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Abstract
Let R be a commutative Noetherian ring and α an automorphism of R. This paper addresses
the question: when does the skew polynomial ring S = R[θ;α] satisfy the property (�),
that for every simple S-module V the injective hull ES(V ) of V has all its finitely generated
submodules Artinian. The question is largely reduced to the special case where S is primitive,
for which necessary and sufficient conditions are found, which however do not between them
cover all possibilities. Nevertheless a complete characterisation is found when R is an affine
algebra over a field k and α is a k-algebra automorphism—in this case (�) holds if and only if
all simple S-modules are finite dimensional over k. This leads to a discussion, involving close
study of some families of examples, of when this latter condition holds for affine k-algebras
S = R[θ;α]. The paper ends with a number of open questions.
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1 Introduction

A Noetherian ring S whose simple modules have the property that their finitely generated
essential extensions are Artinian is said to satisfy property (�). For commutative rings S the
validity of (�) is due to Matlis, proved in his famous 1958 paper [30]; a brief survey of work
on this topic in the years since then is given below, in Sect. 1.3. This paper focusses on (�)
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for the skew polynomial rings S = R[θ;α], where R is a commutative Noetherian ring and
α is an automorphism of R, with the indeterminate θ satisfying the relations θr = α(r)θ for
all r ∈ R. When such a skew polynomial ring S satisfies (�) turns out to be a surprisingly
subtle question, which we do not completely settle here, and which leads naturally to other
fundamental representation-theoretic questions concerning these rings.

We are led to pay particular attention to two separate but overlapping cases—first, when
S is a primitive ring; and second, when R is an affine algebra over a field. We outline our
main results for these two settings in Sects. 1.1 and 1.2 respectively. Here and throughout,
given a ring R and an R-module V , ER(V ) will denote the R-injective hull of V .

1.1 When S is primitive

Using relatively standard methods involving the second layer condition we show that, for
every commutative Noetherian ring R, S = R[θ;α] satisfies (�) if and only if ES(V ) is
locally Artinian for every simple S-module V whose annihilator Q is induced from R. Here,
“induced from R” means that Q = (Q ∩ R)S. This reduction is achieved in Corollary 3.5,
thereby focussing attention on the case where S = R[θ;α] is primitive, since S/(Q∩ R)S ∼=
R[θ;α], where R = R/Q ∩ R and α denotes the automorphism of R induced by α.

Making heavy use of the characterisation of primitive skew polynomial rings [29], we
prove:

Theorem 1.1 Let R be a commutative Noetherian ring, let α be an automorphism of R, and
let S = R[θ;α]. Suppose that S is primitive.

(a) If R has Krull dimension 0 then S satisfies (�).
(b) Suppose that R contains an uncountable field. Suppose also that either R has Krull

dimension at least 2, or Spec(R) is uncountable. Then S does not satisfy (�).

The above is Theorem 5.4; its proof occupies Sects. 4, 5. Clearly, the above necessary
and sufficient conditions don’t exhaust all possibilities, and we leave the closure of the gap
between (a) and (b) as one of a number of open questions raised by the paper.

1.2 When R is affine

Theorem 1.1 is however sufficient to settle the case where R is a finitely generated algebra
over an uncountable field k, with α a k-algebra automorphism:

Theorem 1.2 Let k be an uncountable field and R an affine k-algebra, and letα be a k-algebra
automorphism of R. Let S = R[θ;α]. Then the following are equivalent:

(a) S satisfies (�);
(b) all simple S-modules are finite dimensional k-vector spaces.

This is Theorem 6.1. The direction (b) ⇒ (a) follows from known considerations based
on the second layer condition, and doesn’t require the cardinality hypothesis on k. In fact,
following verywelcome input from JasonBell [2] and the application of deepmodel-theoretic
work [20], Theorem 6.1 can be extended to countable fields, at least when k has characteristic
0—see Remark(ii) following Theorem 6.1.

Theorem 1.2 begs the obvious question: for which commutative affine k-algebras R and
k-algebra automorphisms α are all the simple S-modules finite-dimensional? This question
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seems to be hard, but we can at least answer it in the most obvious special case, namely when
R is a polynomial algebra and α is a linear automorphism:

Theorem 1.3 Let k be a field, t a positive integer, V a vector space over k with basis
{x1, . . . , xt } and α ∈ GL(t, k) an automorphism of V . Let R = k[x1, . . . , xt ], so that α

induces a k-algebra automorphism of R, also denoted by α. Then S := R[θ;α] satisfies (�)

if and only if all simple S-modules are finite dimensional if and only if |α| < ∞.

Beyond this positive result, we demonstrate the complexity of the above question bymeans
of detailed analysis of some families of examples in Sect. 7. These include an example, Exam-
ple 7.4 , originally studied by Jordan [25], giving an affine domain in characteristic 0 where
all the simple S-modules have finite dimension, but α has infinite order. Using deep results on
group algebras, we also provide many similar examples in positive characteristic (Examples
7.3).Most notably,we undertake a detailed study of the algebras SC,t,α = C[x1, . . . , xt ][θ;α]
when t = 1 or 2 and α is an arbitrary C-algebra automorphism. But even for t = 2 our
analysis is incomplete, and leads to delicate issues having connections to dynamical systems
and to algebraic geometry.

1.3 Historical background

For commutative Noetherian rings (�) is an immediate consequence of the Artin-Rees prop-
erty, formally recorded as part of Matlis’s seminal 1958 paper [30] on injective modules over
such rings. In 1959 Philip Hall proved (�) for group rings RG of finitely generated nilpotent
groups G, provided R is either Z or a locally finite field. In 1974 this result was extended,
independently by Jategaonkar [23] and Roseblade [39], to polycyclic-by-finite groups G,
building on earlier celebrated work of Roseblade [38] on the finite dimensionality of the sim-
ple RG-modules for these group rings. Hall and Roseblade were motivated by applications
to the structure of finitely generated soluble groups.

Motivated by applications to Jacobson’s conjecture, Jategaonkar proved in 1974 [22]
that (�) is satisfied by fully bounded Noetherian rings, thus incorporating Noetherian rings
satisfying a polynomial identity (PI) and so generalising the commutative case. Musson [32]
gave the first examples of Noetherian rings for which (�) fails, by showing that the group
algebra kG of a polycyclic-by-finite groupG over a field k which is not locally finite satisfies
(�) only ifG is abelian-by-finite, that is only if kG satisfies a PI. In so doing he thus delineated
the limits of the earlier results of Hall and Roseblade.

More recent work has discussed (�) for differential operator rings [7], [40], down-up
algebras [6] and quantised Weyl algebras [8]. Musson [34] gives a brief survey of results on
property (�) up to 2010.

1.4 Layout

Preliminary observations and notation regarding property (�) and skew polynomial rings are
in Sect. 2. Section 3 contains a summary of the necessary background on the second layer
condition, leading up to Corollary 3.5, which essentially allows us to focus on the case where
S = R[θ;α] is a primitive ring. The analysis of primitive skew polynomial rings is contained
in Sects. 4 and 5: the key result of Sect. 4 is the construction of a faithful simple S-module
whose injective hull is not locally Artinian when R is an α-simple domain which is not a
field. This is Proposition 4.10, which then allows us to deduce Theorem 1.1 (= Theorem 5.4).
In Sect. 6 Theorem 1.1 is applied in the setting where R is an affine algebra over the field
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k and α is an algebra automorphism, to deduce Theorems 1.2 and 1.3 (= Theorems 6.1 and
6.2). Section 7 is devoted to a careful analysis of the simple modules and the prime spectra
of a number of examples, and families of examples, of skew polynomial algebras over a
commutative affine Noetherian domain R. These examples may well have interest beyond
the immediate question at hand, namely the validity of (�). Finally, in Sect. 8 we gather
together and briefly discuss the open questions which have arisen in the course of this work.

All rings considered are associative with identity and all modules are unitary and are right
modules unless stated otherwise.

2 Preliminaries

2.1 Formulation and preservation of (�)

Recall that a module M is a subdirect product of a family of modules {Fλ} if there exists
an embedding ι : M → ∏

λ∈� Fλ into the product of the modules Fλ such that, for each
projection πμ : ∏

λ∈� Fλ → Fμ, the composition πμι is surjective. The following lemma is
due to Hatipoğlu and Lomp, [17].

Lemma 2.1 [17, Lemma 2.1] Given a ring R, the following conditions are equivalent:

(a) R satisfies (�);
(b) every right R-module is a subdirect product of locally Artinian modules;
(c) every finitely generated right R-module is a subdirect product of Artinian modules.

Recall that a ring extension T ⊆ S is called a finite normalizing extension if there exists
a finite set {s1, . . . , sn} of elements of S such that S = ∑n

i=0 si T , with si T = T si , for
i = 1, . . . , n. Part (a) of the next result is due to Hatipoğlu and Lomp, [17, Proposition 2.2],
while (b) is adapted from the work of Hirano [19, Theorems 1.8, 1.11].

Proposition 2.2 Let S be a finite normalizing extension of a ring T .

(a) If T satisfies (�), then so does S.
(b) Assume also that T is Noetherian and a direct summand of S as a left T -module. If S

satisfies (�), then so does T .
(c) If I is an ideal of S and S satisfies (�), then so does S/I .

Proof (a) See [17, Proposition 2.2].
(b) Let M be a finitely generated right T -module, so M ⊗T S is a finitely generated right

S-module. By hypothesis and Lemma 2.1 there exists a family {Mλ} of S-submodules of
M ⊗T S such that each (M ⊗T S)/Mλ is Artinian and

⋂
λ Mλ = 0. Since T is a direct

summand of S as a left T -module, M can be identified with a right T -submodule of
M ⊗T S. Fix λ. Then M/(M ∩ Mλ) is isomorphic to a T -submodule of (M ⊗T S)/Mλ.
By [12, Theorem 4], (M⊗T S)/Mλ is Artinian as an S-module if and only if it is Artinian
as a T -module. Now, note that

⋂
λ(M ∩ Mλ) = 0, so the result follows from Lemma

2.1(c).
(c) This is trivial, since ES/I (V ) ⊆ ES(V ) for any S/I -module V . ��
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2.2 Skew polynomial algebras of automorphism type

Let R be a ring and letα be an automorphismof R. The skewpolynomial ring of automorphism
type, S := R[θ;α], is the ring of polynomials in θ with coefficients in R subject to the relation
θr = α(r)θ for all r ∈ R.

We shall maintain the notation S, R, θ, α throughout the paper.

Often, R will in addition be commutative or Noetherian, but we will nevertheless state
these hypotheses as required in our results, for emphasis. A right ideal I of R is said to be
α-stable if α(I ) = I . We say that R is α-simple if (0) and R are the only α-stable ideals
of R. An α-stable ideal P of R is α-prime if, for all α-stable ideals I and J of R, I J ⊆ P
implies that I ⊆ P or J ⊆ P . The ring R is said to be α-prime if its ideal (0) is α-prime,
and is called α-simple if its only α-stable ideals are (0) and R.

The following well known facts can be found in [31, §10.6].

Lemma 2.3 Let R be a right Noetherian ring, α an automorphism of R and S = R[θ;α].
(a) A right ideal I of R is α-stable if and only if α(I ) ⊆ I .
(b) If I is an α-stable ideal of R, then I S is an ideal of S and the ring S/I S is isomorphic to

(R/I )[θ;α], where α is the automorphism of R/I induced by α. The ideal I S is prime
if and only if I is α-prime.

(c) If P is a prime ideal of S such that θ /∈ P then P ∩ R is an α-prime ideal of R.
(d) If P is an α-prime ideal of R, then there exists n ∈ N and a minimal prime Q over P

such that P = ⋂n
i=0 αi (Q).

A convenient mechanism to construct interesting simple S-modules is as follows.

Lemma 2.4 Suppose that u is a central unit of a right Noetherian ring R and S = R[θ;α].
(a) The lattice of right α-ideals of R is isomorphic to the lattice of S-submodules of

S/(u − θ)S.

Suppose additionally in (b) and (c) that R is commutative.

(b) The right S-module S/(u − θ)S is simple if and only if R is α-simple.
(c) Suppose that R is also a domain with no proper idempotent ideals; for example, R could

be a Noetherian domain. Then S/(u − θ)S is an Artinian right S-module if and only if
R is α-simple.

Proof (a) Notice that, for any element r ∈ R,

rθ = θα−1(r) = −(u − θ)α−1(r) + uα−1(r). (1)

Let N be an α-stable right ideal of R. Then (1) and the centrality of u in R yield that
J := (u − θ)S + N is a right ideal of S.
Let J be a right ideal of S with (u − θ)S ⊆ J . Let w ∈ J . Using division by the monic
polynomial u − θ we can find h ∈ S and r ∈ R such that w = (u − θ)h + r and
J = (u − θ)S + N follows for N := J ∩ R. Moreover, applying (1) with r ∈ N and
using our assumptions on u, it follows that α−1(N ) ⊆ N . By Lemma 2.3(a), N is an
α-stable right ideal of R. This completes the proof of (a).

(b) This is a direct consequence of (a).
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(c) Suppose that S/(u − θ)S is Artinian as a right S-module. Let I be a proper α-stable
ideal of R. It follows from (a) that there exists n ∈ N such that I n = I 2n . The stated
hypotheses force I to be (0), so R is α-simple. The converse is given by (b). The Krull
Intersection Theorem [10, Corollary 5.4] ensures that Noetherian domains satisfy the
stated hypothesis. ��

3 Reduction to the primitive case

3.1 The second layer condition

Given a non-zero module M over a right Noetherian ring T , an affiliated submodule of M is
a submodule of the form AnnM (P) = {m ∈ M : mP = 0}, where P is an ideal of T which
is maximal amongst the annihilators of non-zero submodules of M . It is easy to see that such
an ideal P is a prime ideal of T , [16, Proposition 3.12]. An affiliated series for M is a series
0 = M0 ⊂ M1 ⊂ · · · ⊂ Mn = M of submodules of M , such that for each i ∈ {1, . . . , n},
Mi/Mi−1 is an affiliated submodule of M/Mi−1. The ideals Pi := AnnT (Mi/Mi−1) are
called the affiliated primes of M with respect to the given series. Full details are in [16,
Chapter 8], for example.

We briefly recall here the key ideas we need from the theory of prime links for Noetherian
rings. For more details, see for example [16, Chapter 12], [24]. Let T be a Noetherian ring
and M a finitely generated right T -module. Suppose that

0 ⊂ U ⊂ M (2)

is an affiliated series of M , and suppose that U is an essential submodule of M , with cor-
responding affiliated prime ideals Q and P , so that UQ = 0 = (M/U )P . To understand
the possible relations between the modules U and M/U , normalise (2) by replacing M if
necessary with a submodule M ′ of M properly containing U such that I := AnnT (M ′) is
maximal amongst the annihilators of those submodules of M which properly contain U .
Notice that PQ ⊆ I . With this normalisation, we continue to write M for the replacement
module.

Then, by Jategaonkar’s so-called Main Lemma, [16, Theorem 12.1], [24], there are two
possibilities: either

(a) PQ ⊆ I ⊂ P ∩ Q, and (P ∩ Q)/I is torsion-free as a left T /P-module and as a right
T /Q-module; or

(b) P ⊂ Q and MP = 0.

In partial converse, if (a) holds for primes P and Q of T , then a right T -module M exists
as above, with U [resp. M/U ] being T /Q [resp. T /P]-torsion-free, [16, Theorem 12.2]. If
case (a) holds, we say that there is a link from P to Q, and we write P � Q. If case (a) holds
and U is T /Q-torsion-free, then M/U is T /P-torsion-free. On the other hand, if (b) holds,
then both M and M/U are T /P-torsion.

A Noetherian ring T is said to satisfy the (right) strong second layer condition (s.s.l.c.)
if, for every prime ideal Q of T , only case (a) can occur in the setting of (2). The formally
weaker (right) second layer condition (s.l.c.) holds for T if, for all primes Q, only case (a)
occurs when U is in addition required to be T /Q-torsion-free.

Those Noetherian rings satisfying the s.s.l.c. form an important and large subclass. For our
purposes, the key result in this direction is the following proposition. Recall (for example,
from [16, page 224]) that a Noetherian ring T is AR-separated if, for every prime ideal Q of
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T and ideal I with Q ⊂ I ⊂ T , there is an ideal J of T with Q ⊂ J ⊆ I such that J/Q has
the Artin-Rees property in T /Q.

Proposition 3.1 [16, Theorem 13.4] If the Noetherian ring T is AR-separated, then it satisfies
the s.s.l.c.

For example, Noetherian rings satisfying a polynomial identity and enveloping algebras
of finite dimensional solvable Lie algebras are AR-separated, [24]. Of more relevance for us,
however, is:

Proposition 3.2 [36]Let R be a commutativeNoetherian ring,α ∈ Aut(R) and S = R[θ;α].
(a) Then S is AR-separated, and hence satisfies s.s.l.c.
(b) Let P be a prime ideal of S such that (P∩R)S = P. Then P has the Artin-Rees property.

In particular, if P � Q or Q � P, then Q = P.

3.2 The second layer condition and (�)

Lenagan’s Lemma, [16, Theorem 7.11], guarantees that if T is a Noetherian ring and P and
Q are prime ideals of T with P � Q, then T /P is Artinian if and only if T /Q is Artinian.
From this and Jategaonkar’s Main Lemma the following well-known consequence follows
easily:

Proposition 3.3 Let T be a Noetherian ring satisfying the s.l.c. and let V be a simple right
T -module with Q := AnnT (V ). Suppose that T /Q is Artinian. Then every finitely generated
essential extension of V is Artinian.

We are now in a position to deal with property (�) for many simple modules over skew
polynomial rings.

Theorem 3.4 Let R be a commutative Noetherian ring, α ∈ Aut(R) and S = R[θ;α]. Let V
be a simple right S-module and let Q = annS(V ). If (Q ∩ R)S ⊂ Q, then S/Q is Artinian
and (hence) every finitely generated essential extension of V is Artinian.

Proof Suppose first that θ ∈ Q. Then Q/θ S is a primitive ideal of the commutative ring
S/θ S � R, so S/Q is a field. Therefore the desired property of V follows from Propositions
3.2(a) and 3.3.

Suppose now that θ /∈ Q and (Q ∩ R)S ⊂ Q. Then Q ∩ R is α-prime by Lemma 2.3(c).
By [21, Theorem 4.3] the order of the automorphism of R/(Q ∩ R) induced by α is finite.
Hence, by [9, Corollary 10], S/(Q ∩ R)S � (R/(Q ∩ R))[θ;α|R/(Q∩R)] is a ring satisfying
a polynomial identity. By Kaplansky’s Theorem [4, Theorem I.13.3] applied to the primitive
ideal Q/(Q ∩ R)S of S/(Q ∩ R)S, we deduce once again that S/Q is Artinian. Thus, again,
ES(V ) is locally Artinian by Propositions 3.2(a) and 3.3. ��

The following corollary of Theorem 3.4 in large part reduces the analysis of (�), for skew
polynomial rings S of automorphism type, to the case where S is a primitive ring. Recall
that a Noetherian ring T is polynormal if for every pair of distinct ideals I and J of T with
I ⊂ J , there is an element a ∈ J\I such that aS + I = Sa + I .

Corollary 3.5 Let R be a commutative Noetherian ring, α ∈ Aut(R) and S = R[θ;α].
Consider the following statements:
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(a) S satisfies (�);
(b) ES(V ) is locallyArtinian for every simple right S-module V whose annihilator Q satisfies

Q = (Q ∩ R)S;
(c) every primitive factor of S of the form S/(P ∩ R)S satisfies (�).

Then (a) and (b) are equivalent and imply (c). If additionally either S is polynormal or every
primitive ideal P of S of the form P = (P ∩ R)S is generated by a normal element, then all
the above statements are equivalent.

Proof (a)⇔(b) is a consequence of Theorem 3.4. That (a)⇒(c) follows from Proposition
2.2(c).

If S satisfies one of the additional hypotheses then (c)⇒(a) follows from Theorem 3.4
combined with [24, Theorem 9.3.4]; see also [5, Lemmas 6.1 and 6.3]. ��

4 The primitive case

4.1 Primitive skew polynomial rings

We begin by recalling the results of [29], where Leroy and Matczuk presented necessary and
sufficient conditions for the primitivity of S = R[θ;α]; see also [25].

Definition 4.1 Given a ring T and α ∈ Aut(T ), T is α-special if there is an element a of T
such that the following conditions are satisfied.

(a) For all n ≥ 1, Nα
n (a) := aα(a) . . . αn−1(a) �= 0.

(b) For every non-zero α-stable ideal I of T , there exists n ≥ 1 such that Nα
n (a) ∈ I .

When this occurs, the element a is called an α-special element.

From the definition it follows easily that an α-special ring is α-prime. Clearly, an α-simple
ring is α-special, with 1 as α-special element in this case. However, there are α-special rings
which are not α-simple. Consider, for example, the ring R of formal power series k[[X ]],
where k is a field containing an element q which is not a root of unity. Let α be the k-algebra
automorphism defined by setting α(X) := qX . Then X is an α-special element of R, but
〈X〉 is a proper α-ideal of R.

Here is the characterisation of primitivity:

Theorem 4.2 [29, Theorem 3.10] Let R be a commutative Noetherian ring and let α ∈
Aut(R). Then S = R[θ;α] is primitive if and only if R is α-special and α has infinite order.

In the proof of Theorem 4.2, given a Noetherian PI ring R and an automorphism α of R
with α-special element a, the authors build a simple faithful module over S = R[θ;α] of the
form S/M , where M is a maximal right ideal of S containing (1 − aθ)S. Following similar
ideas, we show in the proposition below that, when R is commutative, (1−aθ)S is actually a
maximal right ideal; this will be important for us in the sequel. Note also that the proposition
provides a proof that the conditions on α in Theorem 4.2 are sufficient for primitivity of S
when R is commutative.

Proposition 4.3 Let R be a commutative Noetherian ring and let α ∈ Aut(R) be such that R
is α-special with a an α-special element of R. Let S = R[θ;α]. Then (1−aθ)S is a maximal
right ideal of S. If in addition α has infinite order, then V := S/(1− aθ)S is a faithful right
S-module.
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Proof First note that since a is a regular element of R by [29, Lemma 1.2], (1 − aθ)S �= S.
Let J be a right ideal of S such that M := (1 − aθ)S ⊂ J . We claim that

J ∩ R �= (0). (3)

Let n ≥ k and let

f = anθ
n + · · · + akθ

k ∈ J\(1 − aθ)S,

with f of shortest possible length �( f ) := n − k. Suppose that �( f ) > 0. Then, since
1 ≡ aθ (mod M),

akθ
k ≡ aθakθ

k ≡ aα(ak)θ
k+1 (mod M).

Thus, f ≡ g (mod M), where

g := anθ
n + · · · + (ak+1 + aα(ak))θ

k+1,

so that �(g) < �( f ). This contradicts our choice of f , and so �( f ) = 0. That is, 0 �= anθn ∈
J . But now J also contains α−1(an)θn−1, because

anθ
nα−n(a) = aanθ

n = aθα−1(an)θ
n−1 ≡ α−1(an)θ

n−1(mod M).

This implies that α−n(an) ∈ J , so (3) holds.
Next, observe that J ∩ R is an α-stable ideal of R, since, if r ∈ J ∩ R, then

α−1(r) ≡ aθα−1(r) = rθα−1(a) (mod M),

so that α−1(r) ∈ J . Therefore, as a is an α-special element of R and J ∩R is non-zero and α-
stable, there exists k ∈ N such that (aθ)k ∈ J . But then (aθ)k−1 = (1−aθ)(aθ)k−1 + (aθ)k

and so (aθ)k−1 ∈ J . It follows that 1 ∈ J and (1 − aθ)S is maximal, as required.
To prove the last statement, assume that α is of infinite order. Let P = AnnS(V ). Then

P ⊆ (1 − aθ)S, so P ∩ R = (0) and P does not contain θ . By [21, Theorem 4.3] as R is
α-prime and α has infinite order, every non-zero prime ideal of S which intersects R in (0)
contains θ , so P = (0). ��
Remark 4.4 For use in Sect. 5, we record here a further property of the simple module V
defined in Proposition 4.3. Retain the notation of the proposition, and define A to be the
multiplicative subsemigroup of R\{0} generated by {αi (a) : i ∈ Z}. Then A consists of
regular elements of S, and is easily seen to form an Ore set in that ring. We claim that

V is an A-torsion free simple right S-module.

By the proposition, V is simple, so it is either torsion or torsion free. Since a is a regular
element of S, for all h ∈ S\{0}, the degree in θ of (1 − aθ)h is one more than the degree of
h. Hence (1 − aθ)S ∩ R = 0. Therefore 1 + (1 − aθ)S ∈ V is not A-torsion, and so V is
A-torsion free.

4.2 Reduction to the case where R is a domain

To achieve the reduction as in the title of the subsection we need the following lemma:

Lemma 4.5 Let R be a commutative Noetherian ring, let α ∈ Aut(R) and set S = R[θ;α].
Suppose that S = R[θ;α] is prime. Then:
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(a) R is α-prime, and so there exist n ∈ N and a prime ideal Q of R such that
{Q, α(Q), . . . , αn−1(Q)} is the set of minimal primes of R, with ∩n−1

i=0 αi (Q) = (0).
(b) In the setting of (a), if S is primitive then (R/Q)[θn;αn] is primitive.
Proof (a) This is clear from Lemma 2.3(c),(d).
(b) With the notation of (a), let T := R[θn;αn]. Notice that QT and its α-conjugates are

the minimal prime ideals of T . Suppose that V is a faithful simple right S-module. By
[12, Theorem 4] V has a (finite) composition series as a T -module,

0 = V0 ⊂ V1 ⊂ · · · ⊂ Vt = V .

Set Pi := AnnT (Vi/Vi−1), for i = 1, . . . , t , so that

V (Pt Pt−1 . . . P1) = 0.

Since V is by hypothesis a faithful S-module, Pt Pt−1 . . . P1 = (0). Hence there exists
j , 1 ≤ j ≤ t , with Pj ⊆ QT , and the minimality of the prime ideal QT of T ensures
that Pj = QT .
That is, Vj/Vj−1 is a faithful simple T /QT -module, as required. ��
The above lemma, with an equivalence in (b), can be found as [29, Corollary 2.2] with a

different proof.

Lemma 4.6 Let R be a commutative Noetherian ring, α an automorphism of R, and S =
R[θ;α].
(a) Let n ≥ 1 and let T = R[θn;αn]. Then S satisfies (�) if and only if T satisfies (�) .
(b) Suppose that R is α-prime, with Q and n chosen as in Lemma 4.5(a). If S satisfies (�)

so does T /QT � (R/Q)[θn;αn].
Proof (a) This follows immediately from Proposition 2.2, since S as a T -module is free with

a basis formed by the normal elements 1, θ, θ2, . . . , θn−1.

(b) Clear from (a) and Proposition 2.2(c). ��

4.3 (�)When R is an˛-simple domain

To investigatewhich primitive skewpolynomial rings over a commutativeNoetherian domain
R satisfy (�), we first consider the case when R is α-simple. We preface the proposition with
three lemmas needed for its proof.

Lemma 4.7 Let α be an automorphism of the commutative ring R, and suppose that the
α-orbit of every non-zero prime ideal of R is infinite. Let P = {P1, . . . , Pt } be a finite set of
non-zero prime ideals of R. Then there exists a positive integer n such that, for all i = 1, . . . , t
and for all j ∈ Z\{0},

α jn(Pi ) /∈ P.

Proof For each i , there is a positive integer ni such that {αni t (Pi ) : t ∈ Z} ∩P = {Pi }. Thus
n := ∏

i ni is as required. ��
Lemma 4.8 Let α be an automorphism of the commutative ring R, let S = R[θ;α], and let
ρ be a non-zero non-unit of R. Then S/ρS is not an Artinian right S-module.
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Proof We claim that the chain

θ S + ρS ⊇ θ2S + ρS ⊇ · · · ⊇ θmS + ρS ⊇ · · · ,

of right ideals of S is strictly descending. In order to prove this, suppose that m ≥ 0 and
θm ∈ θm+1S + ρS = Sθm+1 + ρS, say θm = pθm+1 + ρq for p, q ∈ S. Then ρq ∈ ρSθm .
This implies that 1 ∈ Sθ + ρS, contradicting the fact that ρ is not invertible. ��
Lemma 4.9 Let α be an automorphism of the ring R, S = R[θ;α], and let ρ be a regular
non-unit of R. Let {rλ : λ ∈ �} be a set of coset representatives for ρR in R. Then every
element m of M := S/ρ(1 − θ)S has a unique expression

m =
k∑

i=�

rλi θ
i + ρb + ρ(1 − θ)S,

where b ∈ R and either (i) the part of the expression under the summation symbol is 0, or
else (ii) � ≤ k ∈ Z≥0 with rλ�

, rλk �= 0.

Proof Since S = R ⊕ (1 − θ)S as right R-modules and S ∼= ρS as right S-modules, the
desired expression using coset representatives {ρb : b ∈ R} for the elements of the submodule
ρS/ρ(1−θ)S of M is clear. Representation of elements of M by the listed elements follows,
since S/ρS ∼= R/ρR ⊗R S as right S-modules. ��
Proposition 4.10 Let R be a commutative Noetherian domain which is not a field, α an
automorphism of R and suppose that R is α-simple. Then S = R[θ;α] does not satisfy (�).
Moreover, there is n ∈ N such that S/(1 − θn)S is a finite length S-module whose injective
hull is not locally Artinian.

Proof Let ρ ∈ R be a non-zero non-unit of R, and let P = {P1, . . . , Pt } be the set of
annihilator primes in R of the R-module R/ρR. Thus ρR ⊆ Pi for all i = 1, . . . , t , and the
inverse image in R of every minimal prime of R/ρR is in P , but there may also be further
primes in P . We divide the proof in two cases.

Case 1.
α j (Pi ) /∈ P for all j ∈ Z\{0}, 1 ≤ i ≤ t . (4)

Since R is commutative and α-simple, S/(1−θ)S is a simple S-module by Lemma 2.4(b).
That is, V := ρS/ρ(1 − θ)S is a simple submodule of M := S/ρ(1 − θ)S. By Lemma 4.8,
M is not an Artinian S-module. We shall prove that

V is an essential submodule of M; (5)

that is, the thesis holds for n = 1 in this case.
Let p be a non-zero element of M and apply Lemma 4.9 to write

p =
k∑

i=l

rλi θ
i + ρb + ρ(1 − θ)S (6)

for unique b ∈ R and coset representatives rλi for ρR in R. Here, as in Lemma 4.9, either
the summation part of the expression for p is 0, so that p ∈ V , or we fix � and k so that rλ�

and rλk are non-zero. In the former case we define the length �(p) of p to be 0, and in the
latter case we define the number of i for which rλi is non-zero to be the length �(p) of p. The
strategy of the proof is to show that, if �(p) > 0, then a non-zero element of strictly shorter
length can be found in the submodule pS of M .
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Sublemma 1 If �(p) > 1, then pS contains a non-zero element p̂ with 0 < �( p̂) < �(p).

Proof of Sublemma 1 Amongst those terms in the expression (6) for p with rλi �= 0, choose
rλ j such that rλ j R + ρR/ρR has a maximal annihilator ideal Q which has minimal height
amongst all the maximal annihilators in R of the non-zero R modules in the list {rλi R +
ρR/ρR : � ≤ i ≤ k}. Let r ∈ R be such that

AnnR(X) = Q

for every non-zero R-submodule X of rλ j r R + ρR/ρR. Now multiply p by α− j (r), to get

p1 := pα− j (r)

= rλ j rθ
j +

∑

i �= j

rλi α
i− j (r)θ i + ρbα− j (r) + ρ(1 − θ)S.

Observe that, since we are assuming �(p) > 1, the summation over i in the above expression
is not empty. If one or more of the terms appearing under the summation symbol features
rλi α

i− j (r) ∈ ρR, then the proof of the sublemma is complete, taking p̂ := p1. Suppose
then that this is not the case, and choose w, � ≤ w ≤ k, w �= j , such that rλwαw− j (r)R
has a maximal annihilator ideal J which is maximal amongst annihilator ideals of non-zero
elements of the R-modules in the collection {rλi αi− j (r)R+ρR/ρR : i �= j}. Choose r̂ ∈ R
such that

AnnR(rλwαw− j (r )̂r + ρR) = J . (7)

Now multiply p1 by α−w(̂r) to get

p2 := p1α
−w(̂r)

= rλ j rα
j−w(̂r)θ j +

∑

i �= j,w

riα
i− j (r)αi−w(̂r)θ i

+ rλwαw− j (r )̂rθw + ρbα− j (r)α−w(̂r) + ρ(1 − θ)S.

If rλ j rα
j−w(̂r) ∈ ρR then the sublemma is proved. So, suppose on the other hand that

rλ j rα
j−w(̂r) /∈ ρR. (8)

Observe that α j−w(J ) cannot be strictly contained in Q, since

height(Q) ≤ height(J ) = height(α j−w(J )),

thanks to our choice of Q. Moreover, thanks to (4), we cannot have α j−w(J ) = Q. Thus it
is possible to choose x ∈ J with α j−w(x) /∈ Q. Then

p̂ := p2α
−w(x) ∈ pS ⊆ M

satisfies

0 < �( p̂) < �(p),

and the sublemma is proved.

Sublemma 2 Let p ∈ M be written in normal form (6), with �(p) = 1 - that is, � = k and
rλk �= 0. Then there exists u ∈ R such that 0 �= pu ∈ V .

123



Simple modules and their essential extensions for skew polynomial rings 889

Proof of Sublemma 2 Simplifying notation slightly, let p have coset representative

riθ
i + ρb ∈ S\ρ(1 − θ)S, (9)

where 0 �= ri ∈ R\ρR, b ∈ R, and i ≥ 0. We have to show that there exists u ∈ R such that

(riθ
i + ρb)u ∈ ρS\ρ(1 − θ)S. (10)

We prove that (10) is true with u = α−i (ρ). For (riθ i + ρb)α−i (ρ) clearly lies in ρS. On
the other hand,

(riθ
i + ρb)α−i (ρ) ∈ ρ(1 − θ)S

⇔ ρriθ
i + ρbα−i (ρ) ∈ ρ(1 − θ)S

⇔ riθ
i + bα−i (ρ) ∈ (1 − θ)S

⇔ (θ i − 1)α−i (ri ) + α−i (ri ) + bα−i (ρ) ∈ (1 − θ)S

⇔ α−i (ri ) = −bα−i (ρ)

⇔ ri = −ραi (b),

where the penultimate equivalence follows from Lemma 2.4(a). But ri = −ραi (b) is a
contradiction to the initial hypothesis that ri /∈ ρR, so that (10) is true and Sublemma 2 is
proved.

Thus (5) follows at once from the two sublemmas, and V = S/(1 − θ)S is a simple
S-module with an injective hull that is not locally Artinian.

Case 2.Assume that (4) does not hold. Note that if R is α-simple, then R is also αm-simple
for any m ∈ N. Indeed if I is αm-stable proper ideal of R, then Iα(I ) . . . αm−1(I ) = 0 as it
is an α-stable proper ideal, and so I = (0) since R is a domain. Hence also every non-zero
prime ideal has an infinite αm-orbit. Choose n ∈ N such that the conclusion of Lemma 4.7
holds for α and P . By the above we can apply Case 1 to S′ = R[θn;αn] and obtain that
V = S′/(1 − θn)S′ is a simple S′-module with an injective hull that is not locally Artinian.

As an S′-module, S is free with a basis formed by normal elements, 1, θ, . . . , θn−1. The
S-module V ⊗S′ S � S/(1 − θn)S is, as an S′-module, isomorphic to

n−1⊕

i=0

V αi

where V αi
is the S′-module defined by taking V as the underlying Abelian group and setting

v · s = vαi (s), where αi is the automorphism of S′ induced by αi . Since V is simple as
S′-module, so is each V αi

. Hence V ⊗S′ S is a finite length S′-module. Therefore V ⊗S′ S
is a finite length S-module.

Since S is free as an S′-module, V ⊗S′ S ≤ ES′(V ) ⊗S′ S. Write ≤e for “is an essential
submodule of”, and observe that V ⊗S′ S ≤e ES′(V ) ⊗S′ S as S′-modules, and hence a
fortiori as S-modules. So

ES′(V ) ⊗S′ S ≤e ES(V ⊗S′ S).

Since E1 := ES′(V ) ⊗S′ S is contained in ES(V ⊗ S) and is not locally Artinian, there is
a finitely generated S′-submodule M of E1 which is not S′-Artinian. The finitely generated
S-submodule MS of E1. Then MS is finitely generated also as an S′-module, and so, by [12,
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Theorem 4] if MS were S-Artinian, then MS would be S′-Artinian. This is a contradiction,
since M ≤ MS as S′-submodule. So MS is not S-Artinian and ES(V ⊗ S) is not a locally
Artinian S-module, as claimed.

��
In fact it can be shown, using an argument based on [44, Exercise 31 on page 112] that

ES′(V ) ⊗S′ S = ES(V ⊗ S) but we do not give details here since we do not need that fact.

5 Necessary and sufficient conditions for (�)
In handling primitive skew polynomial rings our approach is to strengthen the α-special
property, guaranteed by Theorem 4.2 for such a primitive ring, to the stronger α-simple
condition. This can be achieved by localising at the smallestα-stableOre setA of S containing
the α-special element. However, to apply Proposition 4.10 after this localisation, we need to
exclude the possibility that RA−1 is a field. To achieve this, we need to assume that R is
“sufficiently big” in terms both of the height and the “width” of its lattice of prime ideals, and
that it contains an uncountable field. The technicalities for this are provided by the lemmas
of Sect. 5.1. The key results are then Proposition 5.3 and Theorem 5.4.

5.1 Localisation lemmas

Lemma 5.1 Let T be a ring andA a multiplicatively closed Ore subset of regular elements of
T . If there exists a right T -module V such that ETA−1(V ⊗T TA−1) is not locally Artinian as
a TA−1-module, then ET (V /τ(V )) is not locally Artinian, where τ(V ) denotes theA-torsion
submodule of V .

Proof Suppose that ETA−1(V ⊗ TA−1) is not locally Artinian as a TA−1-module. In par-
ticular V is notA-torsion. Let τ(V ) be theA-torsion submodule of V , then V

τ(V )
⊗ TA−1 �

V ⊗ TA−1. Thus replacing V by V /τ(V ) we may assume that τ(V ) = 0.
It is easy to check that ETA−1(V ⊗T TA−1) is an essential extension of V as a T -module.

In particular this implies that

ETA−1(V ⊗T TA−1) ≤ ET (V ).

Now let e1, . . . , en ∈ ETA−1(V ⊗T TA−1) be such that W := ∑m
j=1 e j TA−1 contains

an infinite descending chain

· · · ⊂ Wi+1 ⊂ Wi ⊂ · · · ⊂ W2 ⊂ W1 = W (11)

of TA−1-submodules of W . For all i , Wi = (Wi ∩ ∑m
j=1 e j T )TA−1, so (11) yields an

infinite strictly descending chain of T -submodules of
∑m

j=1 e j T , as required. ��

The example (already featuring in Sect. 4) of R = k[[X ]] and A = {Xi : i ≥ 0} should
be borne in mind in conjunction with the next lemma.

Lemma 5.2 Let R be a commutativeNoetherian domainwhich is an algebra over an uncount-
able field, but is not itself a field. Suppose that there exists a countable multiplicatively closed
subset A of R\{0} such that RA−1 is the quotient field of R. Then R has Krull dimension 1
and Spec(R) is countable.
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Proof Assume R and A are as above. By [41, Proposition 2.5] every Noetherian ring con-
taining an uncountable field has the countable prime avoidance property. It follows from [27,
Theorem 3.8] that Spec(R) is countable and that each non-zero prime ideal is maximal. ��

5.2 (�)when S is primitive

Recall that the multiplicatively closed α-stable Ore subset A of S generated by an α-special
element a of R was defined in Remark 4.4.

Proposition 5.3 Let R be a commutative Noetherian domain, α an automorphism of R.
Suppose that S = R[θ;α] is primitive, with α-special element a and associated Ore subset
A. Suppose that RA−1 is not a field. Then S does not satisfy (�).
Proof The existence of the element a is guaranteed by Theorem 4.2. Note that RA−1 is
α-simple and SA−1 = RA−1[θ;α] = RA−1[aθ;α]. By Proposition 4.10 there is n ∈ N

such that

ESA−1
(
SA−1/(1 − (aθ)n

)
SA−1)

is not locally Artinian.
Set S′ = R[θn;αn]. Since for any αn-stable ideal I of R, the ideal Iα(I ) . . . αn−1(I ) is

α-stable, it is clear that R is αn-special with the special element b = aα(a)α2(a) . . . αn−1(a).
Thus S′ is primitive and by Proposition 4.3, V = S′/(1 − bθn)S′ = S′/(1 − (aθ)n)S′ is
simple as a S′-module since bθn = (aθ)n .

By similar arguments to the ones at the end of the proof of Proposition 4.10,W := V⊗S =
S/(1− (aθ)n)S is of finite length as S-module. By Lemma 5.1 the injective hull of the finite
length module W/τ(W ) is not locally Artinian and the result follows. ��

We can now give necessary and sufficient conditions for S = R[θ;α] to satisfy (�)

when S is primitive. Unfortunately, however, these two conditions do not together cover all
possibilities.

Theorem 5.4 Let R be a commutative Noetherian ring, α an automorphism of R, and let
S = R[θ;α]. Suppose that S is primitive.

(a) If R has Krull dimension 0 then S satisfies (�).
(b) Suppose that R contains an uncountable field. Suppose also that either R has Krull

dimension at least 2, or Spec(R) is uncountable. Then S does not satisfy (�).

Proof (a) When R has Krull dimension 0, S has Krull dimension 1 by [16, Theorem 15.19].
Since S is a prime Noetherian ring of Krull dimension 1, (�) follows easily (see for
instance [32, Proposition 5.5]).

(b) Suppose that R contains an uncountable field, and that R has Krull dimension 2 or more,
or has uncountably many prime ideals. Let Q be a minimal prime ideal of R, let n ∈ N be
such that the minimal primes of R are {αi (Q) : 0 ≤ i ≤ n− 1}, and set T := R[θn;αn].
By Lemma 4.5(b) T /QT is also primitive, and by Lemma 4.6(b) it is enough to show that
T /QT does not satisfy (�). In other words, in proving (b), we can pass to (R/Q)[θn;αn],
observing that R/Q will like R contain an uncountable field, and have Krull dimension
at least 2 or have uncountably many prime ideals, just as R does. That is, we may assume
additionally that R is a domain in proving (b).
Let a be the α-special element of R guaranteed by Theorem 4.2, withA the α-stable Ore
set it generates. By Lemma 5.2 RA−1 cannot be the quotient field of R. Proposition 5.3
now implies that S does not satisfy (�). ��
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It is straightforward to show that in Theorem 5.4 under the hypothesis (a), the ring R is a
finite direct sum of isomorphic fields.

6 Property (�)when R is affine

The gap between parts (a) and (b) of Theorem 5.4 can be closed so as to determine completely
the occurrence of (�) for S = R[θ;α], provided R contains an uncountable field and has
no α-invariant factors of Krull dimension 1 whose spectrum is countable. In particular, this
allows us to completely settle the matter when R is an affine algebra over an uncountable
field, as follows.

Theorem 6.1 Let k be an uncountable field and R an affine k-algebra, and letα be a k-algebra
automorphism of R. Let S = R[θ;α]. Then the following are equivalent:

(a) S satisfies (�);
(b) all simple S-modules are finite dimensional k-vector spaces.

Proof (b)⇒(a) This follows immediately from Propositions 3.2 and 3.3 and does not require
that k is uncountable.

(a)⇒(b) Suppose that S satisfies (�). Let V be a simple S-module and P = AnnS(V ).
If θ ∈ P , then P/θ S is a primitive ideal of the commutative affine k-algebra R, so V is

finite dimensional over k, thanks to the Nullstellensatz.
Suppose next that (P ∩ R)S ⊂ P and θ /∈ P . Then [21, Theorem 4.3] implies that

S/(P ∩ R)S satisfies a polynomial identity. Since S/(P ∩ R)S is also by hypothesis and
construction a Noetherian affine k-algebra, V is finite dimensional over k by Kaplansky’s
theorem, [4, Theorem I.13.3].

Suppose finally that (P ∩ R)S = P and let Q as usual denote a minimal prime over
P ∩ R in R. If R/P ∩ R has Krull dimension 0, it is a finite direct sum of copies of the field
R/Q := F , by Lemma 2.3(d). Hilbert’s Nullstellensatz ensures that F is finite dimensional
over k, so that some finite power, say n, ofα not only fixes Q, but then also induces the identity
on F . Hence, S/P is a finite (free) module over the commutative ring (R/P∩R)[θn], so S/P
satisfies a polynomial identity and Kaplansky’s theorem applies. Suppose on the other hand
that R/P ∩ R has Krull dimension at least 1. Then, for example using Lying Over and the
Noether normalisation theorem [10, Proposition 4.15 and §8.2.1, Theorem A1], Spec(R/Q)

is uncountable since k is uncountable. By Theorem 5.4(b), this contradicts property (�) for
S. So no such primitive ideals P can exist in S and (b) follows. ��

Remark (i) Notice that (b) ⇒ (a) of this theorem is valid, with the same proof, for an arbi-
trary commutative Noetherian k-algebra over any field. Indeed, if we change statement
(b) to

(b′) S/AnnS(V ) is Artinian for all simple S-modules V ,

then a small adjustment to the argument confirms that (b′) ⇒ (a) is true for all commu-
tative Noetherian coefficient rings R.

(ii) Following circulation of an earlier draft of this paper, Jason Bell [2] has explained to us
how to remove the hypothesis that k is uncountable from Theorem 6.1, at least when k
has characteristic 0. The key point is to obtain a replacement for Proposition 5.3 in the
case where R is k-affine and k has characteristic 0. The substitute result is:
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Proposition 5.3’ Let k be a field of characteristic 0 and let R be a commutative k-affine
domain which is not a field. Let α be a k-algebra automorphism of R. Suppose that
S = R[θ;α] is primitive, with α-special element a and associated Ore subset A. Then
RA−1 is not a field and hence S does not satisfy (�).

With Proposition 5.3’ to hand, one can follow the proof of Theorem 6.1 (a)⇒(b), invoking
5.3’ to handle the crucial case where P = (P ∩ R)S with Q a minimal prime over P ∩ R,
by deducing that then R/Q is a field.

Here is a brief indication of how to prove Proposition 5.3’. First observe that the auto-
morphism α and the α-special element a are defined in a finitely generated field extension K
of Q. We can then work over a finitely generated Z-algebra T whose field of fractions is K .
One can specialise modulo the maximal ideals of T , so to Fq -algebras for prime powers q ,
and apply model-theoretic work of Hrushovski, [20, Corollary 1.2], using the Fq -Frobenius
to see that that the α-special configuration with the localisation at the image of A being a
field is impossible. This conclusion then lifts back to R, proving 5.3’.

Let k be any field, let R be a commutative affine k-algebra and let α be a k-algebra
automorphism of R. In the light of Theorem 6.1 it is natural to ask exactly what conditions
on R and α are required for (b) of Theorem 6.1 to hold. This appears to be quite a subtle
question, which we discuss further in Sect. 7. First, we give here an important special case
in which a complete answer is available:

Proposition 6.2 Let k be a field, t a positive integer, V a vector space over k with basis
{x1, . . . , xt } and α ∈ GL(t, k) an automorphism of V . Let R = k[x1, . . . , xt ], so that α

induces a k-algebra automorphism of R, also denoted by α. Then S := R[θ;α] satisfies (�)

if and only if the order |α| of the automorphism α is finite.

Proof Suppose |α| = n < ∞. Since the commutative Noetherian ring R[θn] satisfies (�),
Lemma 4.6(a) implies that S satisfies (�).

For the converse, suppose that S satisfies (�). Let L be a finite extension field of k such
that the Jordan Normal Form of α exists inGL(t, L). By Proposition 2.2 L⊗k S satisfies (�),
so we may replace R by R̂ = L[x1, . . . , xt ] and S by Ŝ := R̂[θ;α] in proving that |α| < ∞.
Changing the basis of V as necessary, we can assume that α has Jordan Normal Form with
respect to the ordered basis {x1, . . . , xt }. We show first that

every generalised eigenvalue of α is a root of unity in L. (12)

Suppose that (12) is false, so there exists i such that the generalised eigenvalue ai of xi is not
a root of 1. Choose i and j ≤ i so that {x j , . . . , xi } is a basis of the Jordan block of α for the
eigenvalue ai . Then it is clear that

P :=
∑

��=i

x� R̂

is an α-invariant ideal of R̂. Thus P Ŝ � Ŝ, with

Ŝ/P Ŝ ∼= (R̂/P)[θ;α] = L[xi ][θ;α],
slightly abusing notation by writing xi for the image of that element of R̂ in R̂/P , and where
α is the L-algebra automorphism of L[xi ] defined by α(xi ) = ai xi . Thus Ŝ/P Ŝ is a quantum
plane with parameter ai and does not satisfy (�) by [8, Theorem 3.1]. This contradicts the
hypothesis that S and therefore Ŝ satisfy (�), so (12) is proved. (This can also be seen with
the help of Proposition 5.3. Indeed one checks easily that xi is an α-special element of R̂/P ,
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with corresponding α-stable Ore set A in R̂/P equal to {ami xni : m ∈ Z, n ∈ N}. Hence
Ŝ/P Ŝ is primitive and since (R̂/P)A−1 is not a field, we conclude from Proposition 5.3 that
Ŝ/P Ŝ does not satisfy (�).)

Notice also that this completes the proof of the proposition in the case where k, or equiv-
alently L , has positive characteristic, since then the matrix of α lies in GL(t, E) for some
finite field E .

Now suppose L has characteristic 0, and that α is not diagonalisable, so that there is a
Jordan block of α of cardinality greater than 1. Let n be the least common multiple of the
orders of the generalised eigenvalues of α. Replacing Ŝ by R̂[θn;αn], using Lemma 4.6(a),
we may assume that the only generalised eigenvalue of α is 1. We aim for a contradiction to
the hypothesis that Ŝ satisfies (�). Rearranging the order of the basis vectors of V if need be,
we can assume that there is a block of α with basis {xm, . . . , xt }, for some m < t . Consider
now the α-invariant ideal of R̂,

I :=
t−2∑

�=1

x� R̂ + (xt−1 − 1)R̂.

Passing to Ŝ/I Ŝ ∼= (R̂/I )[θ;α] ∼= L[xt ][θ;α], we may assume that

α : xt �→ xt + 1. (13)

One readily checks that Ŝ/I Ŝ is isomorphic to the enveloping algebra of the 2-dimensional
solvable non-abelian Lie algebra over a field of characteristic 0, so it does not satisfy (�), by
[33]; alternatively, since L has characteristic 0, R̂/I is α-simple and one can appeal directly
to Proposition 4.10 to get a contradiction to property (�) for Ŝ. Therefore, α is diagonalisable;
coupling this with (12), the proposition is proved. ��

7 Examples and discussion

We discuss in this section property (�) for S = R[θ;α] when the base ring R is an integral
domain and an affine k-algebra over a field k, and α is a k-algebra automorphism of R. In the
light of Theorem 6.1 and Proposition 6.2, this amounts to examining the interconnections
between the following four hypotheses:

(•) S satisfies (�).
(•) Every simple S-module has finite dimension over k.
(•) S satisfies a polynomial identity.
(•) α has finite order.

We have seen in Sect. 6 that the first two of these are equivalent, that the third and fourth
are equivalent, by [9], and that the third implies the second, by Kaplansky’s theorem, [4,
Theorem I.13.3]. Moreover all four are equivalent when α is a linear automorphism of a
polynomial algebra, by Proposition 6.2.

We first consider, in Sects. 7.1 and 7.2, the application of Theorem 6.1 to the algebras
Sk,n,α := k[x1, . . . , xn][θ;α], where k is a field, n is a positive integer, and α is as a k-
algebra automorphism of k[x1, . . . , xn]. Note that if ξ ∈ A = Aut(k[x1, . . . , xn]), the group
of k-algebra automorphisms of R = k[x1, . . . , xn], then ξ extends to an isomorphism from
R[θ;α] to R[θ; ξαξ−1]. Thus, when convenient, wemay replace α by its conjugate. Here, we
will only consider n = 1 and n = 2, but even for these small values of n the situation turns out
to be surprisingly delicate. The representation theory of Sk,n,α likely has close interactions
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with the dynamical properties of α, as studied for example in [11] and subsequent works;
see for instance [37]. Even for the case n = 2 we are unable to determine whether the first
bullet point above is equivalent to the third and fourth.

We then turn in Sect. 7.3 to algebras S = R[θ;α] occurring as subalgebras of group
algebras kG of torsion-free polycyclic groups G, where k is algebraic over a field of p
elements, p prime. Here, thanks to deep results on the representation theory of these group
algebras, we can easily construct many examples where the first two of the above bullet points
hold, but the second two do not.

In the final subsection, Sect. 7.4, we describe an example due to Jordan (cf. [25]), which
shows that there is no equivalence of the four bullet points for affine algebras in characteristic
0.

7.1 (�) for Sk,1,˛
Here k can be an arbitrary field.As is easy to confirm, the group A of k-algebra automorphisms
of k[x] consists of the affine automorphisms, mapping x to βx + γ , for β, γ ∈ k with β

non-zero.

Proposition 7.1 With the above notation, the following are equivalent.

(a) Sk,1,α satisfies (�);
(b) every simple Sk,1,α-module is finite dimensional over k;
(c) Sk,1,α is a finite module over its centre;
(d) α is of finite order, i.e if β �= 1 then β is a root of unity and if β = 1, γ = 0 when k has

characteristic 0.

Proof The implications (d)⇒(c)⇒(b)⇒(a) are standard. Indeed suppose (d) holds. Then α

is of finite order and by Noether’s Theorem [42, Theorem 2.3.1], (c) follows easily. Moreover
S satisfies a polynomial identity and by Kaplansky’s Theorem [4, Theorem I.13.3] we have
that (c)⇒(b). The implication (b)⇒(a) follows as in Theorem 6.1.

(a)⇒(d) Suppose that Sk,1,α satisfies (�). Note that if β �= 1 then α is conjugate to
α′ ∈ Aut(k[x]) such that α′(x) = βx . Thus by Proposition 6.2 (or [8, Theorem 3.1]) it
follows that β is a root of unity.

If β = 1 and k has characteristic 0 then, by Proposition 4.10, γ = 0. ��

7.2 (�) for SC,2,˛
Consider here SC,2,α = C[x, y][θ;α]. Let A := Aut(C[x, y]), the group of C-algebra
automorphisms of R := C[x, y], and letα ∈ A. Following [43, Proposition 1],α is triangular
if it is conjugate in A to one of the following types of automorphism:

(i) x �→ λx; y �→ μy, λ, μ ∈ C\{0};
(ii) x �→ λx; y �→ y + c, λ, c ∈ C\{0};
(iii) x �→ λx + ∑

{i :λ=μi } ηi yi ; y �→ μy, ηi ∈ C, λ, μ ∈ C\{0}.
As remarked before, throughout the arguments below, we may where convenient replace

a hypothesis that α is conjugate to an element of type (j) by the hypothesis that α belongs to
type (j). A similar comment applies also to the later proofs in this subsection.

Lemma 7.2 With the notation as above, suppose that α is triangular. Then the following are
equivalent:
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(a) SC,2,α satisfies (�);
(b) α is conjugate to an automorphism of type (i), with λ and μ both roots of unity;
(c) α has finite order;
(d) SC,2,α is a finite module over its centre;
(e) every simple SC,2,α-module is a finite dimensional k-vector space.

Proof The implication (b)⇒(c) is clear and (c)⇒(d)⇒(e) follow as in the first paragraph of
the proof of Proposition 7.1. Finally, (e)⇒(a) is a special case of (b)⇒(a) of Theorem 6.1.

To prove (a)⇒(b) suppose that SC,2,α satisfies (�). If α is of type (ii), then xSC,2,α is an
ideal of SC,2,α and SC,2,α/xSC,2,α is isomorphic toC[y][θ;β]where β(y) = y+c for c �= 0.
By Propositions 7.1 and 2.2(c), SC,2,α does not satisfy (�), contradicting our hypothesis.

Suppose alternatively thatα is of type (iii) but not type (i). Since ySC,2,α is an ideal of SC,2,α
and SC,2,α/ySC,2,α is isomorphic to a quantum plane with parameter λ. By Propositions
7.1 and 2.2(c), λ is a root of unity. Since SC,2,α is by hypothesis not type (i), this forces
μ also to be a root of unity. By Proposition 2.2 the subalgebra C[x, y][θn;αn] of SC,2,α
also satisfies (�), so we may pass to that subalgebra for a suitable choice of n, and thus
assume that μ = 1 = λ, (but keep the notation SC,2,α = C[x, y][θ;α]). Let τ ∈ C be
a root of the polynomial

∑
λ=μi ηi yi − 1. Then (y − τ)SC,2,α is an ideal of SC,2,α , with

SC,2,α/(y − τ)SC,2,α isomorphic to C[x][θ;α] and α(x) = x + 1. A contradiction once
again follows from Propositions 7.1 and 2.2(c). ��

We turn now to a consideration of those automorphisms ofC[x, y]which are not triangular.
Again following [43], an element α of A is called square if it is not conjugate to a triangular
automorphism, and, following [11], α is a generalised Hénon automorphism if

α(x) = y; α(y) = λx + β(y)

for some λ ∈ C\{0} and β(y) ∈ C[y], with β(y) having degree at least two.1 By [11,
Theorem 2.6], every square element of A is conjugate to a product of generalised Hénon
automorphisms.2

Let us examine first the prime spectrum of SC,2,α when α is square. We follow initially
in the proof of the following lemma the argument of [25, proof of Proposition 7.8, first
paragraph].

Lemma 7.3 Let α be a square automorphism of C[x, y]. Then Spec(SC,2,α) is the disjoint
union of V(θ) := {P ∈ Spec(SC,2,α) : θ ∈ P}, and C(θ) := Spec(SC,2,α)\V(θ), and these
sets have the following descriptions:

(a) V(θ) is homeomorphic to Spec(C[x, y]).
(b) C(θ) is homeomorphic to Spec(TC,2,α), where TC,2,α := C[x, y][θ±1;α].
(c) Spec(TC,2,α) is partitioned into the following three disjoint subsets.

(i) An uncountable set of co-Artinian maximal ideals {Mj,λ : j ∈ N, λ ∈ C}, all of
height 2;

1 This degree condition is mistakenly omitted from the definition in [25, page 368], although it is present in
[11, Definition 2.5]. The condition omitted by [25] is definitely needed for the validity of some of the results
in [11].
2 [11, Theorem 2.6] is slightly mis-stated, since the cyclically reduced automorphisms which it treats include
all the square automorphisms, but also the affine automorphisms which are not also elementary, such as, for
example the map τ : x �→ y, y �→ x . See the definitions on pages 68–69 of [11]. In fact, [11, Theorem 2.6]
is valid, in the terminology of that paper, for the elements of A having degree at least 2.
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(ii) A countably infinite set of height one mutually comaximal prime ideals {Pj : j ∈ N},
with

⋂

j∈N
Pj = (0);

(iii) (0).

(d) For each j ∈ N, there exists a positive integer n j and a finite 〈α〉-orbit {Q j,0, Q j,1 =
α(Q j,0), . . . , Q j,n j−1 = αn j−1(Q j,0)} of maximal ideals of C[x, y], such that

Pj =
⎛

⎝
n j−1⋂

�=0

Q j,�

⎞

⎠ TC,2,α.

(e) For j ∈ N, denote the prime ideal Pj ∩ SC,2,α of SC,2,α by P ′
j . Thus P ′

j =
(
⋂n j−1

�=0 Q j,�)SC,2,α . For each j ∈ N, (writing θ also for the image of θ in SC,2,α/P ′
j

and in TC,2,α/Pj ),

(SC,2,α/P ′
j )[θ−1] = TC,2,α/Pj ∼= Mn j (C[θ±n j ]). (14)

In particular, TC,2,α/Pj is an Azumaya algebra over its centre C[θ±n j ], so the maximal
ideals of TC,2,α/Pj are parametrised by C, and are the ideals

{Mj,λ/Pj : λ ∈ C}.
Hence, for all j ∈ N and λ ∈ C,

TC,2,α/Mj,λ ∼= Mn j (C).

(f) The integers n j , for j ∈ N, are unbounded; more precisely, every sufficiently large prime
number occurs amongst the n j .

Proof The partition of Spec(SC,2,α) into V(θ) and C(θ) is clear, and (a) and (b) follow at
once since SC,2,α/θ SC,2,α ∼= R and TC,2,α is the localization of SC,2,α with respect to powers
of θ .

By [11, Theorem 3.1], C[x, y] has countably infinitely many maximal ideals with a finite
〈α〉-orbit. Enumerating these orbits by the parameter j ∈ N, and letting n j be the size of the
j th orbit, the integers n j satisfy (f), by [11, Corollary 8.6 and note added in proof, page 97].
Labelling the j th finite 〈α〉-orbit as in (d), and defining the corresponding induced ideal Pj

also as in (d), yields a countably infinite set of comaximal prime ideals of T2,α,C by Lemma
2.3(b), giving the subset (c)(ii) of Spec(TC,2,α), see also [45, Theorem III.31]. The subset
(c)(iii) is clear.

Let I be any other prime ideal of T2,α,C, so that I is non-zero and

I ∩ C[x, y] = (I ∩ SC,2,α) ∩ C[x, y]
is an α-prime ideal of C[x, y] by Lemma 2.3(c). If I ∩ C[x, y] is co-Artinian, then, by
construction, I contains one of the primes Pj constructed above. Otherwise,

I ∩ C[x, y] = (0), (15)

since C[x, y] has no α-stable proper principal ideal, by [28]; see [43, note added in proof,
page 572]. Assume now that (15) holds. By [21, Theorem 4.3], as α is of infinite order the
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only prime of SC,2,α , not containing θ , which lies over (0) in C[x, y] is (0). Thus (0) is the
only prime ideal of TC,2,α not containing one of the ideals Pj .

It remains to prove (e), in the course ofwhich themaximal ideals of (c)(i) will be described.
It follows easily from Lemma 2.3(b) that TC,2,α/Pj ∼= R[θ±1;α] where R is the direct
sum of n j copies of C and α acts on R by α(ei ) = e(i+1)modn j , where {ei : 1 ≤ i ≤ n j } is
the set of primitive idempotents of R. Set n = n j , f = (1− e1)θ, a = θ−n+1 and b = θ−1.
Then: f n−1 = (1− e1)(1− e2) . . . (1− en−1)θ

n−1 = enθn−1, a f n−1 = θ−n+1enθn−1 = e1
and f b = 1 − e1. Thus a f n−1 + f b = 1 and f n = 0. Therefore, by [1, Theorem 1.3],
R[θ±1;α] = Mn(B) with e11 = a f n−1 = e1. As θn is central and e1θke1 = 0, for
0 < k < n, we have B = e11R[θ±1;α]e11 = (e1R)[θ±n] � C[θ±n] and (14) holds. Now
using standard arguments it is easy to complete the proof. ��

We can now summarise our (at present incomplete) knowledge about the occurrence
of property (�) for the algebras SC,2,α . Recall that, by definition, every element of
AutC−alg(C[x, y]) is either triangular or square.

Theorem 7.4 Let R = C[x, y], let α ∈ A = AutC−alg(R), and let SC,2,α = R[θ;α].
(a) Suppose that α is triangular. Then SC,2,α satisfies (�) if and only if α has finite order if

and only if α is conjugate to an element of type (i), with λ,μ roots of unity in C.
(b) Suppose that α is square. Then SC,2,α satisfies (�) if and only if SC,2,α is not primitive.

Proof (a) This is part of Lemma 7.2.
(b) Suppose that SC,2,α is primitive. Then SC,2,α does not satisfy (�) by Theorem 5.4(b).

Suppose on the other hand that SC,2,α is not primitive. Then, from the description of the
prime spectrum of SC,2,α in Lemma 7.3, it is clear, bearing in mind Kaplansky’s theorem
[4, Theorem I.13.3], that the only primitive ideals of SC,2,α are the co-Artinian maximal
ideals Mj,λ. Hence, every simple SC,2,α-module is finite dimensional over C. Therefore,
SC,2,α satisfies (�) by Theorem 6.1.

��

Of course, Theorem 7.4(b) begs the following obvious question. Keep the notation of
Theorem 7.4, and suppose that α is a square automorphism. Is SC,2,α primitive? The simplest
square automorphism is perhaps the map x �→ y, y �→ x + y2. We do not even know the
answer in this case.

Using the Leroy–Matczuk criterion for primitivity, Theorem 4.2, coupled with Lemma
7.3, it is not hard to reduce the above question to one about the geometry of the finite orbits
of square automorphisms, a question which may be of independent interest. It seems more
natural to frame it in terms of points in the plane C

2, rather than in terms of maximal ideals
of R:

Proposition 7.5 Keep the notation of Theorem 7.4, with α square. Denote the countably
infinitely many finite 〈α〉-orbits of points in C

2 by P j , for j ∈ N. Then SC,2,α is primitive if
and only if a point (a j , b j ) ∈ P j can be chosen, for every j ∈ N, such that {(a j , b j ) : j ∈ N}
lies on a (not necessarily irreducible) affine curve in C

2.

We leave the straightforward proof to the reader and refer to [25, Lemma 2.6(v)] for an
equivalent description of α-special rings.
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7.3 Subalgebras of group algebras over absolute fields

This family of examples shows that neither of the conditions (c) S satisfies a polynomial
identity nor (d) |α| < ∞ is implied by conditions (a) or (b) of Theorem 6.1. Note that (c)
and (d) are equivalent when R is semiprime, by [9] or [35].

Let A be a free abelian group of finite rank t , (t > 1). Write A multiplicatively with free
generating set X1, . . . , Xt . Let M ∈ GLt (Z), and define an automorphism α of A using M ;
that is, for Xn = Xn1

1 . . . Xnt
t ∈ A, with n = (n1, . . . , nt ) ∈ Z

t ,

α(Xn) := XMn,

where n is written as a column vector on the right hand side.
Let 〈θ±1〉 be an infinite cyclic group, and form the semidirect product

G := A �α 〈θ±1〉,
so that G is a torsion-free polycyclic group of Hirsch length t + 1. Now let p be a prime
integer, and let k be a subfield of the algebraic closure of the field of p elements. By a
celebrated result of Roseblade, [38], every simple module for the group algebra kG has finite
dimension as a k-vector space. (Roseblade’s result applies to all polycyclic-by-finite groups;
the case where the group is nilpotent-by-finite was proved by Philip Hall in 1959 [18].)

Let S be the subalgebra k A[θ;α] of kG. We claim that S inherits from kG the property
that all its simple modules are finite dimensional. To see this, let W be a simple S-module.
Since the powers of θ form an Ore set in S,W is either θ -torsion or θ -torsion free. In the first
case, Wθ = 0, so that W is a simple module over S/θ S ∼= k A. Therefore dimk(W ) < ∞
by Hilbert’s Nullstellensatz. In the second case, Wθ = W , so W carries a structure as
S〈θ−1〉-module, that is as kG-module. As such, it is necessarily simple, and hence has finite
k-dimension by Roseblade’s theorem [38].

Finally, choosingM to be amatrix of infinite order, we obtain an algebra S which is a skew
polynomial k-algebra over a Laurent polynomial coefficient algebra, which has property (�)

but for which |α| = ∞.

7.4 A subalgebra of a group algebra in characteristic 0

The following example is considered in [25, 7.10–7.14].
Let S = R[θ;α], where R = C[x±1, y±1] and α ∈ AutC−alg(R) is defined by α(y) = x

and α(x) = yx−1. Note that |α| = ∞. In [25], Jordan studies both the algebras S := R[θ;α]
and T := R[θ±1;α]. He proves in [25, Proposition 7.13] that T is primitive.

In the same proposition it is claimed that R is not α-special, so that, by the Leroy–Matczuk
theorem, Theorem 4.2, S is therefore not primitive. As is shown in [25, Propositions 7.11,
7.12], every non-zero primitive ideal of S is co-Artinian.Hence, if S itself is not primitive, then
every simple S-module is finite dimensional, and S satisfies (�) by Theorem 6.1. However,
as we observed in the first version of the current paper, there is a gap in the proof that
R is not α-special in [25, Proposition 7.13]. We are indebted to Ken Goodearl and to the
referee, who independently provided arguments to repair the gap in Jordan’s work. We give
Goodearl’s argument in Theorem 7.6. It is shorter than the referee’s proof, although requiring
the application of a result from [3]. The referee’s argument is sketched in Remark 7.8.
We thank both Goodearl and the referee for their input, and for permission to include the
arguments below.
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Theorem 7.6 (Goodearl [15]) Let α be the automorphism of the variety (C×)
2 given by

α(a, b) = (b, ab). There does not exist any curve C ⊆ (C×)
2 which meets every finite

α-orbit.

Proof Assume there does exist a curve C ⊆ (C×)
2 which meets every finite α-orbit.

As Jordan showed in [25, Proposition 7.11(ii)], for each prime p ≡ 1 (mod 5), there
exists a finite α-orbit Op consisting of points (ωkm

p , ωkm+1

p ) for m ∈ N, where k is an integer
satisfying k2 ≡ k+1 (mod p) and ωp is a primitive p-th root of unity inC. In particular, both
coordinates of every point in Op are primitive p-th roots of unity. By Dirichlet’s Theorem,
there are infinitely many primes p ≡ 1 (mod 5), so

⋃
p≡1 (mod 5) C ∩ Op is infinite. Hence,

there is at least one irreducible componentCi ofC such that
⋃

p≡1 (mod 5) Ci ∩Op is infinite.
For any prime p ≡ 1 (mod 5), the orbit Op is contained in the finite subgroup Hp :=

{(ωi
p, w

j
p)|i, j ∈ Z} of (C×)

2. Consequently, there are infinitely many primes p ≡ 1 (mod 5)
such that Ci ∩ (Hp\{(1, 1)}) is nonempty. Thus, the intersection of Ci with the union of the

finite subgroups of (C×)
2 is infinite. By [3, Corollary 1],Ci is contained in a proper algebraic

subgroup � of (C×)
2.

IdentifyC[x±1, y±1]withO((C×)
2
). Since� is a proper closed subgroup of (C×)

2, there
exist integers s and t , not both 0, such that � ⊆ V (1 − xs yt ). Hence, there are infinitely
many primes p ≡ 1 (mod 5) such that V (1 − xs yt ) ∩ Op is nonempty.

Observe that s2+st− t2 �= 0, and choose a prime p ≡ 1 (mod 5) not dividing s2+st− t2,
such that V (1 − xs yt ) ∩ Op is nonempty. Then V (1 − xs yt ) contains a point (ωkm

p , ωkm+1

p )

with m ∈ N and k ∈ Z such that k2 ≡ k + 1 (mod p). Now

0 = (1 − xs yt )(ωkm
p , ωkm+1

p ) = 1 − ω(s+tk)km
p ,

whence s+tk ≡ 0 (mod p). Since k2 ≡ k+1 (mod p), it follows that s2+st−t2 ≡ 0 ( mod p),
contradicting our choice of p. ��

As claimed in the proof of [25, Proposition 7.13] (or as in Proposition 7.5), the non-α-
speciality in this example can be stated in geometric terms as in Theorem 7.6. Taking into
account the previous discussion it follows that:

Corollary 7.7 Let R = C[x±1, y±1] and α ∈ AutC−alg(R) defined by α(y) = x and α(x) =
yx−1 and S = R[θ;α]. Then S is not primitive. Moreover, every simple S-module is finite
dimensional, whereas |α| = ∞. In particular, S satisfies (�), but does not satisfy a polynomial
identity.

Remark 7.8 Here is the promised sketch of the referee’s patch for [25, Proposition 7.13].
With the help of the Nullstellensatz one can reduce to the case when the coefficients of the
α-special element f belong to a finite Galois extension of Q, then, replacing f by

∏
σ∈G f σ

where G is the Galois group of the field extension, we may assume that f has coefficients in

Q. Think of α as acting by the matrix M =
[−1 1

1 0

]

. By Dirichlet’s Theorem and quadratic

reciprocity there are infinitely many primes p such that the polynomial det(M − λI3) splits
mod p. For such a prime p we can choose for M an eigenvalue c + pZ ∈ Z/pZ and an
eigenvector (b1+ pZ, b2+ pZ) inZ/pZ×Z/pZ. Now, forωp a primitive p-th root of unity,

it follows that α−1(ω
b1
p , ω

b2
p ) = (ω

b1c
p , ω

b2c
p ). Thus the α-orbit of (ω

b1
p , ω

b2
p ) is contained in

its Galois orbit. So f (x, y) vanishes on these orbits. Therefore, for infinitely many primes
p there is at least one finite α-orbit Op of a point (ωe

p, ω
g
p) with e, g not both zero (mod p)
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such that f (x, y) vanishes on every point ofOp . Let X be the Zariski closure of the union of
those infinitely manyOp and X1, . . . , Xn its one dimensional irreducible components. Since
α permutes the Xi , for each i there is an integer m ≥ 1 such that each Xi is stable under αm .
Also as Xi has a dense set of points that are periodic under αm , αm has finite order on Xi .
Let N ≥ 1 be such that αN is the identity on every Xi . Now αN is the identity on each of the
Op for infinitely many p. Hence 1 is an eigenvalue of MN , a contradiction.

8 Questions

For the convenience of the reader, we gather here a number of open questions arising from
this work, some of them previously raised earlier in the text, some appearing here for the
first time. As usual, k is a field, and S will denote the skew polynomial ring R[θ;α], where
R is commutative Noetherian and α is an automorphism. Further hypotheses will be added
as needed.

First, a question which seeks to remove the gap between the necessary and sufficient
conditions in Theorem 1.1 (= 5.4).

Question 8.1 Suppose that S is primitive and satisfies (�). Must R be a finite direct sum of
fields?

We should note that the remaining case of Theorem 5.4 is the one where α is of infinite order,
and R is an α-special Noetherian domain of Krull dimension 1 with countable spectrum.
Moreover RA−1 is a field, whereA, as before, is the smallest α-stable Ore set of S containing
an α-special element. WhenA is finitely generated as a multiplicatively closed set (it is then
possible to replaceA by the set of powers of an α-special element) R is a G-domain (see [26,
Theorem 19]). Thus, by [26, Theorem 156], R is semilocal. The case when R = K [[X ]], the
ring of formal power series and α is the automorphism given by α(X) = qX , for q ∈ K not
a root of unity, is a key example to consider.

A second point where necessary and sufficient conditions fail to match is in the affine
case, where the proof in one direction of Theorem 1.2 (= 6.1) needs the base field to be
uncountable or of characteristic zero (cf. Proposition 5.3’). So we ask:

Question 8.2 Suppose that R is an affine algebra over a countable field k of nonzero char-
acteristic and S satisfies (�). Are all simple S-modules finite dimensional over k?

It is worth noting in connection with Question 8.2 that (�) is in general not well-behaved
with regard to change of base field. Consider, for example, any polycyclic-by-finite group G
which is not abelian-by-finite; for instance, the Heisenberg group

G = 〈x, y, z : [x, y] = z, z central〉.
Choose a prime p, and let k be the field of p elements. Then kG satisfies (�), as already
noted in Sect. 1.3, thanks to Roseblade’s theorems [38,39] (or by [18] if we take G to be
nilpotent as above). Now let F be any field of characteristic p which is not algebraic over k.
Then FG = F ⊗k kG does not satisfy (�) by [33].

Haunting the results of Sect. 6 and the examples of Sect. 7 is the fundamental, if vague,
question:

Question 8.3 Suppose that R is k-affine and α ∈ Autk−alg(R). Are there “reasonable”
necessary and sufficient hypotheses on R and α which determine when all the simple S-
modules are finite-dimensional?
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The examples stemming from group algebras considered in Sect. 7.3 show that the sit-
uation regarding Question 8.3 in positive characteristic is undoubtedly rather delicate. In
characteristic 0, Sect. 7.4 provides an example where S is k-affine, has all its simple modules
finite dimensional but does not satisfy a polynomial identity. Further such examples may be
provided by the square automorphisms of C[x, y] studied in Sect. 7.2, where the question of
primitivity remains open. We thus repeat the question asked after Theorem 7.4.

Question 8.4 Let S = SC,2,α = C[x, y][θ;α], where α is a square automorphism. For
example, α could be the map sending x to y and y to x + y2. Is S primitive? Equivalently,
does S have an infinite dimensional simple module?
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