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Abstract—This paper examines the effect of a sinusoidal theory. The results were also necessary and sufficient. In this
dither in a relay feedback system. The use of dither in achieving paper, we extend the results in [10], [11] to design sinusoidal
signal stabilization and quenching of limit cycles is well known — gjiher signals that will result in stable oscillations of lower
in nonlinear systems. This paper shows that forced oscillations . ) .
(FO) of higher frequencies will produce a lower amplitude and ampl'tUdeS _thgn the un-d!thered RFS. A bound on the dither
achieve a reduction in the amplitude of oscillations for dither ~Period, T, is first determined based on the response of the
periods below a certain value T’;. The analytical expression and  linear system. For any sinusoidal dither with periBd< 17,
numerical value of T are obtained for first and second order  the oscillation amplitudes in the RFS can be guaranteed to
plants. For higher order systems, a series of the delayed version decrease monotonically with decreasifig. The amplitude

of the Tsypkin Locus is used to identify 7';. For the desired . . . ..
frequency of FO, the required dither amplitude is determined of the dither signal can be designed based on the analysis in

accordingly. Simulation studies are presented to illustrate the [10], [11]. This result is much stronger than other previous
results. results because bounds obtained are tight and requires no

approximation. It exploits the specific structure of the relay
and the linear system, allowing exact responses to be written
and analyzed.
The paper is organized as follows. The problem formu-
Switching is an important concept widely used to controlation is presented in Section Il. Section Ill presents the
certain behaviours in a device. In power electronics, fotumerical approach to identify the bound on the dither
instance, switching is used effectively in the control ofperiod. Complete solutions for first and second order plants
converters. The problem with switching, however, is thadill be presented in Section IV. Applications are given in
it causes great difficulties in the analysis of the behaviouection V. Section VI presents the conclusions.
in the overall nonlinear system, especially for discontinuous
systems. For example, in the dithered RFS considered in Il. PROBLEM FORMULATION
Luigi lannelli et al. [1], [2], only an approximate analysis was Consider the RFS with a sinusoidal dither signal), as
proposed despite having a very specific dither signal. Theshown in Fig. 1. The linear syster@(s), is assumed to have
analysis resulted in a lower bound of the dither frequency state space description and together with the relay element,
which guarantees the stability of the nonsmooth system. Thiee closed loop system RFS is given by
final bound was also shown to be conservative.

Keywords: relay feedback systems, sinusoidal dither

I. INTRODUCTION

To the best of our knowledge, and as pointed out in it) = Az(t)+ Bu(t - L) @)
Pervozvanski and Canuda de Wit [3], a rigorous analysis for c(t) = Cxz(t)
dithered discontinuous system such as that of a dithered RFS y(t) = c(t)+ f(t) = c(t) + Rsin(wyt)
does not exists. The common approach is to approximate ho y(t) <0
the original discontinuous dithered system with a smooth u(t) = { —h y(t)>0 2)

system. Stability can be proven for a sufficiently high dither
frequency by the use of the classical averaging theoryhereh >0, u,c € R are the input and output, respectively,
formerly developed by Zames and Shneydor[4], [5], [6] for € R™*' is the state vector > 0 is the time delay
continuous nonlinear systems. Other related works can B&tweenu ande, A € R™*™ is Hurwitz and assumed to be
found in Mossaheb[7], Luigi lannelli et al.[8] and Lehmannon-singular,B € R™*" andC € R**™. In the frequency
and Bass[9]. Their results showed that a sufficiently higdomain, G(s) = Y (s)/U(s) = e **C(sI — A)~'B and
frequency dither can reduce the limit cycles in the ditheresdilgC G(s) =0.
system to a negligible ripple but exact conditions on the The problem we address is the designf¢f) to achieve
dither periods and amplitudes were not given. a reduction in the amplitude of oscillations in the RFS.
In our previous work on forced oscillation in RFS [10], The approach is based on the concept of forced oscillations
[11], we have given very specific conditions for the design ofFO) [12]. Our analysis starts with the identification of the
external sinusoidal dither signals that can induce oscillatio®und, T}, below which the oscillation amplitude decreases
of the same frequency as this dither signal. The analysisonotonically asl’; decreases. Due to space constraints, the
given was exact and does not rely on any approximatiominimum amplitude of the dither signal required to establish



FO will not be shown here. However, the reader is referredan be identified. This is shown in Figure 3 for a plant with

to [11] for details on how to determine the minimum dithertransfer functionG(s) = Wgo_oo% whereT; = 0.7207.

amplitude. Once T} has been identified, the remaining task is to

determine the minimum amplitude of the dither signal in

order for forced oscillations of the same frequency as the
When a RFS undergoes steady state oscillations of freither signal to take place in the RFS. This can be done using

quencyw = 27 /Ty, the inputs to the linear elemer®(s), the results in [11]. Due to space constraints, this will not be

is a square wave with period;;. The response ofi(s) is shown here. This approach guarantees that the oscillations in

also periodic with maximum amplitudes which are dependemthe RFS can be reduced if the dither signal is appropriately

on the frequency of the input square wave. The relationshighosen.

between the maximum amplitudes and the frequency of theln the next section, an analysis of first and second order

input signal is nonlinear. It is conceivable that f6Ks) plants will be presented to characterize the naturé’ofor

with multiple lightly damped modes, one can expect that théhese classes of plants.

function of maximum amplitudes with respect to frequency

will exhibit several resonance peaks as shown in Figure 2 for

G(s) = 1000/(s + 65* + 58.255% + 211.25s2 4 629.25s + A. First Order Systems with Delay

471.25). In this exampleT’; is identified to be the first peak _ In first order systems with delay, at steady state, T;)

in Figure 2 ieT} = 1.04. should be written in two parts due to the dlscont|nu|ty

. _ _ , lting f the del ith ref to (3), fo
For thisG(s), the undithered RFS oscillates with a penodi_esiJ IEQUE?T I e_ 7_(; ai _}Il Wﬁlgrfe;rceL 2 (7_) < rLf
and amplitude of0.3446 and134.6915 respectively. Hence, u(t— L —7) = h. By normalizingZ w.r.t Ty /2 27

we can see that if the RFS can be dithered to oscillate at

[11. | DENTIFICATION OFT}‘

IV. SPECIAL CASES

periods belowl’; = 1.04, then it is possible to control the at,Ty) = Ce*z(0) +C(e* — AT Ba(-1)" T,
oscillation amplitudes to between 2.24 and 2.13. telo,L— nﬁ} ©)
From the above example, it is clear that the solution for 2
T will not be straight forward. In this section, a simple  c2(t.Ty) = Ce™2(0) +C(2e"(" pind) oAt )
approach will be proposed to firifl;. Consider the steady AT'BR(—=1)", te (L a5 ﬂ] (10)
state plant outpute(t,Ty) for an input square wave with 22
periodT; where wherez(0) is given in (4) andz floor(2 f) It is assumed
t that the initial conditionz(0 corres(Joonds to the positive
ct,Tf) = Cez(0) +/ ANyt — L — 7)dr (3) switching edge of the relay at steady state. It follows that
T _10 AL (T et Ty) = Ce*Az(0) + CedBh(—1)",
(0) = _(Ite 7 (2 te (0,L—n (11)
—eAF) — 1) (-1)" A~ Bh. ) 2 v,
ea(t, Tf) = CettAz(0) + C(2eA - LHn57) _ Aty
Since this is a steady state analysis, titre 0 corresponds Bh(-1)", t e [L LT Q} 12)
to the positive switching edge of the relay. Suppose the ’ 27 2

maximum amplitude ot(t,7) occurs att = to. Thenty is  Note thatz(0) is positive (negative) when is odd (even) and

determined by the following optimization problem : |CeAtAz(0)] < |Ce”t Bh|. Accordingly,é (t, Ty) is positive
(negative) whem is odd (even) whilez,(t, ng is negative
to = argmaxc(t, Ty). (®)  (positive) for the same. This implies that:(t, Ty) is either
increasing or decreasing monotonically in eac t|me segment
In state space representation, the derivative(6fT) is and the maximum amplitude occurstat L —nT/2. This
maximum is given by :
¢(t,Tr) = C(Az(t) + Bu(t — L)) (6) KA
T I —e"2 _
and the peak amplitude occurring @at= t, can be written |CZ(L_”?f7Tf)| = IC(Iin)A 'Bh|. (13)
as : +ets
Aty Aty . From (13), it can be seen that the amplituféz(L —
c(to,Ty) = Ce™z(0)+C(e™ —1)A™ Bh. (7) n%),Tﬂ decreases a@ decreases for the stable first order

To further determine the peak amplitude with respecttp delayed plant whered < 0. This will be shown in the

differentiatec(to, T'y) with respect tol'’y as follows : following example.
Example 1:ConsiderG(s) =
de(to, T, dt, d dt,
C(d()#ff) = Ce™0 42(0 )dz? + Celto ;(f) +Ce™ Bhor > dithered RFS of period’; = 0.8 and 0.3 are plotted in
é) Figure 4. It can be seen that the amplitude of the dithered

Equating (8) to zero, the turning points ofty,Ty) with  system is smaller than that of the undithered case. The
respect tal’y can be obtained either analytically or numeri-minimum amplitude of the dither signal required to produce
cally. By plottingc(to, Ty) againstl’y, the set(0,7;) where the desired oscillations ar& = 0.54,0.38 for 7y/2 =

the amplitude of oscillation decreases monotonically With 0.8,0.3 respectively. Figure 5 plots the amplitude of the



oscillation against the period of oscillation for a range of. Second order plant with complex roots

forcing periods. From the figure, it can be seen that the rqor 5 second order plant with complex roots, denoted by

smaller the period of the dither signal, the smaller is thg 1 ;; its state space representation can be written as

amplitude of oscillations in the RFS. 01; —(a® +b2) 24], B = [01]7, C = [ ). For plants
Remark 1:It is not surprising that the amplitude of oscil- y;ipy pole excess of twog = [1 0] and the turning point,

lation increases with increasing period of the dither signgjs e output is given by

because first order plants have monotonic responses. Its first

order derivative is also directly affected by the switch in the  ;/ — ltanfl( bz3(0)

) 17

relay. Thus for each half period of the square wave input b (a® +b*)21(0) — az2(0) — 1

into the plant, its output increases if the half period is largeror ¢t = t,, the output amplitude for varying@’; is given
The relationship is also monotonic. by (7). The boundl’s where the amplitude of oscillation
B. Second order plants with distinct real roots c(to, Ty) decreases monotonically witfy for the set(0, 77)

For a second order plant with distinct real roots, its statl detérmined by equating (8) to zero, which givgs= =

+ .
space representation in controllable canonical formtis- Wherem & NT. Thus, for a second order system with
01; —M\As (A1 +Mo)], B=1[01]" andC = [¢; ¢2] where complex roots, the amplitude of the limit cycle decreases

A1 < A2 < 0 are the roots of the plant. . monotonlcaIIQy with decreasing period fdfy € (0,7%)
Following the steps in Section I, a closed form soluuonNhereTJt = O,

for fo Is 1 At L= mn o (0) = 8b(a? + b?)e" F sinbY = 0 and

to = 5T 14 ty =0o0rty=Ty/2in (17). Hence, the value dF}‘ can also
Aidz(cr + eara)z1(0) — (1 ha + e2A2)z2(0) — (1 + ear). D€ identified from the Tsypkin Locus, which plots values of
Az (er 4 caA1)z1(0) — (c1A1 + c2A2)22(0) — (1 + caha) )- c(t,Tr) and ¢(t, Ty)/wy att = Ty /2 for varying Ty. This
For plants with pole excess of twe,= [1 0] andt, is is demonstrated in the following example. _

Example 3:Consider a second order plant with transfer

I' = In

to = L c1M12221(0) — c12222(0) — . @s) function, G(s) = 55500560 With complex roots at
A= ahAez(0) - ariza(0) —a s = —1 4 4.36i. The Tsypkin Locus in Figure 7(a) shows
Substituting (15) into (8), that the outer spiral with(7/2,T) increases in magnitude
de(to, Ty)  _ ayrogy, 92100\ ageg d22(0) | d=i(0) o from zero to about 0.15 before spiralling in with lower mag-
dTy P dTy ) e dTs ' aTy (16) nitudes. Hence the maximuffy corresponding to maximum
where 2, (0) — —Xz tanh(0.25)\12Tf)+)\1tQanh(O.25)\2Tf) and magnitude can be dptermined by_the point which crosses
— tanh(0.25)\1 T )+tanh(0.2>:51)\>\22T_§\1)\2 the. V'?X'S or the point Correspondl.ng i1y /2, Ty) - O
22(0) = TR *- are the states of(0)  This givesT’; /2 = 0.7207. The amplitude of the oscillation
andt, = MiAQ In (E:zﬁggggiﬁﬁj) is plotted against the period of oscillation in Figure 7(b)
In (16), which verifies the results obtained from the Tsypkin Locus.
d21(0) Fron_1 the figure_, it can be seen that f6f /2 = 0.7207, the
Ao ar,; = 0.5secl{0.25\,T%) > 0 maximum amplitude is about 0.15.
and D. Second order plant with repeated roots
dz5(0 dz1(0 For a second order system with repeated root3;atits
dT(f) — M dT(f) = —0.5sech{0.250,T) < 0. state space representationlis= [0 1; —\? 2\],b = [0 1]7,

¢ = [c1 e2] whereX; < 0.

As A\ < Xy < 0, tg is positive and it is not difficult For plants with pole excess 6 t, is given by

to see that (16) is negative, which implies that the output

c(to, Ty) is monotonically decreasing wit;. The amplitude —22(0)e

le(to, Ty)| increases withTy. At large values of7y, the 22(0)A1c1 — A221(0)c1 +
lant’s output signak;(¢, T'r) saturates at a steady state value, .  de .

Fnuch like ?he fi?st olr;r(derfc)ase. Thuj = cc. Y and the change in the output amplltugfédtoT,Tf) given by
Note that the Tsypkin Locus, which plots values of At 42(0) :exlzo(d'zl(o)

to = (18)

dz1(0) dz2(0)

c(t, Ty /2) vs é(t, Ty /2) Jwy for different frequencies at the  “¢" "4z, Tar, Mogp, T ) 19

switching instants = Tf/_2, can also be used to identify; . The states of 2(0) are given by x(0) —

Example 2 illustrates this. —05M Ty 4sinh(uTy) o 0 = - 0.5T
Example 2: ConsiderG(s) = m with poles ats = A7(1+cosh(0.5A1Ty)) 22 5T - 1+cosh(0.5MTy) "

—2 ands = —3. The Tsypkin Locus is shown in Figure 6(a). From (18), to = —rmsar, +iresmosnr,y: Which is

The magnitude of:(7y/2,Ty) increases ag’/2 increases positive. The factor in élg),

and saturates at7/2,7y) = —0.1667 whenT} = co. The dz1(0) d2(0)

amplitude of the oscillation is plotted agair#t/2 in Figure ar, (1 Arto) Flo=an = (20)

6(b). From the figure, it can be seen that the larger the period 0.5T; sinh(0.5A1 Ty ) 1

of oscillation, the larger the amplitude. T (1 +cosh(05MTy))2 O(cosh(0.5)\1Tf))



is negative, which implies that the outpt(t,, ) is mono- 13 that the amplitudes of the oscillations are indeed reduced
tonically decreasing and the amplitutt€zy, Ty)| increases with a dither frequency higher than that of self oscillation.
with 7. Thus, T} = oco. The value ofT;/Q can also be Figure 14 plots the oscillation amplitudes for a sine dither
identified from the Tsypkin Locus. This result is the samand a sawtooth dither where the dither amplitudes(a0&

as that for two second order plants with real and distinand frequencies &0 Hz. It can be seen that the oscillation
roots. amplitude for the system with a sinusoidal dither is smaller.

E. Higher order non-delayed plants VI. CONCLUSION

As shown in the first and second order cases, the TsypkinIn this paper, the potential of using a sinusoidal dither
Locus is a good way to determin®; if t, is known. in reducing inherent system oscillations has been illustrated.
For higher order systems, may not coincide with0 or The bound on the dither perio?ﬂ’}f was determined both
T /2, unlike the first and second order systems. The delaygwimerically and analytically for the first and second order
version of the Tsypkin Locus, which is the plot afto, T) plants. For the higher order systems, a series of the delayed
against:(to, Tr)/w; can actually be used to determineand  version of the Tsypkin Locus was used to identify.
the set(0, T}‘) where the amplitude decreases monotonousteduced oscillations of the desired frequency were achieved
with period_ If we p|ot the de|ayed Tsypkn Locus for aWIth the Corresponding dither amplitude required. The reduc-
series oft, and identify t, where c(to, T;) reaches its tion in oscillation amplitude by the sinusoidal dither is seen
maximum amplitude7’; will be the point corresponding to 0 be significant.
¢é(to, Ty) = 0. An example is shown to illustrate this point.

Example 4:Consider a fourth order plant with transfer
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