneficial effect of the combined effort of two parents on offspring performance 53 

exceeds the sum of the beneficial effects of each individual parent when they provide care 54 



4 
 

separately. Since sexual conflict and complementarity are not mutually exclusive, it is likely 55 

that there is a balance between cooperation and conflict in most systems [14]. Despite 56 

extensive theoretical and empirical work on biparental care over the past few decades [e.g., 57 

13‒17], it is still unclear whether this balance between cooperation and conflict leads to 58 

offspring faring equally, better, or worse when receiving care by a single parent versus both 59 

parents.  60 

Here, we address this fundamental gap in our understanding of biparental care, using 61 

an experimental design where we compared parental behaviour and offspring performance 62 

when the two parents worked together (biparental treatment) and when they worked 63 

separately (uniparental treatment). The rationale for this design was that there was scope for 64 

sexual conflict and synergy in the biparental treatment, whereas the potential for sexual 65 

conflict and synergy was experimentally removed in the uniparental treatment. We first 66 

measured parental behaviours to investigate (i) whether parents withhold care when 67 

working together, as predicted due to sexual conflict, and (ii) whether the type of care 68 

provided by male and female parents is more divergent when they work together than 69 

separately, indicating task specialisation. We then measured offspring fitness-related traits to 70 

determine whether (i) offspring perform equally well with two parents, as expected if the 71 

beneficial effect of the parents’ individual contributions is simply additive, (ii) offspring 72 

perform better with two parents, as expected if biparental care has synergistic benefits, or 73 

(iii) offspring perform worse with two parents, as expected if parents withhold care due to 74 

sexual conflict. To allow a direct comparison between the biparental treatment and the sum 75 

of the male and female contributions in the uniparental treatment, we kept constant the 76 
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amount of resources and the number of offspring (i.e., the potential workload) per parent 77 

across treatments (Figure 1). 78 

Our study species, Nicrophorus vespilloides, has a number of important attributes that 79 

make it particularly well-suited for this experiment. Firstly, biparental care, female 80 

uniparental care, and male uniparental care all occur in natural populations of this species, 81 

with a relative frequency of 52%, 39%, and 3%, respectively [18,19]. Our biparental and 82 

uniparental treatments therefore match conditions in the wild. Secondly, burying beetles 83 

breed on carcasses of small vertebrates, which provide the sole source of food for the parents 84 

and developing larvae. This made it possible to keep the amount of resources per parent and 85 

offspring constant across treatments by providing the two parents in the biparental treatment 86 

with two carcasses of a standardized size and each parent in the uniparental treatment with 87 

one carcass (Figure 1). Thirdly, parents do not distinguish between their own larvae and 88 

unrelated larvae [20]. This allowed us to standardize the number of offspring per parent by 89 

providing parents with mixed-parentage broods of 30 larvae in the biparental treatment and 90 

15 larvae in the uniparental treatment (Figure 1). Lastly, prior work in burying beetles has 91 

found good evidence for sexual conflict over care, as well as task specialisation during care 92 

[21‒26]. Thus, the potential for both conflict and complementarity makes this species an 93 

excellent study system for investigating whether offspring fare equally, better, or worse with 94 

two parents working together or with a single parent working alone. 95 

 96 

Materials and Methods 97 

Study species 98 
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Biparental care in N. vespilloides is elaborate and complex. Once a carcass is found, parents 99 

bury it into the soil, remove any fur or feathers, deposit antimicrobial secretions to its 100 

surface, and lay eggs around it 24–48 hours after mating [27,28]. When the eggs hatch 101 

approximately 60 hours later [29], the larvae crawl to the carcass and start feeding in a 102 

crater created by the parents on the top of the carcass. The larvae can self-feed, but the 103 

parents also provision larvae with predigested carrion [30]. There is some evidence for sex 104 

differences in parental care with females spending more time provisioning food for the 105 

larvae and staying on the carcass for longer than males [21‒23,26]. Larvae disperse from the 106 

carcass about five days after hatching, which corresponds to the end of the parental care 107 

period. They pupate about 10–12 days after dispersal and eclose as adults about 10–12 days 108 

after pupation. 109 

 110 

Animal husbandry 111 

We used virgin beetles from an outbred laboratory population maintained at the University 112 

of Edinburgh. The beetles used in this study comprised of fifth- and sixth-generation beetles 113 

from lines originally collected in Edinburgh, UK. They were housed individually in 114 

transparent plastic containers (12 × 8 × 2 cm) filled with moist soil and kept at 22oC and a 115 

16h:8h light cycle. All non-breeding adults were fed small pieces of raw organic beef twice a 116 

week. 117 

 118 

Experimental design and procedures 119 

Our experimental design included a biparental treatment, where the two parents worked 120 

together, and a uniparental treatment, where the two parents worked separately (Figure 1). 121 
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We kept constant the number of offspring (i.e., the potential workload) and the amount of 122 

resources per parent across treatments (Figure 1) to allow a direct comparison of parental 123 

effort and offspring performance between the biparental treatment and the sum of the 124 

uniparental male and female contributions. 125 

The parents used in this experiment were mated within two weeks after reaching 126 

sexual maturity (i.e., 10‒24 days after eclosion). We only mated unrelated males and 127 

females that did not share any common ancestors for at least two generations. Just before 128 

mating, we recorded the pre-breeding mass of each parent and measured their pronotum 129 

width using digital calipers. Each experimental pair (n = 130) was then placed in a 130 

transparent plastic container (17 × 12 × 6 cm) filled with 1 cm of moist soil and two freshly 131 

thawed mouse carcasses of a standardized size (10‒12 g). Half of these pairs were randomly 132 

assigned to the uniparental treatment (n = 65) and the other half to the biparental treatment 133 

(n = 65). There was no difference (two-sample t-test: t129 = -0.07, P = 0.95) between total 134 

mass of the two carcasses assigned to the biparental treatment (mean ± SD = 22.03 ± 0.97 135 

g) and the uniparental treatment (22.05 ± 1.29 g). Immediately after egg laying, we 136 

separated the parents from the eggs so that the larvae would hatch in isolation from the 137 

parents. Parents in the biparental treatment were moved jointly, along with the two 138 

carcasses, to a new container with moist soil. Parents in the uniparental treatment were 139 

transferred to separate containers with moist soil, and each parent was provided with one of 140 

the two carcasses given to them initially. 141 

When the eggs started hatching, we used the newly hatched larvae to generate broods 142 

of 15 or 30 larvae for the uniparental or biparental treatments, respectively (Figure 1). All 143 

experimental broods included larvae of mixed parentage to eliminate any effects of parent-144 
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offspring coadaptation [23,31,32]. In this species, parents do not distinguish between 145 

unrelated foster broods and their own broods, as long as the larvae are at the same 146 

developmental stage [20]. Since parents kill any larvae that arrive on the carcass before their 147 

eggs are expected to hatch [33], we only provided parents with a brood once their own eggs 148 

had hatched. We were not able to provide experimental broods to all parents, because we 149 

were limited by the number of larvae that hatched at the same time. Thus, our final sample 150 

sizes were n = 40 for the biparental treatment where both parents cared for a brood of 30 151 

larvae and n = 49 for the uniparental treatment where the male and the female cared 152 

separately for two broods of 15 larvae (Figure 1). 153 

We conducted behavioural observations to compare the amount of care that male 154 

and female parents provided to their offspring in the biparental versus the two uniparental 155 

treatments. These observations were done 24 hours after parents were given a brood, as this 156 

stage in larval development corresponds to a peak in post-hatching care in this species [30]. 157 

We used instantaneous sampling every 1 min for 30 min [21‒24,34]. We recorded the 158 

number of scans that a female spent providing (i) direct care, defined as provisioning food or 159 

interacting with the larvae, and (ii) indirect care, defined as guarding or carcass maintenance 160 

(i.e., deposition of secretions to the surface of the carcass or excavation of the crypt). 161 

We checked the containers daily in the morning and in the afternoon to determine 162 

whether the parents were present on the carcass or were away from the brood in the soil. 163 

Parents that were away for more than two consecutive checks were deemed to have 164 

abandoned the brood and were removed from the boxes to prevent infanticide. Based on the 165 

last observation when the parent was present on the carcass, we were able to estimate the 166 

duration of care by each parent. At the dispersal stage, we recorded the number of surviving 167 
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larvae and measured the total brood mass to calculate average larval mass in each brood. 168 

After being weighed, all larvae from each brood were placed into large transparent 169 

containers (17 × 12 × 6 cm) filled with moist soil. At eclosion, we recorded the number of 170 

individuals that eclosed successfully. These data were used to calculate the survival rate for 171 

each brood from the dispersal stage to the eclosion stage (“survival to adulthood”). We also 172 

measured the parents' post-breeding mass at the dispersal stage. By subtracting each parent's 173 

prebreeding mass from its postbreeding mass, we calculated its overall mass change over the 174 

breeding attempt, which is a measure of somatic investment [34,35]. The parents were 175 

transferred to individual containers (12 × 8 × 2 cm) filled with moist soil. They were 176 

checked twice a week until death to determine their post-breeding lifespan, which served as 177 

a proxy for residual reproductive value [35]. 178 

 179 

Data analysis 180 

We used linear models for continuous traits with normally distributed random errors 181 

(average larval mass at dispersal, parent mass change, and parent post-breeding lifespan). 182 

For discrete traits, we used generalized linear models fitted with a negative binomial error 183 

distribution (brood size at dispersal) or a quasipoisson error distribution (amount of direct 184 

care, amount of indirect care, duration of care). For proportion data (probability of brood 185 

abandonment, offspring survival to adulthood), we used generalized linear models fitted 186 

with a binomial and quasibinomial distribution, respectively. Quasipoisson and 187 

quasibinomial distributions were used to account for overdispersion by including a 188 

dispersion parameter that describes additional variance in the data. 189 
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We first compared parental behaviour and offspring performance between the 190 

biparental treatment and the uniparental treatment. To this end, we calculated the sum of 191 

the male and female contributions for the following variables: amount of direct and indirect 192 

care, duration of care, mass change of each parent, brood size at dispersal, and number of 193 

offspring surviving to adulthood. For average larval mass, we calculated total brood mass by 194 

adding up the brood mass across the two uniparental treatments and divided that by the 195 

total number of larvae across the two broods. Each of these variables was then used as a 196 

response variable with treatment (uniparental or biparental) as a factor. 197 

Carcass size was added as a covariate to the models for average larval mass and 198 

brood size at dispersal, because the amount of resources available may influence offspring 199 

growth and survival, respectively. Based on prior evidence that the parents’ body size can 200 

influence offspring fitness in this species [36,37], we also added male and female pronotum 201 

width as covariates to the models for average larval mass, brood size at dispersal, and 202 

survival to adulthood.  203 

We next compared the behaviours of male and female parents across treatments. The 204 

response variables were amount of direct and indirect care, duration of care, parental mass 205 

change over the breeding attempt, and parent post-breeding lifespan. The explanatory 206 

variables were parent sex (male or female), treatment (uniparental or biparental), and the 207 

interaction between the two. Decisions about which variables to include in the final models 208 

were based on AIC values following criteria from Burnham and Anderson [38]. All analyses 209 

were performed using R version 3.4.2 [39]. The ggplot2 package was used for generating 210 

figures [40].   211 

 212 
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Results 213 

Parental behaviour 214 

Broods received a similar total amount of care (direct care: t86 = 0.83, P = 0.50; indirect care: 215 

t86 = -1.55, P = 0.13; duration of care: t86 = 0.13, P = 0.89) regardless of whether the two 216 

parents worked together (i.e., biparental treatment) or separately (i.e., uniparental 217 

treatment). Nevertheless, examining each sex separately revealed that males provided less 218 

care and females provided more care when working with a partner than when working 219 

alone (Figures 2a, 2b, and 2c). This pattern was true for amount of direct care (treatment × 220 

parent sex: LR 𝜒1,173
2  = 39.83, P < 0.0001), amount of indirect care (treatment × parent sex: 221 

LR 𝜒1,173
2  = 11.29, P < 0.001), as well as duration of care (treatment × parent sex: LR 𝜒1,173

2  = 222 

8.36, P = 0.004). Similarly, females were less likely to abandon the brood in the biparental 223 

(5%) than the uniparental treatment (18%), whereas males were more likely to abandon the 224 

brood in the biparental (35%) than the uniparental treatment (30%) (treatment × parent sex: 225 

LR 𝜒1,173
2  = 4.29, P = 0.038). The average probability of abandonment was the same across 226 

treatments (LR 𝜒1,173
2  = 0.50, P = 0.48). 227 

Females gained more mass and males gained less mass when the two parents worked 228 

together compared to when they worked separately (treatment × parent sex: F1,143 = 8.59, P 229 

= 0.004; Figure 2d). However, total mass change did not differ between the uniparental and 230 

biparental treatments (t86 = 1.33, P = 0.19). Post-breeding lifespan did not depend on sex 231 

(F1,170 = 1.56, P = 0.21), treatment (F1,170 = 0.15, P = 0.70), or the interaction between sex and 232 

treatment (F1,170 = 0.46, P = 0.50). 233 

 234 

Offspring performance 235 
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Larvae reared by parents who worked together were larger at the end of the parental care 236 

period than larvae reared by parents who worked separately (LR 𝜒1,86
2  = 11.18, P < 0.001; 237 

Figure 3a). This difference in average larval mass was not associated with a trade-off 238 

between offspring size and number, since there was no evidence for a difference in brood 239 

size at the dispersal stage between the biparental and uniparental treatments (LR 𝜒1,86
2  = 240 

0.01, P = 0.92). In addition to having a higher larval mass, offspring reared by both parents 241 

had a higher survival rate to adulthood than offspring reared by a single parent (LR 𝜒1,86
2  = 242 

4.83, P = 0.03; Figure 3b). 243 

In terms of the covariates included in the above models, average larval mass was 244 

higher on larger carcasses (LR 𝜒1,86
2  = 4.86, P = 0.028) and when the female was larger (LR 245 

𝜒1,86
2  = 4.12, P = 0.042) but not when the male was larger (LR 𝜒1,86

2  = 0.20, P = 0.65). Brood 246 

size at dispersal was not influenced by the male’s body size (LR 𝜒1,86
2  = 0.08, P = 0.78), the 247 

female’s body size (LR 𝜒1,86
2  = 0.09, P = 0.76), or the size of the carcass (LR 𝜒1,86

2  = 1.16, P = 248 

0.28). Lastly, offspring of larger males (LR 𝜒1,86
2  = 4.03, P = 0.04) and larger females (LR 249 

𝜒1,86
2  = 5.40, P = 0.02) were more likely to survive to adulthood. 250 

 251 

Discussion 252 

In this study, we first tested (i) whether parents withhold care when working together, as 253 

predicted due to sexual conflict, and (ii) whether the type of care provided by male and 254 

female parents is more divergent when they work together than separately, indicating task 255 

specialisation. We found that males, but not females, provided less care when working with 256 

a partner, and there was no evidence for task specialisation. We then tested whether (i) 257 

offspring perform equally well with two parents, as expected if the beneficial effect of the 258 
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parents’ individual contributions is simply additive, (ii) offspring perform better with two 259 

parents, as expected if biparental care has synergistic benefits, or (iii) offspring perform 260 

worse with two parents, as expected if parents withhold care due to sexual conflict. In 261 

accordance with the second scenario, we found that larvae reared by both parents were 262 

larger at the end of the parental care period and more likely to survive to adulthood than 263 

offspring reared by a single parent. To our knowledge, this is the first empirical evidence for 264 

a synergistic effect of biparental care on offspring fitness. Below, we offer potential 265 

explanations for our results and discuss their implications for our understanding of 266 

biparental care. 267 

Our first main finding was that parents adjusted their effort depending on whether 268 

they were caring alone or together. Males provided less care, whereas females provided 269 

more care, when working with a partner. This pattern may be a consequence of sexual 270 

conflict over care where males, but not females, withheld the amount of care they provided 271 

to shift some of the workload over to their partner. This would suggest that females were 272 

exploited by males, because they were forced to increase their effort to compensate for their 273 

partner’s reduced effort. However, an alternative explanation is that females had the upper 274 

hand in sexual conflict over carcass consumption. Previous work on this species suggests 275 

that sexual conflict over carcass consumption is closely linked to sexual conflict over 276 

parental care and may be equally important [24,25]. In our study, females consumed more 277 

of the carcass and gained more mass in the biparental than in the uniparental treatment, 278 

whereas the opposite was true for males. Mouse carcasses are a highly nutritional resource 279 

for parents who feed on the carcass before and during a breeding attempt to replenish their 280 

energy reserves. Thus, if females controlled access to the carcass in the biparental treatment, 281 
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the lower level of care by males might reflect that males were prevented from feeding on the 282 

carcass and were thus unable or unwilling to provide an equal amount of care [24,25].  283 

Our second main finding was that offspring fared better when receiving care by both 284 

parents than a single parent. These synergistic fitness benefits of care were evident before 285 

offspring independence (i.e., larval mass) and persisted after independence (i.e., survival to 286 

adulthood). The mass of a larva at the dispersal stage is a crucially important fitness 287 

component in this species. Because larvae do not feed after dispersal and before eclosion, 288 

larval mass determines adult size [41]. In turn, adult size influences lifespan, fecundity, and 289 

the likelihood of acquiring a carcass for breeding [35,36,42,43]. Thus, the higher larval mass 290 

of offspring reared by two parents may have downstream fitness benefits with respect to the 291 

offspring’s reproductive success as adults. Interestingly, the only other study to directly test 292 

how offspring fare with one versus two parents found the opposite pattern. Using zebra 293 

finches, Royle et al. [10] compared a biparental treatment to a female uniparental treatment 294 

(but not a male uniparental treatment) and showed that nestlings reared by a single female 295 

received more care per offspring than those reared by both parents. This difference in 296 

parental investment had consequences for offspring fitness later in life, with male offspring 297 

from uniparental broods being more sexually attractive than male offspring from biparental 298 

broods [10].  299 

Synergistic effects are predicted when there is task specialisation between male and 300 

female parents [13]. In burying beetles, parents provide care by provisioning food to the 301 

larvae, grooming larvae, maintaining the carcass, and guarding the carcass from predators 302 

and competitors. Under task specialisation, we would expect a greater divergence in 303 

parental care behaviours when parents work together than when they work separately, but 304 
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this was not the case here. We found that female parents provided more direct care (food 305 

provisioning) and more indirect care (carcass maintenance) in the biparental treatment than 306 

the uniparental treatment, whereas male parents provided less direct care and less indirect 307 

care in the biparental than the uniparental treatment. Thus, even though there were sex 308 

differences in care (with females providing more care than males), there was no evidence for 309 

task specialisation.  310 

Our study provides no evidence for the mechanistic basis of the synergistic effects we 311 

observed, but one possibility is that they were driven by differences in carrion consumption 312 

between treatments. Given that carrion consumption by the parents can negatively affect 313 

offspring fitness in this species [44], the lower offspring performance in the uniparental 314 

treatment could be due to higher carcass consumption by the parents. However, this 315 

explanation is not supported by our results, since there was no difference in the parents’ 316 

total mass change between treatments. 317 

A more likely explanation is that these synergistic effects are related to a component 318 

of parental care that we did not measure directly. For example, N. vespilloides parents deposit 319 

oral and anal fluids onto the carcass during larval development. These secretions contain a 320 

wide range of compounds, which have been shown to increase larval survival by facilitating 321 

the vertical transmission of symbiotic microbiota [45] and by preventing bacterial and fungal 322 

growth on the decomposing carcass [27]. In the absence of these secretions, microbes can 323 

compromise larval health and degrade the quality of the carcass as a food resource to the 324 

offspring [27]. The lysozymes in these secretions can vary between individuals [46], so 325 

secretions from two parents are likely to be more diverse than secretions from a single 326 
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parent. We encourage future research to investigate the mechanistic basis of the synergistic 327 

effects of biparental cooperation. 328 

Overall, this work shows that offspring fare better in broods with two parents despite 329 

one of the parents providing less care (in this case, the male). These findings contradict the 330 

assumption that sexual conflict between parents reduces offspring fitness by causing parents 331 

to withhold parental investment [10,47]. We suggest that synergistic effects may be more 332 

common than currently appreciated and that the lack of empirical evidence for 333 

complementarity may be due to the lack of studies explicitly testing for it. It is important to 334 

note that it is not possible to detect synergistic effects by only studying parents who are 335 

providing care together (as is typically done in most studies of biparental care). Instead, it is 336 

essential to use an experimental design where some parents are allowed to work together 337 

and some work separately, while the number of offspring per parent is kept constant. 338 

In conclusion, our study provides evidence for a synergistic effect of biparental care 339 

on offspring fitness by showing that offspring grow better and are more likely to survive to 340 

adulthood when reared by two parents working together than by a single parent working 341 

alone. Evolutionary theory has long considered the role of synergistic effects [11,13,17], but 342 

until now, we have lacked empirical support for their existence. Our results can therefore 343 

provide valuable insights into the conditions that might favour the evolution of biparental 344 

care. 345 
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Figure 1. Experimental design illustration (not drawn to scale). Males (blue) and females 474 

(orange) in the uniparental treatment were separated after egg laying and were each 475 

provided with one mouse of a standardized size and a mixed-parentage brood of 15 larvae. 476 

Parents in the biparental treatment were allowed to stay together and were provided with 477 

two mice of a standardized size and a mixed-parentage brood of 30 larvae.  478 
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Figure 2. Boxplots showing the amount of direct care (a), amount of indirect care (b), 489 

duration of care (c), and mass change (d) by males (blue) and females (orange) in the 490 

uniparental (n = 49) and biparental (n = 40) treatments. Direct care refers to food 491 

provisioning and interactions with larvae (e.g., grooming). Indirect care refers to carcass 492 

maintenance and guarding. The amount of direct and indirect care provided by parents was 493 

measured using scan sampling during 30-min behavioural observations. Duration of care 494 

refers to the number of days each parent was present on the carcass before abandoning the 495 

brood. Filled circles indicate individual data points with the size of the circle representing 496 

the frequency of observations.  497 
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Figure 3. Boxplots showing average offspring mass (a) and number of surviving offspring 506 

(b) at the dispersal stage in the uniparental (green) and biparental (purple) treatments (n = 49 507 

and n = 40, respectively). Filled circles indicate individual data points with the size of the 508 

circle representing the frequency of observations. 509 
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