Ecosystem responses to climate-related changes in a Mediterranean alpine environment over the last ~180 years

Jiménez, L., Conde-Porcuna, J. M., García-Alix, A. , Toney, J. L. , Anderson, R. S., Heiri, O. and Pérez-Martínez, C. (2019) Ecosystem responses to climate-related changes in a Mediterranean alpine environment over the last ~180 years. Ecosystems, 22(3), pp. 563-577. (doi: 10.1007/s10021-018-0286-5)

165448.pdf - Accepted Version

165448Suppl.pdf - Supplemental Material



The effect of recent climatic warming is significant in the Mediterranean region, especially in high-mountain areas. This study uses multiple sedimentary proxies from Río Seco Lake, a remote alpine lake in the Sierra Nevada, southeastern Spain, to reconstruct recent environmental and ecological changes in the lake and catchment. Two main climatic periods can be distinguished during the past 180 years: Period One (1820 to ~ 1920s) characterized by colder and wetter conditions than the more recent Period Two (~ 1920s to the present), characterized by warmer and drier conditions. Independent proxies such as subfossil chironomid assemblages, n-alkane indices, pollen data and/or spectrally inferred chlorophyll-a concentrations indicate a longer ice-cover period, colder water temperature and more pronounced accumulation of snow in the catchment during Period One than in Period Two, likely producing water stress for catchment plant growth because of the low rate of ice melting in Period One. As temperature increases and precipitation decreases from the 1920s onwards, a wider development of wetland plants is observed, which is associated with the longer warm season that contributed to snow and ice melting in the catchment. This continuing temperature rise and precipitation decrease over the past 60-years by ~ 0.24°C per decade and –0.92 mm/y, respectively, lead to an important increase in chlorophyll-a and changes in lake biotic assemblages. Major chironomid community structure changes to warmer water taxa were recorded, resulting in a 2°C increase in mean July air temperature inferred by chironomids from ~ 1950 onwards. An inferred increase in primary production for the past few decades is consistent with higher temperatures, while wider development of wetland plants is associated with longer warm season. The coherence between independent environmental proxies, each associated with distinct mechanistic linkages to climatic shifts, strengthens our interpretations of a recent warming trend and an intensification of summer drought in this high-mountain area leading to distinct changes in the lake and its catchment. The impact of this climate change on the summits of Sierra Nevada and its influence transcends its geographical limits because these systems provide ecosystem services to a vast area.

Item Type:Articles
Additional Information:This study was funded by MMA Project 87/2007 and MINECO Project CGL 2011-23483 to C. P.-M. and a FPU fellowship (AP2007-00352) to L. J. from the Spanish Ministry of Education and Science. A.G.-A. was also supported by a Marie Curie IEF of the 7th Framework Programme of the European Commission (NAOSIPUK. Grant Number: PIEF-GA-2012-623027) and a Ramón y Cajal fellowship (RYC-2015-18966) from the MINECO.
Glasgow Author(s) Enlighten ID:Garcia-Alix Daroca, Dr Antonio and Toney, Professor Jaime
Authors: Jiménez, L., Conde-Porcuna, J. M., García-Alix, A., Toney, J. L., Anderson, R. S., Heiri, O., and Pérez-Martínez, C.
College/School:College of Science and Engineering > School of Geographical and Earth Sciences
Journal Name:Ecosystems
ISSN (Online):1435-0629
Published Online:08 August 2018
Copyright Holders:Copyright © 2018 Springer Science + Business Media B.V., part of Springer Nature
First Published:First published in Ecosystems 22(3):563–577
Publisher Policy:Reproduced in accordance with the copyright policy of the publisher

University Staff: Request a correction | Enlighten Editors: Update this record

Project CodeAward NoProject NamePrincipal InvestigatorFunder's NameFunder RefLead Dept
645331NAOSIPUK: Natural responses to past North Atlantic Oscillations: Southern Iberian Peninsula vs. United Kingdom. Analogues for future environmental changesJaime ToneyEuropean Commission (EC)623027SCHOOL OF GEOGRAPHICAL & EARTH SCIENCES